Development of Algal Indices of Biotic Integrity for Southern California Wadeable Streams and Recommendations for their Application, v3

This document is the deliverable for Prop 50 grant Task # 4, which entailed preparation of a draft algal IBI for use in southern California wadeable streams.

Abstract

Using a large dataset from wadeable streams concentrated in southern California, we developed several Indices of Biotic Integrity (IBIs) consisting of metrics derived from diatom and/or nondiatom ("soft") algal assemblages including cyanobacteria. Over 100 metrics were screened based on metric score distributions, responsiveness to anthropogenic stress, and repeatability. High-performing metrics were combined into IBIs, which were classified according to the amount of field and laboratory effort required to generate their scores. IBIs were screened for responsiveness to anthropogenic stress, repeatability, mean correlation between component metrics, and indifference to natural gradients. Most IBIs resulted in good separation between the most disturbed and least disturbed (i.e., "reference") site classes, but they varied in terms of how well they distinguished intermediate-disturbance sites from the other classes, and based on some of the other performance criteria listed. In general, the best performing IBIs were "hybrids", containing a mix of diatom and soft-algae metrics. Of those tested, the soft-algae-only IBIs were better at distinguishing the intermediate from most highly disturbed site classes, and the diatomonly IBIs were marginally better than soft-algae based IBIs at distinguishing reference-quality from intermediate site classes. The single-assemblage IBIs also differed considerably in terms of the natural gradients to which they were most responsive. These collective findings may help explain the superiority of hybrid IBIs with respect to several performance criteria. We make recommendations for use of different IBIs under different monitoring applications, or alternatively, a tiered approach to applying IBIs requiring increasing effort depending upon interim monitoring outcomes. Our recommendations seek to maximize benefit:cost in order to accommodate various monitoring scenarios.

key words: stream algae, diatoms, cyanobacteria, bioassessment, index of biotic integrity, monitoring

Introduction

The United States Environmental Protection Agency (US EPA) has been encouraging states to incorporate bioassessment into waterbody monitoring programs, preferably through the use of multiple biotic assemblages. Coordinated use of various assemblages yields multiple lines of evidence for assessing stream health and water quality, and can provide a broader range of perspectives on the attainment of aquatic life beneficial uses. For over a decade, bioassessment using benthic macroinvertebrates (BMIs) has been a standard practice in several California wadeable stream monitoring programs. The desire to incorporate multiple indicators combined with the need for an improved regulatory framework for nutrients is a primary impetus for developing algae-based bioassessment tools.

Algae can provide information complementary to that obtainable with BMIs alone in terms of types of stressors affecting them (Fore 2003, Griffith et al. 2005, Feio et al. 2007) and potentially also in terms of the levels of stress to which they are most responsive. While algae are well established as valuable indicators of organic pollution and stream nutrient status (Pan and Lowe 1994, van Dam et al. 1994, Winter and Duthie 2000, Douterelo et al. 2004, Berkman and Porter 2004, Parikh et al. 2006, Ponander and Charles 2004, Potapova and Charles 2007, Lavoie et al. 2008, Vis et al. 2008), they are also responsive to a variety of other stressor types. Several studies have identified toxic effects of certain metals on specific algal taxa (reviewed by Genter 1996), and others have demonstrated relationships between metals and aspects of benthic algal communities (Hill et al. 2000, Hirst et al. 2002, Ivorra et al. 2002, Griffith et al. 2005). In addition, some algal taxa are capable of motility. When covered by sediment, individuals can migrate toward the surface, and are therefore deemed better equipped to tolerate sedimentation, which has been the basis for some metrics (Bahls 1993).

In addition to responsiveness to stress, algal indicators are temporally complementary to BMIs (Stevenson and Smol 2003, Johnson and Hering 2004) because algae can reproduce/proliferate rapidly (Rott 1991, Lowe and Pan 1996, Hill et al. 2000, USEPA 2002) and communities can respond to changes in environmental conditions over shorter periods relative to other commonly used bioindicators (Stevenson and Pan 1999, Rimet et al. 2005, Lavoie et al. 2008). Another benefit of utilizing algae is the fact that they can colonize virtually any type of stream substratum, so their presence tends not to be limited by available habitat (Soininen and Könönen 2004, Feio et al. 2007). This attribute may enhance algal responsiveness to water quality within the context of a highly urbanized environment (e.g., where streams may be channelized, resulting in severely diminished physical habitat quality (Newall et al. 2006)).

The goal of using multiple assemblages (e.g., diatoms, soft algae, benthic macroinvertebrates) in biomonitoring raises the question of how to integrate the information obtained, and whether the value of results is cost-effectively enhanced through additional field and/or laboratory effort. The availability of community composition information from assemblages as diverse as diatoms, soft-algae, and cyanobacteria has provided us a comprehensive data set with which to evaluate their performance in biomonitoring applications, both as separate assemblages, and in an integrated format. Here we present our method for developing diatom and soft

algal/cyanobacterial metrics and a series of IBIs based on various metric combinations. We grouped candidate IBIs in terms of the level of effort required to derive index scores based on what types of samples were collected and processed in the field, as well as what assemblages were identified in the laboratory. With respect to soft algal and cyanobacterial laboratory processing, we also looked at the effect of focusing on species-level identifications vs. higher taxonomic groupings, and species presence information vs. quantitative (biovolume) information. This study is the basis for a set of recommendations for algae bioassessment that is sensitive to the fact that higher resolution data (requiring higher sampling and analytical costs) may not be necessary for all monitoring applications, and a tiered approach to monitoring may offer the best overall solution for different assessment needs.

Methods

Data sources

Data used in IBI development were mostly collected over 2007-2009 under the auspices of several different projects and programs. These include a project funded by a California State Water Resources Control Board Proposition 50 grant, as well as the monitoring programs of the southern California Stormwater Monitoring Coalition (SMC), the State of California Perennial Stream Assessment (PSA), the state's Reference Condition Management Program (RCMP), and surveys by the San Diego and Los Angeles Regional Water Quality Control Boards. In all cases, the same field and laboratory protocols were used for sample collection and processing, and the same taxonomy laboratories (California State University, San Marcos and University of Colorado, Boulder) analyzed all of the samples. A small number of samples were also collected in 2010. Most sampling was concentrated in coastal southern California, but study sites were scattered throughout the rest of the state as well.

Sample collection

A "multi-habitat method" method was employed to collect benthic algae quantitatively from wadeable stream reaches throughout California. This sampling method, which is now the official Standard Operating Procedures of California's Surface Water Ambient Monitoring Program (SWAMP; Fetscher et al. 2009), is based largely on existing procedures of EPA's Environmental Monitoring and Assessment Program (EMAP). It involves objectively collecting from a known surface area specimens from a variety of stream substrata, in proportions aligning with their relative abundances in the stream, and combining them into a single "composite" sample for laboratory analyses. As such, a given sample may have been collected from any combination of cobbles, gravel, and sand, etc. The goal is to achieve a representative sample of the benthic algae from each study reach, in terms of both community composition and biomass. A "qualitative" sample of soft algae was often also collected, with the goal of trying to capture as much as possible of the diversity in the study reach. Over 650 sampling events occurred at >450 distinct sites throughout the state.

In addition to the multihabitat method, at a subset of southern California sites (N=6), a "targeted substratum" approach was used. At these sites, the three most dominant substratum types were

identified, and from these, three samples were taken, each from a different substratum, for a total of four samples (one multihabitat sample, and 3 different targeted samples). The protocol followed for targeted substrata was that of the US Geological Survey National Water Quality Assessment (NAWQA) program (Moulton et al. 2002).

Additional data collected to aid in IBI development included water-chemistry constituents (nutrients, conductivity, pH, selected anions, dissolved organic carbon, selected metals, etc.), habitat variables (canopy cover, gradient, pebble size distribution, riparian disturbance indicators, wetted dimensions, flow habitats) using the methods outlined in Fetscher et al. (2009), and landscape variables (percent land use types, road density, and number of road crossings at various spatial scales, mines, elevation, stream order, watershed size, etc.)

Laboratory analyses

For the evaluation of diatoms, samples were cleaned by the method of Van Der Werff (1955). The cleaned material was processed into permanent microscope slides, using Naphrax as the mounting medium. For each sample, a target number of 600 valves were identified and enumerated with an Olympus BX-51 light microscope, using a 100x oil immersion objective with a N.A. of 1.40.

With respect to processing of soft-bodied algae (including cyanobacteria), for proper qualitative and quantitative identification and enumeration of taxa, macroalgae were processed separately from the microscopical algal fraction of each sample (Stancheva et al., in press). We adopted the concept of macroalgae as defined by Sheath and Cole (1992). Macroalgae were removed very gently with forceps from the original sample, squeezed to remove as much liquid as possible, and then placed into a graduated centrifuge tube with a known volume of distilled water. The total biovolume of macroalgae was determined by the increase of distilled water volume (mL) in the tube. Using a dissecting microscope, the number of macroalgal species and the proportion of each were determined. Identification of each macroalgal taxon encountered was carried out by microscopic examination, and the biovolume of each was calculated as the proportion of total biovolume that the fraction represented. For microalgal identification and enumeration, a 0.05 ml subsample of well homogenized suspension from original sample was pipetted onto a standard microscope slide and covered with a 22 x 30 mm coverslip. At microscope magnification 400x, a target number of 300 natural algal counting entities were identified and enumerated along a known number of optical transects across the microscope slide. Each optical transect held a known volume of counted sample. The natural algal counting entity was defined as each individual alga that is counted, whether it is a filament, coenocyte, tissue-like, colony, or single cell. The biovolume calculation of each microalgal taxon was according to Hillebrand et al. (1999). The biovolume of each encountered macroalgal and microalgal taxon was calculated as individual biovolume (μm^3) per cm^2 of area sampled after Lowe and Laliberte (1996), a method that accurately assesses algal biomass (Stevenson 1996). In our modified method for soft algae enumeration, we avoided homogenizing the entire original sample and using counting chambers (Lowe and Laliberte 1996, Stevenson and Bahls 1999). The separate processing of both algal fractions allowed identification of soft-algae to the lowest possible taxonomic level due to the high-quality preservation of

macroalgal vegetative and reproductive structures and the even distribution of microalgae on a standard microscope slide. In addition to collecting the biovolume information, up to 100 epiphytes were enumerated, and taxa present in the "qualitative" sample were recorded, when the latter was available.

Landscape analyses

Watersheds were delineated for each site from 30-m digital elevation models (USGS 1999) using a geographic information system (GIS). Where necessary (i.e., if sites drained ambiguous watersheds with minimal topography), delineations were modified using CALWATER boundaries (California Department of Forestry and Fire Protection 2004), or were based on feedback from local experts. Then the watersheds were clipped at two additional spatial scales (5 km and 1 km) in order to evaluate conditions at levels more local to each site. Once watersheds were delineated, metrics were calculated from source layers relating to land cover (NOAA 2001), transportation (CDFG custom roads layer, P. Ode, unpublished data), hydrology (National Inventory of Dams and NHD Plus), and mining (Mineral Resource Data System, USGS 2005).

Classifying study sites

For index development, it is necessary to utilize data from a large number of "reference" sites (that are unaffected by anthropogenic activities, or only minimally so) in addition to sites along a disturbance gradient representing a variety of stressors. Reference sites serve to set expectations for what biotic communities should look like in the absence of human disturbance. For IBI development, we utilized the same definition of reference as that which was under consideration for the larger, California "Biological Objectives" initiative

(http://www.swrcb.ca.gov/plans_policies/biological_objective.shtml). This definition is based largely on land use attributes at various spatial scales (i.e., at 1km and 5km radii from the site, as well as the entire watershed). In addition to landscape data, a limited number of local habitat data are included, as well as some water chemistry "backstops" used to identify potential anthropogenic influences at sites that have no obvious stressors based on the land use variables for which data are available. Table 1 summarizes the cut-points used for assigning "Reference" status to study sites. In addition to designating a subset of study sites as "Reference", we also made a distinction among non-reference sites by classifying them as most "Disturbed" or "Intermediate", based on several of the same variables used to designate reference status, but with more relaxed cut-points that were assigned in such a way that resulted in similar numbers of sites in the three categories. Table 1. Thresholds for site-disturbance-class designations of streams. All criteria had to be met in order for a site to be considered a member of a given class. Sites that met all criteria for "Intermediate" but not all criteria for "Reference" were deemed "Intermediate". Sites that met neither "Reference" nor "Intermediate" fell into "Disturbed".

		Cut	Points
Variable	Scale	Reference	Intermediate
Riparian disturbance (W1_Hall; Kaufmann 1999)	local	1.5	3
9/ A suisulture	1k, 5k	3	30
% Agriculture	watershed	10	30
% Urban	1k, 5k	3	50
	watershed	10	30
% Agriculture + Urban	1k, 5k	5	-
% "Code 21 ¹ " land use	1k, 5k	7	50
	watershed	10	-
Poad donsity (km /km2)	1k, 5k	2	10
Road density (km/km²)	watershed	2	-
	1k	5	-
Road crossings (crossings/km²; paved only)	5k	10	-
	watershed	50	-
Dam distance (km)	-	1	-
% Canals, pipes	watershed	10	50
Instream gravel mines (mines/km)	5k	0.1	-
Producer mines	5k	1	-
Total N (mg/L)	-	3	-
Total P (mg/L)	-	0.5	-

Selecting samples for IBI development

Some of the samples collected came from different locations on the same streams. Such sites were considered to be distinct for the purposes of IBI development if either of the following applied: 1) they were at least 1km apart, or 2) at least one tributary occurred between them (Cao et al. 2007). In the case where pairs of sites failed to meet either of these criteria, they were considered "geographic duplicates", and data from only one of them was used for IBI development.

A number of sites were sampled multiple times, either within visits or seasons, or across seasons or years. Only one sampling event per site was included in the pool of data for IBI development. Whatever event had more comprehensive data available was given preference. If all available sampling events had equal amounts of data, the event to use for IBI development was chosen at random. Data from replicate samplings were used to evaluate signal:noise and minimum detectable difference. Samples collected from the same site at different points in time were used to assess potential seasonality and inter-annual variation in IBI scores.

¹ "Code 21" encompasses a wide range of land uses primarily characterized by heavily managed vegetation (e.g., low-density residential development, parks, golf courses, highway medians)

Data analysis

Dataset preparation

The project dataset was split into two subsets: 70% of the sites were used for metric development and calibration and the remaining 30% were set aside for validation of candidate IBIs. Sites were stratified such that the two data sets had similar proportions of reference sites. In addition, an effort was made to maintain similar proportions of southern California sites in each. Within these constraints, sites were assigned at random to the calibration and validation subsets.

