The West Coast Ocean Acidification and Hypoxia Science Panel: Major Findings, Recommendations, and Actions

Alexandria Boehm¹, Francis Chan², Jack Barth², Elizabeth Chornesky³, Andrew Dickson⁴, Richard Feely⁵, Burke Hales², Tessa Hill⁶, Gretchen Hofmann⁷, Debby Ianson⁸, Terrie Klinger⁹, John Largier⁶, Jan Newton⁹, Thomas Pedersen¹⁰, George Somero¹, Martha Sutula¹¹, Waldo Wakefield¹², George Waldbusser², Steve Weisberg¹¹, Elizabeth Whiteman¹³

INTRODUCTION

Harmful algal blooms (HABs) and algal toxins have increased globally in geographic range, frequency, duration, and severity in recent years. These increases have been attributed to various anthropogenic factors; the most significant include climate change, nutrient loading, and water residence time. HABs are problematic because they can affect multiple beneficial uses including recreation, aquatic life, and drinking water by reducing aesthetics, lowering dissolved oxygen concentration, causing taste and odor problems, and producing potent toxins. In recent years, cyanobacteria blooms and their associated toxins have gained national attention due to the severity of issues in the Midwest, and resulted in the release of health advisory values for drinking water by U.S. Environmental Protection Agency. In California, toxic HABs caused by cyanobacteria (CyanoHABs) have been a recurring and escalating issue throughout the state, particularly in the Klamath River watershed, Clear Lake, Pinto Lake, Sacramento and San Joaquin River Delta, Lake Elsinore, and East San Francisco Bay Area lakes. Additionally, Copco and Iron Gate Reservoirs, the Klamath River, and Pinto Lake were placed on the State's 303d list due to impairment caused by cyanotoxins. In 2012, the State's Surface Water Ambient Monitoring Program (SWAMP) sponsored a statewide workshop in response to the growing concern about cyanotoxins. One of the key recommendations from the workshop was to develop a statewide long-term vision and strategic plan to address CyanoHABs and other freshwater HABs.

Full text:

http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/926_WestCoastOAHSciencePanel.pdf

¹Stanford University, Stanford, CA

²Oregon State University, Corvallis, OR

³Independant Consultant

⁴University of San Diego, Scripps Institution of Oceanography, La Jolla, CA

⁵NOAA Pacific Marine Environmental Laboratory, University of Washington, Seattle, WA

⁶University of California, Davis, Davis, CA

⁷University of California, Santa Barbara, Santa Barbara

⁸Insitute of Ocean Sciences, Sidney, British Columbia, Canada

⁹University of Washington, Seattle, WA

¹⁰University of Victoria, Victoria, British Columbia, Canada

¹¹Southern California Coastal Water Research Project, Costa Mesa, CA

¹²NOAA Fisheries Northwest Fisheries Science Center, Oregon State University, Corvallis, OR

¹³California Ocean Science Trust, Oakland, CA