Metric development

A variety of metrics were tested for potential inclusion in the IBI. The themes within which metrics were developed, organized by broader categories (Fore and Grafe 2002), are listed in Table 2:

Metric Categories	Metric Themes
Tolerance/sensitivity	 association with specific water-quality constituents (nutrients, organic carbon, metals) tolerant to low dissolved oxygen
	 tolerant to high-ionic-strength/saline waters
Autecological guild	• nitrogen fixers
	 saprobic/heterotrophic taxa
Morphological guild	 sedimentation indicators
Morphological golia	 scour/stagnation indicators
Relationship to reference	 taxa associated with reference vs. non-reference sites (Wang and Stevenson 2005)
Taxonomic groups	 Chlorophyta, Rhodophyta, Zygnemataceae, heterocystous cyanobacteria
Community form	 total biovolume (soft algae)

 Table 2. Categories and themes within which metrics were developed.

Information of two general types were used in development of most of the metrics: 1) relative abundance of indicators of the stream chemical environment, with a focus on parameters of management interest (i.e., those chemical constituents primarily affected by anthropogenic activities), and 2) relative abundance of taxa with morphological/behavioral characteristics hypothesized to render them differentially adapted to stream physical environment conditions that can also be altered anthropogenically, such as sedimentation and flow regime. In addition, some metrics were based on the proportion of taxa/total biovolume belonging to taxonomic groupings that have been shown to be associated with stream condition parameters of management interest (Stancheva et al., in press).

Various sources were consulted to assign roles to taxa for raw metric calculations. For diatoms, these included of autecological information compiled by the USGS NAWQA program (Porter et al. 2008), which in turn derived from sources including Bahls (1993), van Dam (1994), and Potapova and Charles (2007). For soft-bodied algae, a smaller proportion of project taxa had autecological values available for any given indicator class; however sources consulted included

Palmer (1969), Sládeček (1973), VanLandingham (1982), and Rott et al. (1997, 1999). To the greatest extent possible, autecological attributes derived from the literature were used to develop candidate metrics. However, in the case of soft algae, this information was supplemented with stressor relationships derived from the project calibration dataset. Also, in some cases in which published information was unavailable (e.g., for assigning motility type or benthic vs. (tycho)planktonic habit for some of the taxa), best professional judgment was used.

Indicator species analysis

For the soft algae metrics, due to insufficient published autecological values across the taxa recorded in our study, we used indicator species analysis (Dufrêne and Legendre 1997) on our calibration data set to identify taxa significantly associated with selected water chemistry constituents to which other investigators have indicated algae are responsive (Palmer 1969, Cattaneo et al. 1997, Leland and Porter 2000, Guasch et al. 2002, Porter et al. 2008). Analyses were carried out on species absolute biovolume data using PC-ORD v6 software (McCune and Grace, 2002). In preparation for analyses, study sites were grouped according to their measured total phosphorus (TP), total nitrogen (TN), dissolved organic carbon (DOC), and dissolved copper, and based on their reference status. For the nutrients, we used the same concentration thresholds used by Potapova and Charles (2007) to assign study sites to "low" (under 0.2 mg/L for TN and $10\mu g/L$ for TP) vs. "high" (over 3mg/L for TN and $100\mu g/L$ for TP) categories. For other constituents (e.g., DOC and dissolved copper), we used the 25th quartile of project data set values as the threshold for "low" and the 75th quartile for "high". Monte Carlo simulation was used to generate significance levels for each taxon's group membership assignment. In calculating metrics, all taxa with significant indicator values associated with a "low" or "high" group were considered to be indicators for that constituent (or indicators for reference/non-reference sites).

Metric calculations

Both diatom-based and soft-algae-based metrics were developed within many of the themes (Table2). The number of metrics created and evaluated was intentionally limited, giving preference to metrics that had a basis in known biological/ecological traits that likely influence responses to stress, or that had established stress responses reported in the literature. In the case of diatoms, metrics were always expressed in terms of proportion of valves (e.g., proportion of total valves that belonged to the nitrogen-fixing genera *Epithemia* and *Rhopalodia*). In the case of soft algae, metrics were cast in various ways (e.g., proportion of total species or proportion of total biovolume). Biovolume-based metrics for soft algae were derived from the sum of the microalgal and macroalgal fractions within each sample. In order to boost the sometimes low softalgae were based on all species recorded in the sample, including the epiphytes and those encountered in the qualitative sample. In all cases in which metrics were calculated based on proportion of valves, species, or biovolumes associated within a certain indicator type, in any given sample only the taxa for which indicator assignments were available were included in the calculation.

Metric screening and scaling

All raw metrics were subjected to a preliminary screen consisting of evaluation of data distributions and visualization of scatterplots depicting metric values along a generalized stressor gradient (Hering et al. 2006). The gradient used was a draft multimetric index composed of a set of landscape parameters similar to those listed in Table 1 (D. Gillette unpublished). If a given metric failed to exhibit the expected trend of response to stress, and/or had a large proportion of zeros (Stoddard et al. 2008), that metric was excluded from further analysis. In addition, metrics that could not be calculated for some of the study sites (e.g., because none of the taxa recorded at those sites had indicator values) were eliminated from the pool for further consideration. Also eliminated were species-presence based soft-algal metrics showing sensitivity to whether a qualitative sample had been available for analysis. This was evaluated via t-tests of raw metric scores using as the grouping variable whether or not a qualitative sample had been collected.

The metrics that were not eliminated in the initial phase were scaled into standardized, unitless forms according to the following scheme, and using the raw metric data distributions from the sites in the calibration data set. For metrics expected to decrease with stress, sites scoring above the 80th percentile of reference sites were assigned a score of 10, and sites scoring below the 10th percentile of non-reference sites were assigned a score of 0. The intervening range of scores was divided into equal parts for scores 1 through 9. An analogous approach was taken for metrics that increase with stress, such that those scoring below the 20th percentile of reference were assigned a score of 10, and those scoring above the 90th percentile of non-reference sites were assigned a score of 0. (Ode et al. 2005).

The second phase of screening involved inferential analysis to assess relationships between scaled metrics and a composite stressor gradient constructed from conventional water chemistry parameters. Several constituents (chloride, DOC, conductivity, and sulfate) for which data were available for most samples in the project dataset, and which tend to increase as a result of anthropogenic influence, were used in a principal components analysis to generate an axis representing a generalized water chemistry gradient. The relationship between each of the metric scores and the principle component scores was determined by Spearman rank correlation. Signal:noise ratio was determined for each metric by comparing variance of each metric among streams ("signal") with variance between replicate samples collected at the same site ("noise") (Kaufmann et al. 1999) using restricted maximum likelihood (REML), to accommodate the unequal number of replicates across the dataset. Data distributions of the scaled metrics were visualized with histograms. Any metrics that exhibited a poor distribution (e.g., strongly bimodal, at the extremes of the range of scores) were eliminated. JMP v8 software was used for the principal components, correlation, and variance components analyses.

Based on these screens, a "long list" of successful metrics was generated by giving preference to those exhibiting the strongest relationships with stress (Fore and Grafe 2002), highest signal:noise ratios (Stoddard et al. 2008), and acceptable distributions. The best-performing metrics within

each theme, up to a total of two within each of the diatom and soft-algae assemblages, were retained for use in the next phase.

IBI development

Candidate IBIs were selectively created by summing different sets of long-list diatom and/or softalgal metrics that overlapped as little as possible in terms of metric themes, as opposed to exploring all possible permutations of metric combinations. Correction factors (multipliers) were used to scale the resulting IBIs to a maximum possible score of 100, as needed. The IBIs were divided into categories based on whether they were composed of metrics from a single assemblage (diatoms or soft) or both (i.e., "hybrid" IBIs). Among the hybrid IBIs, the distinction was also made between those that required carrying out the full soft-algae laboratory protocol, and those requiring a less involved subset of the effort described in that protocol. The "reducedeffort" soft algae metrics included those requiring only species-presence information, as well as those based on biovolumes, but not requiring identification all the way down to species level. The set of candidate IBIs was then subjected to a final set of screens based on the degree to which they related to stress, how repeatable their scores were across multiple samples collected on the same day, how little statistical redundancy there was among component metrics, and how indifferent the IBI scores were to natural gradients.

Using the validation data set, candidate IBIs were evaluated for relationships to stressors via two approaches. One involved looking at how well IBI scores separated sites belonging to the Disturbed, Intermediate, and Reference disturbance classes (Table 1) using ANOVA with Tukey's tests for multiple comparisons, along with visualization of box plots to evaluate overlap between interquartile ranges (Barbour et al. 1996, Klemm et al. 2002). The second was to look at the Spearman rank correlations between IBI scores and generalized stress in the form of the same water chemistry principal component axis used in the second phase of metric screening. This latter analysis was conducted both on the validation sites across the disturbance gradient, and on the validation and calibration sites combined within the Intermediate site disturbance class, in order to assess how well the IBIs could resolve sites subjected to intermediate levels of disturbance.

Signal:noise ratio was determined for each IBI similarly to the method described for metric screening. However, in addition to evaluating signal:noise among true replicate samples, we also looked at signal:noise across the multiple samples collected on the same day at the subset of study sites where both the multihabitat and targeted-substrata samplings were carried out. For the latter type, due to the balanced design of N=4 samples at each site, variance components were derived from ANOVA models.

One concern in developing multimetric indices is the potential effect of incorporating "redundant" metrics, which could unintentionally result in weighting some aspect of community condition more heavily than others (Hering et al. 2006). A favored approach to reducing redundancy between metrics has been to eliminate some of them during the metric-screening phase based upon their pairwise correlations. A correlation coefficient threshold of ≥ 0.7 has been used for this purpose (Fore and Grafe 2002, Ode et al. 2005, Flotemersch et al. 2006). However, metrics may be

highly correlated simply because they are responsive to similar or confounded stressor gradients, and not as a result of inherent redundancy between them in terms of the aspects of the biotic assemblage they reflect (Cao et al. 2007). In addition, Van Sickle (2010) showed that, in terms of ultimate IBI performance, focusing on reducing *mean* correlation among metrics, and then using this criterion to help select *among candidate IBIs* was superior to eliminating metrics based on their pairwise exceedence of a predetermined threshold. Therefore, using the full set of study sites available, Spearman's rho was determined for all the pairwise combinations. The mean pairwise correlation coefficient among all component metrics was then calculated for each of the candidate IBIs.

Another essential feature of an IBI is relative indifference to sources of natural variation, such that variation in IBI scores among sites is most likely the result of anthropogenic rather than nonanthropogenic factors (Foerster et al. 2004). In order to evaluate all of the candidate IBIs with respect to this parameter, we used Spearman rank correlation to assess relationships between the candidate IBIs and a large suite of natural (or primarily natural) gradients to which algae might be responsive. These included: percent fines, percent fines + sand, alkalinity, slope (both reachand landscape-level), canopy cover, stream order, watershed area, elevation, latitude, longitude, average precipitation, and average temperature. This analysis was conducted on the Reference group of sites only, in order to reduce the likelihood that any responsiveness realized might have an anthropogenic component, since some gradients can result from anthropogenic and natural factors combined (e.g., alkalinity; Cao et al., 2007).

In the event that no single candidate IBI scored the best across all screens, more importance was assigned to some screens over others in order to facilitate decision-making about which IBI to adopt. Relationship with stress was accorded priority (Fore 2003), with signal:noise deemed the second most important consideration. If values for these priority screens exhibited very little difference among multiple IBIs, then the remaining screen types (redundancy and relationship with natural gradients) were also taken into consideration to help finalize the decision. Finally, to facilitate comparison of top-performing candidate IBIs, linear regression was used to visualize relationships between IBI scores and the generalized water chemistry gradient using the principal components axis described previously.

Establishing IBI scoring categories

The number of scoring categories that an IBI can reliably distinguish was determined according to the method of Fore et al. (2001) based on Zar (1999) for calculating minimum detectable difference (MDD) with a two-sample t-test model. This involved using the error variance associated with replicate samples (mean squared error from ANOVA) to determine how different the IBI scores of two truly "different" sites must be in order to be statistically distinct given realized subsampling variance (i.e., within-site IBI score heterogeneity). An alpha value of 0.05 and a beta value of 0.9 were used for this determination. The range of possible scores for the IBI was divided by the MDD to arrive at the number of distinct scoring categories detectable with the IBI.

Results

Of all the study sites for which landscape data were available, 27% were classified as "Reference", 38% as "Intermediate", and 35% as "Disturbed" (Table 3). Reference sites were distributed throughout the state but were more common outside of southern California (Figs. 1a & b).

Table 3. Number of sites in each of the disturbance classes, by region. Only sites with available landscape data are enumerated. See Table 1 for definitions of site disturbance classes and Figs. 1a & b for maps of site locations.

Site Disturbance Class	Southern California	Outside of Southern California
Reference	50	66
Intermediate	88	72
Disturbed	102	44

Figure 1a. Statewide sites used for algae IBI development.

Figure 1b. Detail: Southern California sites used for algae IBI development.

Metric development and screening

Of 400 soft algal species in the calibration data set, indicator species analyses yielded a total of 38 significant low/high indicators for TP, 39 for DOC, 25 for dissolved copper, 17 for TN, and 19 for species associated with reference/non-reference site status (Appendix A). A list of the soft algal taxa with their indicator assignments based on these analyses is provided in Appendix B, which also includes literature- and best-professional-judgment-derived values used in the various metric calculations. Information for the diatoms is presented in Appendix C.

The list of 105 metrics developed and tested is presented in Appendix D. In total, 64% were excluded based on the initial screening of raw metrics, and another 16% during the second-phase screening of scaled metrics. Most eliminations in the first phase were due to poor distribution of metric scores and/or lack of obvious relationship to a generalized stressor gradient. Only a few were eliminated because their scores could not be calculated for all samples (N=3), or because of metric sensitivity to whether or not a qualitative sample had been collected (N=13). Poor distribution of scores was more common among the soft-algae metrics than the diatoms, and

occurred both in species-number and biovolume-based metrics. Among the soft algae metrics assessed, those expected to relate to stream physical properties such as flow and sedimentation did not perform as well as the metrics relating to aspects of water chemistry. Among the diatoms, successful metrics were identified for physical environment as well as water chemistry parameters. Appendix D includes the responsiveness and signal:noise results for the long-list metrics.

The metrics that performed best in southern California were not all top performers among the sites beyond that region. Therefore, for present purposes we focused creation and testing of candidate IBIs on the southern California subset of data in the interest of best serving the needs of that region. Unless otherwise noted, all reported performance characteristics past the initial metric screeing phase focus only on the southern California subset of sites. However, once top performing IBIs (from the standpoint of southern California) were identified, we also looked at basic aspects of performance across the remainder of the statewide data set in order to inform future efforts to develop IBIs for application in other parts of the state.

IBI development and screening

A total of 25 candidate IBIs were developed, each composed of some combination of between 5 and 10 of the 21 long-list metrics (Table 4).

Table 4. Metric composition of candidate IBIs for use in southern California. IBI names beginning with "H" are hybrids, "D" are diatom-only, and "S" are soft-algae-only. Metric names followed by "d" are derived from the diatom assemblage, and those followed by "s" are from the soft algae. Of the soft algae, those followed by: "b" are based on biovolume, "sp" are based on species presence, and "m" are the average of the "b" and "sp" counterpart metric values. "CRUS" stands for *Cladophora glomerata* + *Rhizoclonium hieroglyphicum* +*Ulva flexuosa* + *Stigeoclonium* spp. "ZHR" stands for Zygnemataceae + heterocystous cyanobacteria + Rhodophyta.

IBI	proportion highly motile (d)	proportion sediment tolerant (highly motile) (d)	proportion low N indicators (d)	proportion low P indicators (d)	proportion N heterotrophs (d)	proportion requiring >50% DO saturation (d)	proportion requiring nearly 100% DO saturation (d)	proportion halobiontic (d)	proportion oligo- & beta-mesosaprobic (d)	proportion poly- & eutrophic (d)	proportion A. <i>minutissimum</i> (d)	proportion Chlorophyta (s, b)	proportion of green algae belonging to CRUS (s, b)	Proportion ZHR (s, m)	Proportion ZHR (s, b)	proportion high DOC indicators (s, b)	proportion "non-reference" indicators (s, b)	proportion high Cu indicators (s, sp)	proportion high DOC indicators (s, sp)	proportion low TP indicators (s, sp)	proportion "non-reference" indicators (s, sp)
H10		Х		Х	Х		Х	Х					Х	Х			.,	Х			
H13 H14		X X		X X	X X	X X		X X					Х		X X	х	Х				
н14 H15		X		X	X	X		X						х	^	^			Х		
H16	х	Λ		x	x	x		x						Λ	х				x		
H17		х		x	x	X		x						х							х
H18		Х		Х	Х	Х		х							х		Х				
H19		Х	Х		Х	Х		Х								Х		Х		Х	
H2	Х				Х	Х		Х						Х				Х	Х	Х	Х
H20		Х	Х		Х	Х		Х										Х	Х	Х	
H21		Х		Х	Х	Х		Х				х			Х						
H22		Х		Х	Х	X X		Х					X X	v	Х				v		
H23 H3	х	Х	Х	X X	X X	X		X X					X	X X					Х		
H6	~	х	x	x	x	~		x					~	x					х		
H7		X	x	x	x			x					х	x				х			
H9		Х	х	Х	Х		х	х					х	х				Х	X X		
D13		Х	Х	Х	х			Х													
D14	Х		Х	Х	Х			Х													
D16		Х	Х	Х	Х	Х		Х	Х		Х										
D17	х			.,	Х		х	Х	Х	х	Х										
D18		х		Х	Х	Х		Х					v	v		v		v		v	v
S1 S11													X X	Х	х	Х	Х	X X		X X	Х
S11 S2													X	Х	^		^	X	х	X	х
													~	~				~	~	~	~

In general, the hybrid IBIs outperformed the single-assemblage IBIs in terms of responsiveness to stress assessed in various ways (Table 5). Hybrids were best able to discriminate between site disturbance classes based on IBI score distributions. Interquartile ranges for scores of topperforming hybrids exhibited less overlap between site disturbance classes than their singleassemblage counterparts (Fig. 2), among which the top-performing diatom IBI exhibited less separation between the Disturbed and Intermediate classes, and the soft algae IBI showed the opposite trend of less separation between Intermediate and Reference.

Effort category	IBI	Correlation ¹ with PC1 (validation)	Correlation ² with PC1 (within Intermediate class)	R ² , ANOVA with Site Disturbance Class (validation)	Are all pairwise ³ differences significant?	Signal:noise (multihabitat replicates)	Signal:noise (targeted substrata)	Metrics mean pairwise correlation	No. natural gradients with significant correlation
	D18	-0.71	-0.47	0.32	yes	18.6	10.5	0.60	6
	D13	-0.68	-0.44	0.34	yes	16.5	14.4	0.60	3
	D14	-0.68	-0.42	0.33	yes	15.1	13.3	0.58	3
single	D16	-0.66	-0.42	0.36	yes	18.6	17.9	0.60	5
assemblage	D17	-0.65	-0.38	0.31	yes	16.2	11.2	0.56	3
	S2	-0.57	-0.29	0.52	not R vs I	18.2	3.2	0.61	3
	S1	-0.50	-0.27	0.52	not R vs I	31.3	3.2	0.61	3
	S11	-0.43	-0.22	0.48	not R vs I	24.0	4.3	0.55	4
	H23	-0.69	-0.51	0.51	yes	34.7	7.3	0.43	1
	H19	-0.71	-0.48	0.55	not R vs I	29.3	15.7	0.45	1
	H2	-0.67	-0.45	0.54	not R vs I	21.2	6.3	0.47	0
	H7	-0.70	-0.47	0.54	yes	24.6	11.5	0.44	2
	Н9	-0.68	-0.46	0.51	yes	21.7	11.7	0.42	2
	H13	-0.67	-0.44	0.50	not R vs I	51.6	7.5	0.41	0
	H10	-0.68	-0.45	0.48	yes	16.5	9.9	0.39	2
full effort	H18	-0.65	-0.44	0.47	not R vs I	40.7	10.0	0.44	0
	H6	-0.68	-0.51	0.47	yes	26.8	11.8	0.50	4
	H14	-0.66	-0.49	0.46	not R vs I	33.5	8.6	0.46	1
	H15	-0.71	-0.53	0.46	yes	29.3	8.6	0.48	3
	H17	-0.70	-0.50	0.45	yes	28.4	8.8	0.48	1
	НЗ	-0.66	-0.47	0.45	yes	24.6	10.5	0.46	1
	H16	-0.69	-0.52	0.44	yes	22.3	7.9	0.46	1
	H22	-0.67	-0.46	0.44	yes	24.0	8.4	0.43	0
reduced effort (no species- level for soft)	H21	-0.63	-0.44	0.41	yes	24.6	12.9	0.42	1
reduced effort (no biovolume)	H20	-0.72	-0.51	0.51	yes	20.7	12.0	0.50	1

Table 5. Candidate IBI performance results by effort category. Only data from sites in southern California are included in the analyses. IBIs in boldface type are treated in more detail in the following section.

¹ all values significant ($\alpha = 0.05$)

² all values significant ($\alpha = 0.05$) except for S11 (p=0.08)

³ "not R vs I" indicates that the Reference and Intermediate site disturbance class IBI scores were not significantly different

Site Disturbance Class

Figure 2. Discriminatory power of IBIs from different effort classes. Scores are taken from the validation data set for the southern California study sites. A-C: hybrid IBIs (H23, H20, and H21, respectively), D: diatoms only (D18), E: soft algae only (S2).

Signal:noise was consistently higher in the case of replicate samples collected using the multihabitat field protocol than that resulting from sampling different targeted substrata (Table 5). On average, hybrids outperformed single-assemblage IBIs (particularly the diatoms) for the replicate multihabitat sampling, and soft-algae-only IBIs exhibited the lowest signal:noise among the targeted-substrata samples.

Mean pairwise correlation coefficients among metrics for the candidate IBIs ranged from 0.39 to 0.61, and maximum pairwise metric correlations per IBI ranged from 0.73 (for S1) to 0.91 (for D13, D14, D16, H3, H6, H7, and H9). Perhaps not surprisingly, mean pairwise correlations were invariably lower among hybrids than the IBIs composed of a single assemblage (Table 5).

Candidate IBIs varied considerably in terms of their relationships to natural gradients, with some (H22, H18, H2, H13) not significantly correlated with any of the 13 factors tested, and others (D11, D18, S11, H6) correlated with four or more (Table 5). Of those tested, the natural gradient most commonly significantly correlated with IBI scores was watershed area (which was positively associated with a total of 17 hybrid and diatom IBIs) followed by stream order and percent fines (which were correlated with 7 IBIs each, positively for stream order and negatively for fines). Overall, the hybrid IBIs were least frequently associated with the natural gradients tested, whereas diatom-only IBIs exhibited significant relationships with the highest number of natural gradients (Table 5). Diatom-only and soft-algae-only IBIs exhibited very little similarity in terms of their associations with natural gradients. Diatom IBIs were particularly responsive to stream

order, watershed area, and percent fines, and soft-algae IBIs were most responsive to canopy cover and slope (both negatively).

Based on the information in Table 5, the top performing IBI from each of the effort categories were selected for further evaluation. These included three hybrids representing different levels and types of laboratory effort (H23: requiring the full soft-algae laboratory protocol, H20: requiring no biovolume data, but species-level identification of soft-algal taxa, and H21: requiring soft-algal biovolumes, but genus-level or above identifications of soft-algal taxa), and one single-assemblage IBI (D18). Performance characteristics of the four candidate IBIs are highlighted in Figs 3-6.

With respect to stress response, within the validation data set across the range of site disturbance classes, slopes of the regressions of IBI scores on the generalized water chemistry gradient were similar among the four candidate IBIs, ranging from -13.6 (for H23) to -11.7 (for H21). R² values for the regressions, in descending order, were 0.504 for H20, 0.485 for H23, 0.437 for D18, and 0.394 for H21 (Fig 3). Within the Intermediate class (for validation and calibration data combined), slopes ranged from -7.24 (for D18) to -6.1 (for H21) and R² values were 0.282 for H20, 0.273 for H23, 0.236 for D18, and 0.208 for H21 (Fig 4). From the standpoint of proportion of variance explained, the top performer in each of the two analyses was the hybrid, H20.

Figure 3. Linear regression of IBI scores on water chemistry principal component scores. P<0.0003 for all relationships. Scores are taken from the validation data set for the southern California study sites. A-C: hybrid IBIs (H23, H20, and H21, respectively), D: diatoms only (D18). Green symbols = Reference sites, yellow = Intermediate, red = Disturbed.

Figure 4. Linear regression of IBI scores on water chemistry principal component scores. P<0.0002 for all relationships. Scores are taken from the Intermediate site disturbance class within southern California. A-C: hybrid IBIs (H23, H20, and H21, respectively), D: diatoms only (D18). Light blue symbols are from the validation data set and dark blue are from the calibration data set.

With respect to repeatability of IBI scores, in addition to comparing signal:noise ratios (Table 5), we looked at the means of within-site ranges of scores ("mean spread") for each of the IBIs. Among field replicates, this varied from 5 points (on a scale of 100) corresponding to H23, to 6 points for both H20 and H21, and 8 points for D18 (Fig 5).

Figure 5. Repeatability of IBI scores among replicate samples collected during a single site visit using the multihabitat field protocol. Only southern California study sites (N=16) are shown. A-C: hybrid IBIs (H23, H20, and H21, respectively), D: diatoms only (D18).

With respect to "repeatability" of IBI scores across different substrate types, the broadest mean spread in scores corresponded to H23 (16 points), and the other three IBIs exhibited a mean spread of 13 points each (Fig 6). No substratum bias in IBI scores was evident for any of the IBIs, as no single substratum type was associated with the highest or lowest IBI score across sites.

Study Site

Figure 6. "Repeatability" of IBI scores among samples collected from different substrata (N=4 samples/site) during a single site visit. Only southern California study sites (N=6) are shown. A-C: hybrid IBIs (H23, H20, and H21, respectively), D: diatoms only (D18). Substratum codes: red=multihabitat, grey=cobble, blue=gravel, yellow=sand, green=plant leaves/stems, brown=wood.

In order to evaluate how stable the scores for one of our candidate IBIs might be expected to be across seasons/years, we selected the hybrid, H2O, as a model to demonstrate temporal patterns in IBI scores (Fig 7). No seasonal nor annual bias in IBI scores was evident, as no single season nor year was associated with the highest or lowest IBI score across the study sites with multiple seasons/years represented.

Figure 7. Intra- and inter-annual variability in IBI (H2O) scores at southern California study sites (N=26). Sample collection period: green= an extended "summer" index period, orange=fall, blue=winter, pink=spring; circle=2007, triangle=2008, square=2009, diamond=2010.

In order to begin looking at the potential utility of the top-performing IBI for southern California in other parts of the state, we evaluated ability of H20 to discriminate among sites falling into the three disturbance classes using the data from Central and Northern California. A one-way ANOVA with site disturbance class as the main effect was highly significant (p<0.0001) with an R² of 0.40. However, Tukey's test indicated that intermediate and reference site IBI scores were not statistically different when this IBI was applied to the data from sites outside of southern California (Fig. 8).

Figure 8. Performance of IBI H20 in Central and Northern California sites (combined), using validation data only. Data shown include all study sites outside of southern California (see map in Fig. 1a for geographic distribution of sites, and Table 3 for a breakdown of numbers of sites by disturbance class).

Performance Characteristics and Scoring Class Bins for IBI H20

We assessed the ability of IBI H20 to distinguish among sites of varying condition within southern California by calculating its associated minimum detectable difference (MDD). MDD was determined using two types of data. For a realistic estimate, we used same-day replicate sample data (N=3 per site) collected at 5 sites using the state-adopted multihabitat protocol to determine variance associated with sampling heterogeneity. For a more conservative estimate of MDD, we also calculated MDD using variance associated with same-day subsamples collected from divergent substratum types (N=4 per site) at 6 sites. The former approach yielded an MDD of 13.5 and the latter yielded 20.4. We divided the range of possible IBI scores (100) by each MDD estimate to arrive at the number of IBI scoring categories distinguishable under each scenario. This resulted in 7.6 categories for the former method and 4.9 for the latter. As a conservative compromise between the two, we considered H20 to be capable of distinguishing 5 categories in southern California wadeable streams.

We also used information on the distribution of H20 scores among reference sites in order to establish a statistical boundary below which IBI scores could be considered to be distinct from that associated with reference conditions. This boundary was designated as two standard deviations below the mean reference site score (Ode et al., 2005), which corresponded to an H20 IBI score of 57. The MDD analyses suggested that a conservative bin width for IBI scoring categories would be approximately 20 points, for a total of 5 bins across the breadth of possible IBI scores. Superimposing this information on the statistically defined reference boundary argued for placing two bins above 57 and 3 bins below. An IBI scoring-category scheme conforming to this, and with roughly equal bin widths, is as follows: 0-18 ("Category 1"), 19-38 ("Category 2"), 39-57 ("Category 3"), 58-79 ("Category 4"), and 80-100 ("Category 5").

Metric scoring guidelines

Scoring guidelines for the 21 long-list metrics are provided in Tables 6 (diatoms) and 7 (softbodied algae).

Metric score	proportion halobiontic (d)	proportion N heterotrophs (d)	proportion sediment tolerant (highly motile) (d)	proportion requiring >50% DO saturation (d)	proportion low TN indicators (d)	proportion low TP indicators (d)	proportion poly- & eutrophic (d)	proportion oligo- & beta- mesosaprobic (d)	proportion highly motile (d)	proportion A. minutissimum (d)	proportion requiring nearly 100% DO saturation (d)
0	0.533 +	0.512 +	0.488 +	0 to 0.632	0 to 0.009	0 to 0.009	0.954 +	0 to 0.221	0.417 +	0	0 to 0.023
1	0.475 to	0.445 to	0.436 to	0.633 to	0.010 to	0.010 to	0.880 to	0.222 to	0.373 to	> 0 to	0.024 to
	0.532	0.511	0.487	0.673	0.093	0.090	0.953	0.300	0.416	0.034	0.087
2	0.417 to	0.389 to	0.385 to	0.674 to	0.094 to	0.091 to	0.806 to	0.301 to	0.329 to	0.035 to	0.088 to
	0.474	0.444	0.435	0.713	0.177	0.171	0.879	0.380	0.372	0.068	0.152
3	0.359 to	0.333 to	0.333 to	0.714 to	0.178 to	0.172 to	0.732 to	0.381 to	0.286 to	0.069 to	0.153 to
	0.416	0.388	0.384	0.754	0.260	0.252	0.805	0.460	0.328	0.102	0.216
4	0.301 to	0.277 to	0.282 to	0.755 to	0.261 to	0.253 to	0.659 to	0.461 to	0.242 to	0.103 to	0.217 to
	0.358	0.332	0.332	0.794	0.344	0.333	0.731	0.539	0.285	0.136	0.281
5	0.243 to	0.221 to	0.231 to	0.795 to	0.345 to	0.334 to	0.585 to	0.540 to	0.198 to	0.137 to	0.282 to
	0.300	0.276	0.281	0.835	0.428	0.414	0.658	0.619	0.241	0.170	0.345
6	0.185 to	0.165 to	0.179 to	0.836 to	0.429 to	0.415 to	0.511 to	0.620 to	0.155 to	0.171 to	0.346 to
	0.242	0.220	0.230	0.875	0.512	0.495	0.584	0.699	0.197	0.204	0.410
7	0.127 to	0.109 to	0.128 to	0.876 to	0.513 to	0.496 to	0.437 to	0.700 to	0.111 to	0.205 to	0.411 to
	0.184	0.164	0.178	0.916	0.595	0.576	0.510	0.778	0.154	0.239	0.474
8	0.069 to	0.053 to	0.076 to	0.917 to	0.596 to	0.577 to	0.363 to	0.779 to	0.067 to	0.240 to	0.475 to
	0.126	0.108	0.127	0.956	0.679	0.658	0.436	0.858	0.110	0.273	0.539
9	0.011 to	0.008 to	0.025 to	0.957 to	0.680 to	0.659 to	0.289 to	0.859 to	0.024 to	0.274 to	0.540 to
	0.068	0.052	0.075	0.997	0.763	0.739	0.362	0.938	0.066	0.307	0.603
10	< 0.011	< 0.008	< 0.025	> 0.997	> 0.763	> 0.739	< 0.289	> 0.938	< 0.024	> 0.307	> 0.603

Table 6. Scoring ranges for diatom metrics comprising candidate IBIs.

Metric score	proportion high Cu indicators (s, sp)	proportion high DOC indicators (s, sp)	proportion low TP indicators (s, sp)	proportion ZHR (s, m)	proportion "non- reference" indicators (s, sp)	proportion high DOC indicators (s, b)	proportion "non- reference" indicators (s, b)	proportion ZHR (s, b)	proportion Chlorophyta (s, b)	proportion of green algae belonging to CRUS (s, b)
0	0.357 +	0.714 +	0	0	0.462 +	1	0.999 +	0	0.999 +	1
1	0.317 to	0.650 to	> 0 to	> 0 to	0.419 to	0.889 to <	0.888 to	> 0 to	0.888 to	0.889 to <
	0.356	0.713	0.032	0.067	0.461	1	0.998	0.103	0.998	1
2	0.278 to	0.586 to	0.033 to	0.068 to	0.376 to	0.778 to	0.777 to	0.104 to	0.777 to	0.778 to
	0.316	0.649	0.064	0.134	0.418	0.888	0.887	0.205	0.887	0.888
3	0.238 to	0.521 to	0.065 to	0.135 to	0.333 to	0.667 to	0.666 to	0.206 to	0.666 to	0.667 to
	0.277	0.585	0.096	0.202	0.375	0.777	0.776	0.308	0.776	0.777
4	0.198 to	0.457 to	0.097 to	0.203 to	0.291 to	0.555 to	0.555 to	0.309 to	0.555 to	0.555 to
	0.237	0.520	0.128	0.269	0.332	0.666	0.665	0.411	0.665	0.666
5	0.159 to	0.393 to	0.129 to	0.270 to	0.248 to	0.444 to	0.444 to	0.412 to	0.444 to	0.444 to
	0.197	0.456	0.160	0.336	0.290	0.554	0.554	0.513	0.554	0.554
6	0.119 to	0.329 to	0.161 to	0.337 to	0.205 to	0.333 to	0.333 to	0.514 to	0.333 to	0.333 to
	0.158	0.392	0.192	0.403	0.247	0.443	0.443	0.616	0.443	0.443
7	0.079 to	0.264 to	0.193 to	0.404 to	0.162 to	0.222 to	0.222 to	0.617 to	0.222 to	0.222 to
	0.118	0.328	0.224	0.470	0.204	0.332	0.332	0.719	0.332	0.332
8	0.040 to	0.200 to	0.225 to	0.471 to	0.120 to	0.111 to	0.111 to	0.720 to	0.111 to	0.111 to
	0.078	0.263	0.255	0.537	0.161	0.221	0.221	0.821	0.221	0.221
9	0.001 to	0.136 to	0.256 to	0.538 to	0.077 to	0.001 to	0.001 to	0.822 to	0.001 to	0.001 to
	0.039	0.199	0.287	0.605	0.119	0.110	0.110	0.924	0.110	0.110
10	< 0.001	< 0.136	> 0.287	> 0.605	< 0.077	< 0.001	< 0.001	> 0.924	< 0.001	< 0.001

Table 7. Scoring ranges for soft-algae metrics comprising candidate IBIs.

Discussion

All of the top-performing IBIs within the various effort categories resulted in good separation of the Disturbed and Reference classes. While no single IBI, nor IBI type, performed the best with respect to every measure, in general, hybrids outperformed single-assemblage IBIs in terms of responsiveness to stress assessed in various ways. For example, the top-performing hybrids were best able to discriminate between site disturbance classes based on IBI score distributions. This is in contrast to the top-performing diatom-only IBI, which exhibited less separation between the Disturbed and Intermediate classes, and the soft, which showed less separation between Intermediate and Reference. On average, hybrids also out-performed single-assemblage IBIs from the standpoint of signal:noise ratio for the replicate multihabitat sampling, and mean pairwise correlations were invariably lower among hybrids than among IBIs composed of a single assemblage. Furthermore, the hybrid IBIs were overall associated with fewer of the natural gradients tested than were the single-assemblage IBIs.

Among the hybrids, three types were recognized: those including metrics that, in aggregate, require execution of the full soft-bodied laboratory protocol (Stancheva et al., in press), and those requiring reduced effort of different types. Two reduced-effort candidate IBIs were evaluated in detail: H20 and H21. H21, which requires biovolume measurements but not species-level identification, did not perform as well in the priority performance screens as H20, which relies on species information but not biovolume. H20 and the top-performing, full-protocol hybrid (H23) were each superior with respect to different performance standards. H20 performed similarly to, or better than, H23 in terms of responsiveness to stress, but H23 was superior in terms of repeatability among replicate samples, and it had a lower mean of pairwise correlations between metrics. However, none of the differences between H20 and H23, with the exception of signal:noise, was particularly pronounced.

We selected H20 for additional evaluation because it was a top-performer in southern California, and required an intermediate level of laboratory effort. It should be noted that based on the data currently available, none of the top-performing IBIs in southern California were also deemed to perform adequately in other parts of the state. As such, it is likely that additional effort will be required to develop IBIs for use in other regions.

Whether H20 should be used for any or all monitoring applications in southern California could depend in part upon the degree to which its high performance attributes justify the effort required to generate its scores, as well as what quality of information is required for various applications. As a hybrid, H20 requires data from both the diatom and soft-bodied algal assemblages, and therefore higher field and laboratory costs than would be incurred for a single-assemblage IBI. In addition, there are technical challenges associated with using the soft-algae species-number metrics upon which H20 depends. These challenges, and the ways in which we addressed them, are as follows.

Sometimes only a low number of soft algal taxa is recorded from the quantitative sample at a given site, potentially rendering the soft-algal species-number metrics somewhat more vulnerable to error than would be the case for the biovolume-based metrics. To help mitigate this by boosting species numbers, we included in the soft-algae species-presence metrics data from the gualitative samples in addition to the guantitative. While this has the potential to increase susceptibility to sampling bias (due to potentially more subjectivity associated with the collection of the qualitative sample), we addressed this by screening for such vulnerable metrics and eliminating those showing sensitivity to whether or not a qualitative sample had even been collected. Another concern is that, for species-level identification, filamentous algae of the genera Oedogonium, Mougeotia, Spirogyra, Zygnema and Vaucheria require observation of reproductive structures, which are not always available on a given specimen. For monitoring purposes, we chose to group such ambiguous specimens into loose taxonomic categories ("morphospecies") based on readily determined morphological features such as filament width, number and type of chloroplasts, transverse cell wall type, and other vegetative characteristics, so that these morphospecies assignments could be applied consistently. Some of the "taxa" with the highest indicator values in our data set turned out to be morphospecies, thus providing an impetus to include them as "species" in metrics (see Appendices B and D). In support of this practice, precedence exists for applying indicator values to soft-algal morphosphecies for use in biomonitoring (Schneider and Lindstrøm 2011). All told, H20 performed very well in the validation phase of IBI testing. Based on this, and because we believe we applied adequate mitigatory measures to overcome the challenges associated with using soft-algal species-number metrics, we feel confident that H20 is a robust tool for stream assessment.

An additional, more general, concern with respect to including soft algae data in the IBI is the currently restricted capacity for having such samples analyzed. Given the expanding scope of algae-based monitoring in California, capacity for taxonomic identification should be taken into consideration in making implementation decisions. Potential alternative approaches to algae IBI implementation that take this factor into account might include: 1) analyzing only diatoms in the case of routine assessments, but analyzing both diatoms and soft algae samples for applications that require higher resolution data, or 2) regardless of the application, analyzing diatoms only, initially, and adding soft algae only if an intermediate diatom IBI score is realized, in order to achieve better resolution in the middle range of site condition, which is more difficult to resolve. Both of these alternatives would result in net cost savings, and would also help alleviate the current problem of limited capacity for analyzing soft-algae samples, yet allow the benefits of higher resolution information attainable from using both assemblages to be realized when that benefit will make the most difference. It should be borne in mind that if either of these approaches were followed, it would need to be determined whether data based on different IBIs would be sufficiently comparable across different uses, and if not, whether this would be problematic from the standpoint of how the IBIs will be implemented.

Literature cited

- Bahls LL. 1993. Periphyton bioassessment methods for Montana streams. Montana Water Quality Bureau, Department of Health and Environmental Science. Helena, MT.
- Barbour MT, J Gerritsen, JS White. 1996. Development of the Stream Condition Index (SCI) for Florida. Florida Department of Environmental Protection. Tallahassee, FL.
- Berkman JAH, Porter SD. 2004. An overview of algal monitoring and research in the US Geological Survey's National Water Quality Assessment (NAWQA) Program. Diatom 20:13-22.
- California Department of Forestry and Fire Protection. 2004. The California Interagency Watershed Map of 1999, version 2.2.1.
- Cao Y, CP Hawkins, J Olson. 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. JNABS 26:566-585.
- Cattaneo A, Kerimian T, Roberge M, Marty J. 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354:101–110.
- Douterelo, I, Perona E, Mateo P. 2004. Use of cyanobacteria to assess water quality in running waters. Environmental Pollution 127:377-384.
- Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366.
- Feio, MJ, Almeida SFP, Craveiro SC, Calado AJ. 2007. Diatoms and macroinvertebrates provide consistent and complementary information on environmental quality. Fundamental and Applied Limnology/Archive für Hydrobiology 168:247-258.
- Fetscher AE, Busse LB, Ode PR. 2009. Standard Operating Procedures for Collecting Stream Algae Samples and Associated Physical Habitat and Chemical Data for Ambient Bioassessments in California. California State Water Resources Control Board Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 002. (updated May 2010)
- Flotemersch, J, J Stribling, M Paul. 2006. Concepts and Approaches for the Bioassessment of Nonwadeable Streams and Rivers', EPA 600-R-06-127. US Environmental Protection Agency, Cincinnati, Ohio.
- Foerster J, Gutowski A, Schaumburg J. 2004. Defining types of running waters in Germany using benthic algae: A prerequisite for monitoring according to the Water Framework Directive. Journal of Applied Phycology 16:407-418.
- Fore L, C Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.) Freshwater Biology 47:2015-2037.

- Fore L, Paulsen K, O'Laughlin K. 2001. Assessing the performance of volunteers in monitoring streams. Freshwater Biology 46:109-123.
- Fore LS. 2003. Developing Biological Indicators: Lessons Learned from Mid-Atlantic Streams. EPA 903/R-003/003. U.S. Environmental Protection Agency, Office of Environmental Information and Mid-Atlantic Integrated Assessment Program, Region 3, Ft. Meade, MD.
- Genter RB. 1996. Ecotoxicology of inorganic chemical stress. pp. 403-468 in: R.J. Stevenson, M.L. Bothwell and R.L. Lowe (eds.), Algal Ecology: Freshwater Benthic Systems. Academic Press. San Diego, CA.
- Griffith MB, Hill BH, McCormick FH, Kaufmann PR, Herlihy AT, Selle AR. 2005. Comparative application of indices of biotic integrity based on periphyton, macroinvertebrates, and fish to southern rocky Mountain streams. Ecological Indicators 5:117-136.
- Guasch H, Paulsson M, Sabater S. 2002. Effect of copper on algal communities from oligotrophic calcareous streams. Journal of Phycology 38:241–248.
- Hering D, CK Feld, O Moog, T Ofenböck. 2006. Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566:311-324.
- Hill BH, Herlihy AT, Kaufmann PR, Stevenson RJ, McCormick FH, Burch Johnson C. 2000. Use of periphyton assemblage data as an index of biotic integrity. JNABS 19: 50-67.
- Hillebrand H, Dürselen C-D, Kirschel D, Pollinger U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35:403-424.
- Hirst HI, Jüttner I, Ormerod SJ. 2002. Comparing the responses of diatoms and macroinvertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biology 47:1752-1765.
- Ivorra N, Hettelaar J, Kraak MHS, Sabater S, Admiraal W. 2002 Responses of biofilms to combined nutrient and metal exposure. Environmental Toxicology and Chemistry 21:626-632.
- Johnson R, Hering D. 2004. Standardisation of river classifications: Framework method for calibrating different biological survey results again ecological quality classifications to be developed for the Water Framework Directive. London, England.
- Kaufmann P R, P Levine, EG Robison, C Seeliger, DV Peck. 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003, U.S. Environmental Protection Agency, Washington D.C.
- Klemm DJ, KA Blocksom, WT Thoeny, FA Fulk, AT Herlihy, PR Kaufmann, SM Cormier. 2002. Methods development and use of macroinvertebrates as indicators of ecological conditions for streams in the Mid-Atlantic Highlands region. Environmental Monitoring and Assessment. 78: 169-212.

- Lavoie I, Campeau S, Darchambeau F, Cabana G, Dillon PJ. 2008. Are diatoms good integrators of temporal variability in stream water quality? Freshwater Biology 53:827-841.
- Leland HV, Porter SD. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279-301.
- Lowe RL, Laliberte GD. 1996. Benthic stream algae: distribution and structure. Pages 269-293 in F. R. Hauer, and G. A. Lamberti (editors). Methods in Stream Ecology. Academic Press, San Diego.
- Lowe RL, Pan Y. 1996. Benthic algal communities as biological monitors. pp. 705-739 in: R.J. Stevenson, M.L. Bothwell and R.L. Lowe (eds.), Algal Ecology: Freshwater Benthic Systems. Academic Press. San Diego, CA.
- McCune B, Grace JB. 2002. Analysis of ecological communities. MjM Software, Gleneden Beach.
- Moulton SR, Kennen JG, Goldstein RM, Hambrook JA. 2002. Revised protocols for sampling algal, invertebrate, and fish communities as part of the National Water-Quality Assessment Program. USGS Open-File Report 02-150. U.S. Geological Survey, Reston, VA.
- National Oceanic and Atmospheric Administration. 2001. Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation. Technical Report NMFS 123. Department of Commerce. Available from http://www.csc.noaa.gov/crs/lca/pdf/protocol.pdf.
- Newall P, Bate N, Metzeling L. 2006. A comparison of diatom and macroinvertebrate classification of sites in the Kiewa River system, Australia. Hydrobiologia 572:131-149.
- Ode PR, AC Rehn, JT May. 2005. A quantitative tool for assessing the integrity of southern coastal California streams. Environmental Management 35:493-504.
- Palmer CM. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5:78.
- Pan Y, Lowe R. 1994. Independent and interactive effects of nutrients on benthic algae community structure. Hydrobiologia 291:201-209.
- Parikh A, Shah V, Madamwar D. 2006. Cyanobacterial flora from polluted industrial effluents. Environmental Monitoring and Assessment 116:91-102.
- Ponander KC, Charles DF. 2004. Understanding the relationship between natural conditions and loadings on eutrophication: Algal indicators of eutrophication for New Jersey streams. Patrick Center for Environmental Research, Academy of Natural Sciences. Philadelphia, PA.
- Porter SD, Mueller DK, Spahr NE, Munn MD, Dubrovsky NM. 2008. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters. Freshwater Biology 53:1036–1054.

- Potapova M, Charles DF. 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7:48-70.
- Rimet F, Cauchie H-M, Hoffman L, Ector L. 2005. Response of diatom indices to simulated water quality improvements in a river. Journal of Applied Phycology 17:119-128.
- Rott E, Hofmann G, Pall K, Pfister P, Pipp E. 1997. Indikationslisten für Aufwuchsalgen in Fließgewässern in Österreich. Teil 1: Saprobielle Indication. Projekt des Bundesministeriums für Land- und Forstwirtschaft,Wasserwirtschaftskataster, f. 1-80
- Rott E, Pipp E, Pfister P, Van Dam H, Ortler K, Binder N, Pall K. 1999. Indikationslisten für Aufwuchsalgen in Österreichischen Fließgewässern. Teil 2: Trophieindication. Bundesministerium f. Land- und Forstwirtschaft, Zahl 41.034/08- IVA 1/97, Wien. f. 1-248
- Rott E. 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. pp. 9-16 in: B.A. Whitton and E. Rott (eds.), Use of Algae in Monitoring Rivers II. Institut für Botanik, Universität Innsbruck. Innsbruck, Austria.
- Schneider S, Lindstrøm E-A. 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143-155.
- Sheath RG, Cole KM. 1992. Biogeography of stream macroalgae in North America. Journal of Phycology 28:448-460.
- Sládeček V.1973. System of water quality from the biological point of view. Archiv fur Hydrobiologie, Beiheft Ergebnisse der Limnologie, Heft, 7:1-218.
- Soininen J, Könönen K. 2004. Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquatic Ecology 38:63-75.
- Stancheva R, Fetscher AE, Sheath RG. 2012. A novel quantification method for stream-inhabiting, non-diatom benthic algae, and its application in bioassessment. Hydrobiologia, in press.
- Stevenson RJ, Bahls LL. 1999. Periphyton protocols. Pages 6-1-6-22 in M. T. Barbour, J. Gerritsen, and B. D. Snyder (editors). Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. EPA 841-B-99-002 United States Environmental Protection Agency, Washington.
- Stevenson RJ, Pan Y. 1999. Assessing environmental conditions in rivers and streams with diatoms. pp. 11-40 in: E.F. Stoermer and J.P. Smol (eds.), The Diatoms: Application for the Environmental and Earth Sciences. Cambridge University Press. Cambridge, United Kingdom.
- Stevenson RJ, Smol JP. 2003. Use of algae in environmental assessments. pp. 775-804 in: J.D. Wehr and R.G. Sheath (eds.). Freshwater Algae of North America: Ecology and Classification. Academic Press. San Diego, CA.

- Stevenson RJ. 1996. Patterns of benthic algae in aquatic ecosystems. Pages 3-26 in R. J. Stevenson, M. B. Bothwell, and R. L. Lowe (editors). Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego.
- Stoddard JL, AT Herlihy, DV Peck, RM Hughes, TR Whittier, E Tarquinio. 2008. A process for creating multimetric indices for large-scale aquatic surveys. JNABS 27:878-891.
- United State Environmental Protection Agency (USEPA). 2002. Methods for evaluating wetland condition: Using algae to assess environmental conditions in wetlands. EPA-822-R-02-021.
 U.S. Environmental Protection Agency, Office of Water. Washington, DC.
- United States Geological Survey and United States Environmental Protection Agency. 2005. National Hydrography Dataset Plus.
- United States Geological Survey. 1999. National Elevation Database. Sioux Falls, SD. Accessed from: http://ned.usgs.gov
- United States Geological Survey. 2005. Mineral Resources Data System. Reston, VA. Accessed from: http://tin.er.usgs.gov/mrds/
- van Dam H, Mertens A, Sinkeldam J. 1994. A coded checklist and ecological Indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28:117-133.
- Van Der Werff A.1955. A new method of concentrating and cleaning diatoms and other organisms. Proceedings of the International Association of Theoretical and Applied Limnology 12:276–277.
- Van Sickle J. 2010. Correlated metrics yield multimetric indices with inferior performance. Transactions of the American Fisheries Society 139:1802-1817.
- VanLandingham SL. 1982. Guide to the identification, environmental requirements and pollution tolerance of bluegreen algae (Cyanophyta). U.S. Envir. Prot. Agency Publ. 600/3-82-073. 341 pp.
- Vis C, Cattaneo A, Hudon C. 2008. Shift from chlorophytes to cyanobacteria in benthic macroalgae along a gradient of nitrate depletion. Journal of Phycology 44:38-44.
- Wang Y-K, RJ Stevenson. 2005. Development and evaluation of a diatom-based Index of Biotic Integrity for the Interior Plateau Region, USA.
- Winter JG, Duthie HC. 2000. Epilithic diatoms as indicators of stream total N and total P concentration. Journal of the North American Benthological Society 19:32-49.
- Zar, JH. 1999. Biostatistical analysis. 4th edition. Prentice Hall, Upper Saddle River, NJ.

Appendix A: Soft-algae indicator species results summary

[Type text]

. .		<i>c</i> .	Observed Indicator	
Parameter	Indicator Class	Species Species	Value (IV)	p
copper, dissolved	high	Chlorella vulgaris Beij.	18.7	0.001 0.022
copper, dissolved	high	Chroococcopsis epiphytica Geitler	11.0 6.2	
copper, dissolved	high	Chroococcus dispersus (Keissler) Lemmermann		0.044
copper, dissolved	high	Chroococcus minimus (Keissler) Lemmerm.	18.7	0.045
copper, dissolved	high	Cladophora glomerata (L.) Kütz.	35.3	0.009
copper, dissolved	high	Cosmarium reniforme (Ralfs) W.Archer	9.4	0.010
copper, dissolved	high	Gongrosira sp. 1	8.5	0.041
copper, dissolved	high	Komvophoron minutum (Skuja) Anagn. et Komárek	6.2	0.048
copper, dissolved	high	Merismopedia punctata Meyen	14.8	0.004
copper, dissolved	high	Monoraphidium contortum (Thuret) Komàrková-Legnerová	9.4	0.011
copper, dissolved	high	Monoraphidium minutum (Nägeli) KomárkLegn.	17.1	0.002
copper, dissolved	high	Oocystis lacustris Chodat	6.2	0.044
copper, dissolved	high	Oocystis parva W. West et G.S. West	8.8	0.031
copper, dissolved	high	Phormidium subfuscum Kütz. ex Gomont	9.4	0.012
copper, dissolved	high	Rhizoclonium hieroglyphicum (C. Agardh) Kütz.	26.2	0.035
copper, dissolved	high	Scenedesmus abundans (Kirchn.) Chodat	41.6	0.000
copper, dissolved	high	Scenedesmus communis E. Hegewald	15.3	0.002
copper, dissolved	high	Scenedesmus dimorphus (Turpin) Kütz.	36.3	0.001
copper, dissolved	high	Scenedesmus ellipticus Corda	44.3	0.001
copper, dissolved	high	Scenedesmus intermedius Chodat	15.4	0.002
copper, dissolved	high	Scenedesmus raciborskii Wolłosz.	17.3	0.021
copper, dissolved	low	Chamaesiphon polymorphus Geitler	29.6	0.021
copper, dissolved	low	Microspora tumidula Hazen	12.3	0.018
copper, dissolved	low	Tribonema viride Pascher	21.6	0.019
copper, dissolved	low	Tychonema sp. 2	19.0	0.007
dissolved organic carbon	high	Chlamydomonas sp. 1	6.9	0.041
dissolved organic carbon	high	Chlorella vulgaris Beij.	12.5	0.001
dissolved organic carbon	high	Chroococcopsis fluviatilis (Lagerh.) Komárek et Anagn.	14.3	0.000
dissolved organic carbon	high	Cladophora glomerata (L.) Kütz.	34.7	0.000
dissolved organic carbon	high	Closterium acerosum (Schrank) Ehrenb. ex Ralfs	5.2	0.034
dissolved organic carbon	high	Eudorina elegans Ehrenb.	3.6	0.046
dissolved organic carbon	high	Heteroleibleinia kossinskajae (Elenkin) Anagn. et Komárek	77.2	0.013
dissolved organic carbon	high	Leptolyngbya foveolara (Mont. ex Gomont) Anagn. et Komárek	80.6	0.014
dissolved organic carbon	high	Merismopedia punctata Meyen	9.7	0.005
dissolved organic carbon	high	Merismopedia tenuissima Lemmerm.	13.5	0.000
Appendix A: Soft-algae indicator species results summary

[Type text]

Parameter	Indicator Class	Species	Observed Indicator Value (IV)	p
dissolved organic carbon	high	Monoraphidium arcuatum (Korshikov) Hindák	6.5	0.010
dissolved organic carbon	high	Monoraphidium contortum (Thuret) Komàrková-Legnerová	4.2	0.043
dissolved organic carbon	high	Monoraphidium minutum (Nägeli) KomárkLegn.	13.5	0.000
dissolved organic carbon	high	Oedogonium sp. 1	17.3	0.001
dissolved organic carbon	high	Oocystis parva W. West et G.S. West	8.3	0.016
dissolved organic carbon	high	Oocystis pusilla Hansg.	6.8	0.048
dissolved organic carbon	high	Oocystis sp. 1	3.6	0.049
dissolved organic carbon	high	Pediastrum boryanum (Turpin) Menegh.	13.9	0.028
dissolved organic carbon	high	Pediastrum duplex Meyen	3.6	0.046
dissolved organic carbon	high	Rhizoclonium hieroglyphicum (C. Agardh) Kütz.	30.3	0.000
dissolved organic carbon	high	Rivulariaceae 1	7.1	0.001
dissolved organic carbon	high	Scenedesmus abundans (Kirchn.) Chodat	31.0	0.000
dissolved organic carbon	high	Scenedesmus aff. communis E. Hegewald	8.5	0.007
dissolved organic carbon	high	Scenedesmus communis E. Hegewald	8.0	0.013
dissolved organic carbon	high	Scenedesmus dimorphus (Turpin) Kütz.	26.0	0.001
dissolved organic carbon	high	Scenedesmus dispar Bréb.	5.2	0.010
dissolved organic carbon	high	Scenedesmus ellipticus Corda	38.1	0.000
dissolved organic carbon	high	Scenedesmus intermedius Chodat	14.2	0.000
dissolved organic carbon	high	Scenedesmus microspina Chodat	6.5	0.013
dissolved organic carbon	high	Scenedesmus opoliensis P.G.Richt.	8.1	0.002
dissolved organic carbon	high	Scenedesmus raciborskii Wolłosz.	11.9	0.001
dissolved organic carbon	high	Scenedesmus sp. 2	5.4	0.010
dissolved organic carbon	high	Spirogyra sp. 12	5.4	0.008
dissolved organic carbon	high	Tychonema sp. 3	8.8	0.004
dissolved organic carbon	high	Úlva flexuosa Wulfen	10.0	0.015
dissolved organic carbon	high	Vaucheria sp. 1	18.3	0.003
dissolved organic carbon	low	Bluegreen coccoid 4	4.8	0.024
dissolved organic carbon	low	Tolypothrix distorta Kütz. ex Bornet et Flahault	9.4	0.040
dissolved organic carbon	low	Ulothrix zonata (Weber et Mohr) Kütz.	7.9	0.002
reference-status	non-reference	Cladophora glomerata (L.) Kütz.	37.2	0.000
reference-status	non-reference	Heteroleibleinia kossinskajae (Elenkin) Anagn. et Komárek	92.1	0.001
reference-status	non-reference	Merismopedia tenuissima Lemmerm.	6.8	0.047
reference-status	non-reference	Oedogonium sp. 1	11.4	0.048
reference-status	non-reference	Oedogonium sp. 3	15.1	0.044
reference-status	non-reference	Pediastrum boryanum (Turpin) Menegh.	12.8	0.049

Appendix A: Soft-algae indicator species results summary

[Type text]

Parameter	Indicator Class	Species	Observed Indicator Value (IV)	p
reference-status	non-reference	Rhizoclonium hieroglyphicum (C. Agardh) Kütz.	21.2	0.003
reference-status	non-reference	Scenedesmus abundans (Kirchn.) Chodat	18.2	0.007
reference-status	non-reference	Scenedesmus dimorphus (Turpin) Kütz.	20.3	0.014
reference-status	non-reference	Scenedesmus ellipticus Corda	26.3	0.015
reference-status	non-reference	Ulva flexuosa Wulfen	8.9	0.031
reference-status	reference	Calothrix parietina (Nägeli) Thuret	15.1	0.006
reference-status	reference	Chamaesiphon polymorphus Geitler	40.1	0.000
reference-status	reference	Chlorophyta 3	7.8	0.041
reference-status	reference	Chroodactylon ornatum (C. Agardh) Basson	9.3	0.000
reference-status	reference	Mougeotia sp. 3	3.8	0.040
reference-status	reference	Nostoc verrucosum Vaucher ex Bornet et Flahault	33.6	0.000
reference-status	reference	Tolypothrix distorta Kütz. ex Bornet et Flahault	15.6	0.000
reference-status	reference	Ulothrix zonata (Weber et Mohr) Kütz.	6.6	0.002
nitrogen, total	high	Chlamydomonas sp. 1	8.4	0.045
nitrogen, total	high	Chlorophyta 1	10.0	0.022
nitrogen, total	high	Cladophora glomerata (L.) Kütz.	40.2	0.001
nitrogen, total	high	Merismopedia punctata Meyen	9.7	0.016
nitrogen, total	high	Oedogonium sp. 5	6.6	0.034
nitrogen, total	high	Oocystis lacustris Chodat	6.7	0.012
nitrogen, total	high	Pediastrum boryanum (Turpin) Menegh.	14.7	0.039
nitrogen, total	high	Pediastrum integrum Nägeli	15.2	0.005
nitrogen, total	high	Rhizoclonium hieroglyphicum (C. Agardh) Kütz.	29.2	0.000
nitrogen, total	high	Scenedesmus acutiformis Schröd.	6.3	0.026
nitrogen, total	high	Scenedesmus raciborskii Wolłosz.	11.6	0.019
nitrogen, total	high	Vaucheria sp. 1	21.0	0.005
nitrogen, total	low	Aphanothece stagnina (Spreng.) A. Braun	15.7	0.026
nitrogen, total	low	Calothrix epiphytica W.West et G.S.West	25.7	0.020
nitrogen, total	low	Calothrix fusca (Kütz.) Bornet et Flahault	21.0	0.021
nitrogen, total	low	Nostoc verrucosum Vaucher ex Bornet et Flahault	29.1	0.010
nitrogen, total	low	Tribonema viride Pascher	15.0	0.043
phosphorus, total	high	Chlamydomonas sp. 1	7.7	0.032
phosphorus, total	high	Chlorella vulgaris Beij.	6.9	0.049
phosphorus, total	high	Cladophora glomerata (L.) Kütz.	24.3	0.012
phosphorus, total	high	Heteroleibleinia kossinskajae (Elenkin) Anagn. et Komárek	74.8	0.046
phosphorus, total	high	Phormidium cortianum (Meneghini ex Gomont) Anagnostidis & Komárek	8.6	0.002

Appendix A: Soft-algae indicator species results summary

[Type text]

Parameter	Indicator Class	Species	Observed Indicator Value (IV)	p
phosphorus, total	high	Scenedesmus abundans (Kirchn.) Chodat	15.5	0.044
phosphorus, total	high	Scenedesmus acuminatus (Lagerh.) Chodat	5.2	0.017
phosphorus, total	high	Scenedesmus dimorphus (Turpin) Kütz.	21.3	0.018
phosphorus, total	high	Scenedesmus ellipticus Corda	24.5	0.034
phosphorus, total	high	Scenedesmus intermedius Chodat	11.8	0.001
phosphorus, total	high	Scenedesmus opoliensis P.G.Richt.	8.1	0.004
phosphorus, total	high	Spirogyra sp. 4	8.6	0.001
phosphorus, total	low	Batrachospermum boryanum Sirodot	4.0	0.035
phosphorus, total	low	Bluegreen coccoid 4	3.9	0.040
phosphorus, total	low	Chamaesiphon polymorphus Geitler	30.8	0.044
phosphorus, total	low	Chroococcus limneticus Lemmerm.	13.0	0.008
phosphorus, total	low	Chroodactylon ornatum (C. Agardh) Basson	11.8	0.000
phosphorus, total	low	Merismopedia glauca (Ehrenb.) Kütz.	5.1	0.045
phosphorus, total	low	Mougeotia calcarea (Cleve) Wittr.	4.0	0.037
phosphorus, total	low	Mougeotia sp. 1	13.2	0.005
phosphorus, total	low	Mougeotia sp. 2	16.4	0.005
phosphorus, total	low	Mougeotia sp. 3	5.8	0.012
phosphorus, total	low	Nostoc verrucosum Vaucher ex Bornet et Flahault	25.5	0.013
phosphorus, total	low	Nostochopsis lobatus Wood em. Geitler	6.0	0.008
phosphorus, total	low	Oocystis solitaria Wittr.	10.8	0.009
phosphorus, total	low	Paralemanea catenata (Kützing) Vis et Sheath	4.4	0.041
phosphorus, total	low	Phormidium incrustatum Gomont ex Gomont	4.0	0.036
phosphorus, total	low	Phormidium sp. 1	9.7	0.004
phosphorus, total	low	Rivularia minutula (Kütz.) Bornet et Flahault	12.0	0.003
phosphorus, total	low	Spirogyra borgeana Transeau	5.9	0.012
phosphorus, total	low	Spirogyra majuscula Kütz.	4.0	0.032
phosphorus, total	low	Spirogyra sp. 1	17.4	0.002
phosphorus, total	low	Spirogyra sp. 2	12.0	0.005
phosphorus, total	low	Spirogyra varians (Hassall) Kütz.	7.5	0.014
phosphorus, total	low	Spirogyra weberi Kütz.	6.0	0.006
phosphorus, total	low	Tychonema sp. 2	11.4	0.005
phosphorus, total	low	Żygnema sp. 1	9.6	0.004
phosphorus, total	low	Zygnema sterile Transeau	16.8	0.000

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Actinastrum hantzschii Lagerheim	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						Т
Anabaena cylindrica Lemmermann	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	Т
Anabaena inaequalis (Kütz.) Bornet et Flahault	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	Z	
Anabaena iyengarii Bharadwaja	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Anabaena lapponica Borge	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Anabaena oscillatorioides Bory de Saint- Vincent ex Bornet & Flahault	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	N	
Anabaena sp. 1	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Anabaena sp. 2	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Anabaena sp. 3	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Anabaena sp. 5	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Anabaena variabilis Kütz.	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Anabaenopsis elenkinii V.V.Miller	Cyanobacteria	heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Ankistrodesmus falcatus (Corda) Ralfs	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						Т
Ankistrodesmus fusiformis Corda ex Korshikov	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	N	
Ankistrodesmus spiralis (W.B.Turner) Lemmerm.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Apatococcus lobatus (Chodat) J.B.Petersen	Chlorophyta	non-heterocystous	NA	terrestrial	nonmotile	no	NI	NI		NI	NI	
Apatococcus sp. 1	Chlorophyta	non-heterocystous	NA	terrestrial	nonmotile	no	NI	NI	NI	NI	NI	
Aphanocapsa delicatissima W. West et G.S. West	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Aphanocapsa hyalina (Lyngbye) Hansgirg	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Aphanocapsa parasitica (Kütz.) Komárek et Anagn.	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Aphanocapsa planctonica (G.M.Smith) Komárek & Anagnostidis	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Aphanocapsa sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Aphanochaete polychaete (Hansgirg) F.E.Fritsch	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Aphanochaete repens A. Braun	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Aphanothece caldariorum Richter	Cyanobacteria	non-heterocystous	NA	aerophytic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Aphanothece clathrata W. West et G.S. West	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Aphanothece elabens (Brébisson) Elenkin	Cyanobacteria	non-heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Aphanothece floccosa (Zalessky) Cronberg et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Aphanothece minutissima (W.West) Komárková-Legnerová et Cronberg	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Aphanothece nebulosa Skuja	Cyanobacteria	non-heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Aphanothece nidulans Richter	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Aphanothece saxicola Nägeli	Cyanobacteria	non-heterocystous	NA	aerophytic	nonmotile	no	NI	NI		NI	NI	
Aphanothece stagnina (Spreng.) A. Braun	Cyanobacteria	non-heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI	NI	low	NI	S
Apiocystis brauniana Nägeli	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Arthrospira sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	motile	no	NI	NI	NI	NI	NI	
Asterococcus limneticus G.M. Sm.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Audouinella hermannii (Roth) Duby	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Batrachospermum boryanum Sirodot	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	NI	S
Batrachospermum sp. 1	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Binuclearia tetrana Wittrock	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Bluegreen coccoid 2	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Bluegreen coccoid 3	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Bluegreen coccoid 4	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Brachynema sp. 1	Cyanobacteria	non-heterocystous			nonmotile	no						
Bulbochaete mirabilis Wittrock	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI		NI	NI	NI	
Bulbochaete sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Calothrix clavata G.S.West	Cyanobacteria	heterocystous	moderate- low	benthic	nonmotile	no						
Calothrix crustaceae (Thuret) Bornet et Flahault	Cyanobacteria	heterocystous	moderate- Iow	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Calothrix epiphytica W.West et G.S.West	Cyanobacteria	heterocystous	moderate- Iow	benthic	nonmotile	no	NI	NI	NI	low	NI	
Calothrix fusca (Kütz.) Bornet et Flahault	Cyanobacteria	heterocystous	moderate- Iow	benthic	nonmotile	no	NI	NI	NI	low	NI	S

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Calothrix parietina (Nägeli) Thuret	Cyanobacteria	heterocystous	moderate- low	benthic	nonmotile	no	NI	NI	NI	NI	reference	S
Calothrix sp. 1	Cyanobacteria	heterocystous	moderate- Iow	benthic	nonmotile	no						
Calothrix sp. 2	Cyanobacteria	heterocystous	moderate- low	benthic	nonmotile	no						
Calothrix sp. 3	Cyanobacteria	heterocystous	moderate- low	benthic	nonmotile	no	NI	NI		NI	NI	
Capsosira brebissonii Kützing ex Bornet & Flahault	Cyanobacteria	heterocystous	NA	aerophytic	nonmotile	no	NI	NI		NI	NI	
Carteria klebsii (P.A.Dangeard) Francé	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Carteria sp. 1	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	
Ceratium hirundinella (O.F.Müller) Dujardin	Dinoflagellata	non-heterocystous	stagnant	tychoplanktonic	motile	yes						S
cf. Peridinium	Dinoflagellata	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
cf. Stylochrysalis	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Chaetophora elegans (Roth) C.Agardh	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Chaetophora incrassata Hazen	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Chaetophora sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Chaetophorales	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Chaetosphaeridium globosum (Nordstedt) Klebahn	Charophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Chamaesiphon confervicola A. Braun	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chamaesiphon incrustans Grunow	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chamaesiphon investiens Skuja	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chamaesiphon minutus (Rostaf.) Lemmerm.	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chamaesiphon polymorphus Geitler	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	low	NI	low	NI	reference	S
Chamaesiphon sp. 1	Cyanobacteria	non-heterocystous	moderate- low	benthic	nonmotile	no	NI	NI		NI	NI	
Chamaesiphon subglobosus (Rostaf.) Lemmerm.	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chantransia sp. 1	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chantransia sp. 2	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chantransia sp. 3	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Chara globularis Thuiller	Charophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chara sp. 1	Charophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Chara vulgaris L.	Charophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Chlamydomonadopsis sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chlamydomonas ambigua Gerloff	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Chlamydomonas debaryana Gorozh.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Chlamydomonas ehrenbergii Gorozh.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	Т
Chlamydomonas globosa J. Snow	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Chlamydomonas reinhardtii P.A.Dangeard	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Chlamydomonas snowiae Printz	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	
Chlamydomonas sp. 1	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	high	high	NI	high	NI	
Chlamydomonas sp. 2	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Chlamydomonas stellata Dill	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	
Chlorella sp. 1	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorella sp. 2	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorella sp. 5	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorella vulgaris Beij.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	high	high	high	NI	NI	Т
Chlorogloea sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chlorophyta 1	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	high	NI	
Chlorophyta 10	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorophyta 11	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Chlorophyta 12	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorophyta 13	Chlorophyta	non-heterocystous			nonmotile	no						
Chlorophyta 2	Chlorophyta	non-heterocystous			nonmotile	no						
Chlorophyta 3	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	reference	
Chlorophyta 4	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Chlorophyta 5	Chlorophyta	non-heterocystous			nonmotile	no						
Chlorophyta 6	Chlorophyta	non-heterocystous			nonmotile	no						

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Chlorophyta 7	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Chlorophyta 8	Chlorophyta	non-heterocystous			nonmotile	no						
Chroococcopsis epiphytica Geitler	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	high	NI	NI	
Chroococcopsis fluviatilis (Lagerh.) Komárek et Anagn.	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	high	NI	NI	NI	S
Chroococcopsis sp. 1	Cyanobacteria	non-heterocystous	moderate- low	benthic	nonmotile	no						
Chroococcus dispersus (Keissler) Lemmermann	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	high	NI	NI	S
Chroococcus limneticus Lemmerm.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	S
Chroococcus minimus (Keissler) Lemmerm.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	high	NI	NI	
Chroococcus minor (Kütz.) Nägeli	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Chroococcus minutus (Kütz.) Nägeli	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Chroococcus sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Chroococcus sp. 2	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Chroococcus turgidus (Kütz.) Nägeli	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Chroococcus vacuolatus Skuja	Cyanobacteria	non-heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Chroodactylon ornatum (C. Agardh) Basson	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	reference	S
Chroomonas pulex Pascher	Cryptophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Chrysophyceae 2	Ochrophyta	non-heterocystous			nonmotile	no						
Chrysopyxis sp. 1	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Chrysosphaera paludosa (Korshikov) Bourrelly	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Cladophora aff. fracta (O.F.Müll. ex Vahl) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Cladophora aff. glomerata (L.) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Cladophora fracta (O.F.Müll. ex Vahl) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Cladophora glomerata (L.) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	high	high	high	high	non- reference	
Cladophora sp. 3	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Clastidium rivulare (Hansg.) Hansg.	Cyanobacteria	non-heterocystous	high	benthic	nonmotile	no	NI	NI		NI	NI	S
Clastidium setigerum Kirchner	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	S

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Closteriopsis acicularis (Chodat) J.H. Belcher et Swale	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium acerosum (Schrank) Ehrenb. ex Ralfs	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	т
Closterium acerosum var. tumidium Hughes	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium aff. littorale F. Gay	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium attenuatum Ralfs	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium ehrenbergii Meneghini ex Ralfs	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	S
Closterium kuetzingii Bréb.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Closterium leibleinii Kützing ex Ralfs	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	T
Closterium littorale F. Gay	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Closterium lunula Ehrenberg & Hemprich ex Ralfs	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Closterium moniliferum Ehrenb. ex Ralfs	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium parvulum Nägeli	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	Т
Closterium parvum var. maius West	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium praelongum Brébisson	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Closterium ralfsii var. hybridum Rabenh.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Closterium striatum K.P.Biswas	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Coccoid UNK (colonial)	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Coelastrum astroideum De Notaris	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Coelastrum microporum Nägeli	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						T
Coelomoron pusillum (Van Goor) Komárek	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Coelomoron sp. 1	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Coleochaete irregularis Pringsheim	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Coleochaete sp. 1	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Coleodesmium wrangelii (C.Agardh) Borzi	Cyanobacteria	heterocystous	high- moderate	benthic	nonmotile	no						S
Compsopogon chalybeus Kützing	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Cosmarium abbreviatum Raciborski	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Cosmarium granatum Bréb. ex Ralfs	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Cosmarium laeve Rabenhorst	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Cosmarium regnellii Wille	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Cosmarium reniforme (Ralfs) W.Archer	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	high	NI	NI	
Cosmarium sp. 1	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Cosmarium sp. 2	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Cosmarium sp. 3	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Cosmarium sportella var. subnudum W.West et G.S.West	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Cosmarium subcrenatum Hantzsch	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Cosmarium subtumidum var. minutum (Krieg.) Krieg. et Gerloff	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Crucigeniella apiculata (Lemmermann) Komárek	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						Т
Cryptomonad cell 2	Cryptophyta	non-heterocystous			motile	yes	NI	NI		NI	NI	
Cryptomonad cell 3	Cryptophyta	non-heterocystous			motile	yes	NI	NI		NI	NI	
Cryptomonas (palmelloid)	Cryptophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Cryptomonas anomala F.E. Fritsch	Cryptophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	
Cryptomonas erosa Ehrenb.	Cryptophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	Т
Cryptomonas sp. 1	Cryptophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Cyanobium diatomicola (Geitler) Komárek, J. Kopeck et V. Cepák	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	S
Cyanodermatium fluminense (Fritsch) Komárek & Anagnostidis	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Cyanophanon mirabile Geitler	Cyanobacteria	non-heterocystous	high	benthic	nonmotile	no						S
Cyanophyceae 5	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Cyanophyceae 7	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Cyanostylon microcystoides Geitler	Cyanobacteria	non-heterocystous	variable	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Cyanothece aeruginosa (Nägeli) Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Cylindrocapsa geminella var. minor Hansgirg	Chlorophyta	non-heterocystous	moderate	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Cylindrocapsa geminella Wolle	Chlorophyta	non-heterocystous	moderate	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Cylindrospermum sp. 1	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no					Tererence	Tolefunce
Cylindrospermum stagnale (Kütz.) Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Desmodesmus armatus (Chodat) Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Dichothrix gypsophyla (Kütz.) Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no						S
Dichothrix hosfordii (Wolle) Bornet	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Dictyosphaerium ehrenbergianum Nägeli	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Dictyosphaerium pulchellum H.C.Wood	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Dictyosphaerium sp. 1	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Dinobryon divergens O.E.Imhof	Ochrophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Draparnaldia glomerata (Vaucher) C. Agardh	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	N	S
Draparnaldia mutabilis (Roth) Cedergr.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI		NI	NI	NI	S
Draparnaldia sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI		NI	NI	NI	
Elakatothrix sp. 1	Charophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Eudorina elegans Ehrenb.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	motile	yes	NI	high	NI	NI	NI	
Euglena acus Ehrenberg	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes	NI	NI		NI	NI	Т
Euglena oxyuris Schmarda	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						
Euglena proxima P.A.Dangeard	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						Т
Euglena sp. 1	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	
Euglena sp. 2	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						
Euglena sp. 3	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						
Euglena spirogyra Ehrenberg	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						
Euglena spiroides Lemmermann	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes						Т
Euglena variabilis G.A.Klebs	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	Т
Euglena viridis (O.F.Müll.) Ehrenb.	Euglenozoa	non-heterocystous	moderate	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	Т
Geitleribactron periphyticum Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Geitlerinema amphibium (C.Agardh) Anagnostidis	Cyanobacteria	non-heterocystous	moderate	benthic	motile	no	NI	NI	NI	NI	NI	Т

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Geitlerinema sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	motile	no	NI	NI		NI	NI	
Geitlerinema splendidum (Greville) Anagnostidis	Cyanobacteria	non-heterocystous	moderate	benthic	motile	no	NI	NI		NI	NI	Т
Geminella elipsoidea (Prescott) G.M.Smith	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Geminella interrupta (Turpin) Lagerh.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Geminella ordinata (West & G.S.West) Heering	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Glaucospira sp. 1	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Gloeobotrys limneticus (G.M.Smith) Pascher	Ochrophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Gloeocapsa biformis Ercegović	Cyanobacteria	non-heterocystous	NA	aerophytic	nonmotile	no						
Gloeocapsa fusco-lutea (Nägeli) Kützing	Cyanobacteria	non-heterocystous	NA	aerophytic	nonmotile	no	NI	NI		NI	NI	
Gloeocapsa punctata Nägeli	Cyanobacteria	non-heterocystous	NA	aerophytic	nonmotile	no	NI	NI	NI	NI	NI	
Gloeocapsa siderochlamys (Skuja) Starmach	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Gloeocapsa sp. 1	Cyanobacteria	non-heterocystous	stagnant		nonmotile	no						
Gloeocapsopsis sp. 1	Cyanobacteria	non-heterocystous	stagnant		nonmotile	no						
Gloeocystis vesiculosa Nägeli	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Gloeotrichia natans (Hedwig) Rabenhorst	Cyanobacteria	heterocystous	stagnant	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	Т
Gomphosphaeria aponina Kütz.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Gomphosphaeria sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Gongrosira debaryana Rabenh.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Gongrosira schmidlei P.G.Richt.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Gongrosira sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	high	NI	NI	
Gongrosira sp. 2	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Gongrosira sp. 3	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Gongrosira sp. 4	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Green germinating	Chlorophyta	non-heterocystous			nonmotile	no						
Haematococcus pluvialis Flot.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Hapalosiphon hibernicus West & G.S.West	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Heteroleibleinia kossinskajae (Elenkin) Anagn. et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	high	high	NI	NI	non- reference	
Hibberdiales 1	Ochrophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Homoeothrix juliana (Bornet et Flahault) Kirchner	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Homoeothrix sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						
Homoeothrix stagnalis (Hansgirg) Komárek et Kováčik	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Homoeothrix varians Geitler	Cyanobacteria	non-heterocystous	high- moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Homoeothrix woronichinii Margalef	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Hormidiopsis sp. 1	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Hydrococcus rivularis Kützing	Cyanobacteria	non-heterocystous	high	benthic	nonmotile	no						S
Hydrodictyon reticulatum (L.) Bory	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Hydrurus foetidus (Villars) Trevisan	Ochrophyta	non-heterocystous	high- moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Kirchneriella irregularis (G.M.Smith) Korshikov	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Kirchneriella lunaris (Kirchner) K.Möbius	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Kirchneriella obesa (G.S.West) Schmidle	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Klebsormidium crenulatum (Kütz.) Lokhorst	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Klebsormidium flaccidum (Kützing) P.C.Silva, K.R.Mattox & W.H.Blackwell	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no						s
Klebsormidium klebsii (G.M.Smith) P.C.Silva, K.R.Mattox & W.H.Blackwell	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Klebsormidium rivulare (Kütz.) M.O.Morison et Sheath	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Klebsormidium sp. 1	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Klebsormidium subtile (Kützing) Tracanna ex Tell	Charophyta	non-heterocystous	moderate	benthic	nonmotile	no						S
Komvophoron constrictum (Szafer) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic		no	NI	NI		NI	NI	
Komvophoron minutum (Skuja) Anagn. et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic		no	NI	NI	high	NI	NI	
Komvophoron schmidlei (Jaag) Anagn. et Komárek	Cyanobacteria	non-heterocystous	moderate	benthic		no	NI	NI		NI	NI	
Lagynion sp. 1	Ochrophyta	non-heterocystous			nonmotile	no						

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Leibleinia epiphytica (Hieronymus) Compère	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Lemanea borealis Atkinson	Rhodophyta	non-heterocystous	high	benthic	nonmotile	no						
Leptolyngbya foveolara (Mont. ex Gomont) Anagn. et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	high	NI	NI	NI	Т
Leptolyngbya granulifera (Copeland) Anagnostidis	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Leptolyngbya nostocorum (Bornet ex Gomont) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						S
Leptolyngbya notata (Schmidle) Anagn. et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Leptolyngbya sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Leptolyngbya tenuis (Gomont) Anagn. et Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Leptolyngbya valderiana (Gomont) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Limnothrix sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	motile	no						
Lobomonas sp. 1	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Lyngbya aestuarii (Mert.) Liebman ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Lyngbya major Menegh. ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic/ tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Lyngbya martensiana Meneghini ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic/ tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Lyngbya sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						
Merismopedia glauca (Ehrenb.) Kütz.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	S
Merismopedia punctata Meyen	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	high	high	NI	Т
Merismopedia tenuissima Lemmerm.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	non- reference	Т
Merismopedia trolleri Bachm.	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Micractinium pusillum Fresenius	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Microcoleus codii Frémy	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						
Microcoleus lacustris (Rabenh.) Farlow ex Gomont	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Microcoleus sp. 1	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						
Microcoleus vaginatus (Vaucher) Gomont ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						S

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Microcrocis irregularis (Lagerheim) Geitler	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Microcrocis sp. 1	, Cyanobacteria	, non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Microcystis firma (Kütz.) Schmidle	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Microspora abbreviata (Rabenhorst) Lagerheim	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Microspora amoena (Kützing) Rabenhorst	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						S
Microspora pachyderma (Wille) Lagerh.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Microspora sp. 1	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Microspora sp. 2	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Microspora tumidula Hazen	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	low	NI	NI	S
Mischococcus confervicola Nägeli	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Monoraphidium arcuatum (Korshikov) Hindák	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Monoraphidium contortum (Thuret) Komàrková-Legnerová	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	high	NI	NI	
Monoraphidium minutum (Nägeli) Komárk Legn.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	high	NI	NI	
Monoraphidium sp. 1	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no		NI				
Mougeotia calcarea (Cleve) Wittr.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Mougeotia scalaris Hassall	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						S
Mougeotia sp. 1	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Mougeotia sp. 2	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Mougeotia sp. 3	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	reference	
Mougeotia sp. 4	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Mougeotia sp. 5	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Mougeotia sp. 6	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Muriella terrestris J.B.Petersen	Chlorophyta	non-heterocystous	NA	terrestrial	nonmotile	no						
Nephrocytium agardhianum Nägeli	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Nephrocytium limneticum (G.M. Sm.) G.M. Sm.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Netrium digitus (Brébisson ex Ralfs) Itzigsohn & Rothe	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Nodularia harveyana (Thwaites) Thur.	Cyanobacteria	heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Nodularia spumigena Mert.	Cyanobacteria	heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	T
Nostoc linckia (Roth) Bornet ex Bornet et Flahault	Cyanobacteria	heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Nostoc muscorum C.Agardh	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no						
Nostoc parmelioides Kützing ex Bornet & Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Nostoc punctiforme (Kützing) Hariot	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Nostoc sp. 1	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Nostoc sp. 2	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no						
Nostoc spongiaeforme C.Agardh ex Bornet & Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Nostoc verrucosum Vaucher ex Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	low	reference	S
Nostochopsis lobatus Wood em. Geitler	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	NI	
Oedogonium capilliforme Kütz.	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Oedogonium crassum (Hassall) Wittrock	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Oedogonium curvum E.G.Pringsheim	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Oedogonium multisporum H.C.Wood	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Oedogonium punctatostriatum De Bary	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Oedogonium sp. 1	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	high	NI	NI	non- reference	
Oedogonium sp. 2	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Oedogonium sp. 3	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	non- reference	
Oedogonium sp. 4	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Oedogonium sp. 5	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	high	NI	
Oedogonium sp. 6	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Oedogonium sp. 7	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Oedogonium sp. 8	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Oedogonium sp. 9	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Oedogonium stellatum Wittrock	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Oedogonium vaucherii (Le Clerc) A. Braun	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Oocystis borgei J. Snow	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Oocystis elliptica West	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Oocystis lacustris Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI		high	high	NI	S
Oocystis naegelii A.Braun	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Oocystis natans (Lemmermann) Lemmermann	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Oocystis parva W. West et G.S. West	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	high	high	NI	NI	
Oocystis pusilla Hansg.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Oocystis solitaria Wittr.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Oocystis sp. 1	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Ophiocytium arbusculum (A. Braun) Rabenh.	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Ophiocytium sp. 1	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Oscillatoria jenensis G.Schmid	Cyanobacteria	non-heterocystous	stagnant	benthic	motile	no	NI	NI	NI	NI	NI	
Oscillatoria limosa (Dillwyn) C. Agardh	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI	NI	NI	NI	Т
Oscillatoria nigro-viridis Thwaites	Cyanobacteria	non-heterocystous	moderate	benthic	motile	no	NI	NI	NI	NI	NI	
Oscillatoria sp. 1	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI	NI	NI	NI	
Oscillatoria sp. 2	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI	NI	NI	NI	
Palmellopsis gelatinosa Korshikov	Chlorophyta	non-heterocystous	moderate	benthic/ tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Pandorina morum (O.F.Müller) Bory de Saint-Vincent	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Paralemanea catenata (Kützing) Vis et Sheath	Rhodophyta	non-heterocystous	high	benthic	nonmotile	no	low	NI	NI	NI	NI	S
Paralemanea sp. 2	Rhodophyta	non-heterocystous	high	benthic	nonmotile	no						
Paulschulzia pseudovolvox (Schultz) Skuja	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Paulschulzia tenera (Korshikov) J.W.G.Lund	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Pediastrum boryanum (Turpin) Menegh.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	high	non- reference	
Pediastrum boryanum var. longicorne Reinsch	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Pediastrum cornutum (Raciborski) Troitskaya	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Pediastrum duplex Meyen	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	S
Pediastrum duplex var. rugulosum Raciborski	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Pediastrum integrum Nägeli	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	high	NI	
Pediastrum simplex Meyen	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Peridinium sp. 1	Dinoflagellata	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI		NI	NI	NI	
Phacus acuminatus Stokes	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Phacus cf. caudatus Hübner	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	Т
Phacus circumflexus Pochmann	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Phacus longicauda (Ehrenberg) Dujardin	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Phacus orbicularis K.Hübner	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Phacus sp. 1	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Phacus sp. 2	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Phacus sp. 3	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Phacus sp. 4	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Phacus striatus Francé	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Phaeogloea mucosa Chodat	Ochrophyta	non-heterocystous			nonmotile	no	NI	NI		NI	NI	
Phormidium ambiguum Gomont ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	T
Phormidium chalybeum (Mert. ex Gomont) Anagn. et Komárek	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	Т
Phormidium cortianum (Meneghini ex Gomont) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	high	NI	NI	NI	NI	
Phormidium incrustatum Gomont ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	NI	S
Phormidium inundatum Kützing ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Phormidium lucidum (C.Agardh) Kütz. ex Gomont	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						
Phormidium nigrum (Vaucher ex Gomont) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						Т
Phormidium retzii (C. Agardh) Kütz. ex Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Phormidium sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	NI	
Phormidium sp. 2	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Phormidium sp. 3	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Phormidium sp. 4	, Cyanobacteria	, non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Phormidium sp. 5	, Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Phormidium subfuscum Kütz. ex Gomont	, Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	high	NI	NI	Т
Phormidium uncinatum (C.Agardh) Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Pithophora oedogonia (Montagne) Wittrock	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Planktolyngbya sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Planktothrix agardhii (Gomont) Anagnostidis & Komárek	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						T
Pleurocapsa minor Hansgirg	Cyanobacteria	non-heterocystous	variable	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Pleurocapsa sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						
Pleurotaenium ehrenbergii (Brébisson ex Ralfs) Delponte	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	N		NI	NI	
Prasiola mexicana J.Agardh	Chlorophyta	non-heterocystous	high	benthic	nonmotile	no	NI	NI		NI	NI	
Protoderma viride Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Pseudoanabaena sp. 1	Cyanobacteria	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Pseudocharaciopsis minuta (A. Braun) Hibberd	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Radiofilum conjunctivum Schmidle	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	N		NI	NI	
Rhabdogloea linearis (L.Geitler) J.Komárek	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Rhizoclonium hieroglyphicum (C. Agardh) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	high	high	high	non- reference	
Rhodomonas sp. 1	Cryptophyta	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Rivularia atra Roth ex Bornet & Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Rivularia haematites (DC.) Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Rivularia minutula (Kütz.) Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	low	NI	NI	NI	NI	
Rivulariaceae 1	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Rivulariaceae 2	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Scenedesmus abundans (Kirchn.) Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	high	high	high	NI	non- reference	
Scenedesmus aculeolatus Reinsch	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	N	NI	NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Scenedesmus acuminatus (Lagerh.) Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	high	NI	NI	NI	NI	T
Scenedesmus acutiformis Schröd.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	high	NI	
Scenedesmus aff. armatus (R.Chodat) R.Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus aff. communis E. Hegewald	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Scenedesmus aff. pannonicus Hortobágyi	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus apiculatus (W.West et G.S.West) Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus armatus (R.Chodat) R.Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Scenedesmus bicaudatus (Hansgirg) Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus brasiliensis Bohlin	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	T
Scenedesmus brevispina (G.M.Smith) R.Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus circumfusus Hortobágyi	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus communis E. Hegewald	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	high	NI	NI	Т
Scenedesmus denticulatus Lagerh.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Т
Scenedesmus dimorphus (Turpin) Kütz.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	high	high	high	NI	non- reference	
Scenedesmus dispar Bréb.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Scenedesmus ellipticus Corda	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	high	high	high	NI	non- reference	Т
Scenedesmus flavescens Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus intermedius Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	high	high	high	NI	NI	
Scenedesmus intermedius var. balatonicus Hortobágyi	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus kissii Hortobágyi	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus komarekii Hegewald	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus magnus Meyen	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus microspina Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Scenedesmus obliquus (Turpin) Kütz.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	Ţ
Scenedesmus opoliensis P.G.Richt.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	high	high	NI	NI	NI	Ţ
Scenedesmus raciborskii Wolłosz.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	high	high	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Scenedesmus semipulcher Hortobágyi	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus smithii Chodat	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Scenedesmus sp. 1	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Scenedesmus sp. 2	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Scenedesmus sp. 3 CF	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Schizothrix arenaria (Berk.) Gomont	Cyanobacteria	non-heterocystous	NA	terrestrial	nonmotile	no	NI	NI	NI	NI	NI	
Schizothrix lacustris (A.Braun) Gomont	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Schizothrix sp. 1	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Scytonema bohneri Schmidle	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Scytonema crispum (C.Agardh) Bornet	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Siphononema polonicum (Raciborski) Geitler	Cyanobacteria	non-heterocystous	moderate	benthic	nonmotile	no						S
Sirodotia huillensis (Welw. ex W. West et G.S. West) Skuja	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Sirodotia sp. 1	Rhodophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Sphaerobotrys fluviatilis Butcher	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Sphaerocystis planctonica (Korshikov) Bourelly	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Sphaerocystis schroeteri Chodat	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Sphaerocystis sp. 1	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Spirogyra aff. varians (Hassall) Kütz.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra borgeana Transeau	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Spirogyra fluviatilis Hilse	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Spirogyra foveolata (Skuja) Czurda	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra longata (Vaucher) Kützing	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra lutetiana Petit	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra majuscula Kütz.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Spirogyra maxima (Hassall) Wittrock	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra parvula (Transeau) Czurda	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI		NI	NI	NI	S
Spirogyra scrobiculata (Stockm.) Czurda	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Spirogyra sp 111	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp 222	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 1	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Spirogyra sp. 10	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 11	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra sp. 12	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	high	NI	NI	NI	
Spirogyra sp. 13	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 14	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirogyra sp. 2	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Spirogyra sp. 3	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Spirogyra sp. 4	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	high	NI	NI	NI	NI	
Spirogyra sp. 5	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 6	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Spirogyra sp. 7	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 8	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra sp. 9	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra spreeiana Rabenh.	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Spirogyra teodoresci Transeau	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Spirogyra varians (Hassall) Kütz.	Charophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	Т
Spirogyra weberi Kütz.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	S
Spirogyra zygotes	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Spirulina corakiana Playfair	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI		NI	NI	
Spirulina major Kütz.	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI		NI	NI	
Spirulina subtilissima Kütz.	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no						Т
Spirulina tenerrima Kützing	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	motile	no						
Staurastrum lapponicum (Schmidle) Grönblad	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Staurastrum orbiculare var. minor G.W.Prescott	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Staurastrum punctulatum Bréb.	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Staurastrum sp. 1	Charophyta	, non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Stauridium tetras (Ehrenb.) E. Hegewald	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Stigeoclonium basal stage	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Stigeoclonium lubricum (Dillwyn) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	Т
Stigeoclonium nanum (Dillwyn) Kützing	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Stigeoclonium sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Stigeoclonium subsecundum (Kütz.) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Streptophyta 1	Chlorophyta	non-heterocystous			nonmotile	no	NI	NI	NI	NI	NI	
Strombomonas sp. 1	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	
Stylococcus sp. 1	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Synechococcus ambiguus Skuja	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Synechococcus nidulans (Pringsheim) Komárek	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI		NI	NI	
Synechococcus sp. 1	Cyanobacteria	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Tetraedron caudatum (Corda) Hansg.	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	T
Tetraedron minimum (A. Braun) Hansg.	Chlorophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	T
Tetraspora gelatinosa (Vaucher) Desv.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						S
Tetraspora sp. 1	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Tetrasporidium javanicum K.Möbius	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	T
Tetrastrum komarekii Hindák	Chlorophyta	non-heterocystous	moderate	tychoplanktonic	nonmotile	no						
Tolypothrix distorta Kütz. ex Bornet et Flahault	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	low	NI	NI	reference	S
Tolypothrix tenuis Kützing	Cyanobacteria	heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	S
Trachelomonas cylindrica Ehrenberg	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Trachelomonas globularis (Averintsev) Lemmermann	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Trachelomonas hispida (Perty) F.Stein	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	Т
Trachelomonas oblonga Lemmermann	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						Т
Trachelomonas sp. 1	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI	NI	NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Trachelomonas verrucosa var. irregularis Deflandre	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Trachelomonas volvocina Ehrenberg	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes	NI	NI		NI	NI	Т
Trachelomonas volvocinopsis Svirenko	Euglenozoa	non-heterocystous	stagnant	tychoplanktonic	motile	yes						
Tribonema affine (Kütz.) G.S. West	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Tribonema minus (Wille) Hazen	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Tribonema monochloron Pascher & Geitler	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI		NI	NI	
Tribonema utriculosum (Kütz.) Hazen	Ochrophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Tribonema viride Pascher	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	low	low	NI	
Tychonema sequanum (Couté) Anagn. et Komárek	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	NI	NI	NI	NI	
Tychonema sp. 2	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	low	NI	low	NI	NI	
Tychonema sp. 3	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	motile	no	NI	high	NI	NI	NI	
Ulothrix aequalis Kützing	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no						S
Ulothrix tenerrima Kütz.	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Ulothrix tenuissima Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Ulothrix zonata (Weber et Mohr) Kütz.	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	low	NI	NI	reference	S
Ulva flexuosa Wulfen	Chlorophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	high	NI	NI	non- reference	Т
Uronema confervicola Lagerh.	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Uronema sp. 1	Chlorophyta	non-heterocystous	stagnant	benthic	nonmotile	no						
Vaucheria cf. undulata CC.Jao	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI		NI	NI	
Vaucheria frigida (Roth) C.Agardh	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Vaucheria geminata (Vaucher) DC.	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	Т
Vaucheria pachyderma Walz	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Vaucheria prona T.A.Christensen	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Vaucheria sessilis (Vaucher) DC.	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Vaucheria sp. 1	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	high	NI	high	NI	
Vaucheria sp. 2	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	
Vaucheria taylorii Blum	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no	NI	NI	NI	NI	NI	

Species	Taxonomic Group	Heterocystous?	Flow Regime	Habit	Motility	Flagel- lated?	Indicator Class for TP	Indicator Class for DOC	Indicator Class for Cu	Indicator Class for TN	Indicator Class for "reference"	Organic Pollution Tolerance
Vaucheria terrestris (Vaucher) De Candolle	Ochrophyta	non-heterocystous	moderate	benthic	nonmotile	no						
Woronichinia elorantae J.Komárek & J.Komárková-Legnerová	Cyanobacteria	non-heterocystous	moderate	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Xanthonema exile (G.A.Klebs) P.C.Silva	Ochrophyta	non-heterocystous	NA	terrestrial	nonmotile	no	NI	NI		NI	NI	
Xenococcus gracilis Lemmermann	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						
Xenococcus minimus Geitler	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no	NI	NI	NI	NI	NI	S
Xenococcus sp. 1	Cyanobacteria	non-heterocystous	stagnant	benthic	nonmotile	no						
Zygnema aff. stellinum (Vaucher) C.Agardh	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	S
Zygnema aplanosporum Stancheva, J.D. Hall et Sheath	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Zygnema argillarii Kadłubowska	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Zygnema californicum Stancheva, J.D. Hall et Sheath	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Zygnema cylindricum Transeau	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Zygnema sp. 1	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	
Zygnema sp. 2	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	NI	NI	NI	NI	NI	
Zygnema sp. 3	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no						
Zygnema sterile Transeau	Charophyta	non-heterocystous	stagnant	tychoplanktonic	nonmotile	no	low	NI	NI	NI	NI	

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator ¹ classification	TN indicator ¹ classification	Salinity	Habit	Motility
Achnanthes		• •						benthic	non-motile
Achnanthes coarctata (Brébisson ex W. Smith) Grunow in Cleve & Grunow	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Achnanthes inflata (Kützing) Grunow							fresh-brackish	benthic	non-motile
Achnanthes saxonica Krasske in Hustedt								benthic	non-motile
Achnanthes sp. A SWAMP EWT								benthic	non-motile
Achnanthes sp. A SWAMP JPK								benthic	non-motile
Achnanthidium								benthic	non-motile
Achnanthidium biasolettianum (Grunow in Cleve & Grunow) Round & Bukhtiyarova			mesotrophic				fresh-brackish	benthic	non-motile
Achnanthidium deflexum (Reimer) Kingston					low	low		benthic	non-motile
Achnanthidium exiguum (Grunow) Czarnecki	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Achnanthidium exiguum var. heterovalvum (Krasske) Czarnecki	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Achnanthidium jackii Rabenhorst				, i i i i i i i i i i i i i i i i i i i				benthic	non-motile
Achnanthidium macrocephalum (Hustedt) Round & Bukhtiyarova								benthic	non-motile
Achnanthidium minutissimum (Kützing) Czarnecki	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	non-motile
Achnanthidium subhudsonis (Hustedt) H. Kobayasi in Kobayasi et al.								benthic	non-motile
Achnanthidium subsalsum (J.B. Petersen) M. Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector								benthic	non-motile
Adlafia bryophila (J.B. Petersen) G. Moser, H. Lange-Bertalot & D. Metzeltin	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N		high	freshwater	benthic	moderately-motile
Adlafia minuscula (Grunow) H. Lange-Bertalot in H. Lange-Bertalot & S.I. Genkal		beta-mesosaprobous	oligotrophic		low	low	freshwater	benthic	moderately-motile
Adlafia minuscula var. muralis (Grunow) H. Lange-Bertalot in H. Lange-Bertalot & S.I. Genkal	>50% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)			fresh-brackish	benthic	moderately-motile
Adlafia suchlandtii (Hustedt) G. Moser, H. Lange-Bertalot & D. Metzeltin								benthic	moderately-motile
Amphipleura								benthic	moderately-motile
Amphipleura pellucida (Kützing) Kützing	>75% DO saturation	alpha- meso/polysaprobous	oligotrophic- mesotrophic	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	moderately-motile
Amphipleura sp. 1 SCCWRP JPK								benthic	moderately-motile
Amphipleura sp. A SWAMP JPK								benthic	moderately-motile
Amphipleura sp. B SWAMP JPK								benthic	moderately-motile
Amphora								benthic	moderately-motile
Amphora copulata (Kützing) Schoeman & Archibald						high		benthic	moderately-motile
Amphora inariensis K. Krammer			oligotrophic				fresh-brackish	benthic	moderately-motile
Amphora ovalis (Kützing) Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	moderately-motile
Amphora pediculus (Kützing) Grunow in Schmidt et al.	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Amphora perpusilla (Grunow in Van Heurck) Grunow in Van Heurck						1		benthic	moderately-motile
Amphora sp. 1 CAL						1		benthic	moderately-motile
Amphora sp. 1 EPA JPK								benthic	moderately-motile
Amphora sp. 1 SCCWRP BSL								benthic	moderately-motile
Amphora sp. 1 SCCWRP MCB						1		benthic	moderately-motile
Amphora sp. 1 SWAMP JPK						1		benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Amphora sp. 2 JPK								benthic	moderately-motil
Amphora sp. 2 SCCWRP BSL								benthic	moderately-motil
Amphora sp. 3 SCCWRP JPK								benthic	moderately-motil
Amphora sp. 4 SCCWRP JPK								benthic	moderately-motil
Amphora sp. 5 SCCWRP JPK								benthic	moderately-motil
Amphora sp. 5 SWAMP JPK								benthic	moderately-motil
Amphora sp. A SWAMP JPK								benthic	moderately-motil
Amphora sp. B SWAMP JPK								benthic	moderately-motil
Amphora sp. C SWAMP JPK								benthic	moderately-motil
Amphora sp. D SWAMP JPK								benthic	moderately-motil
Amphora sp. E SWAMP JPK								benthic	moderately-motil
Amphora stoermerii M. Edlund & Z. Levkov in Z. Levkov								benthic	moderately-motil
Anomoeoneis sphaerophora var. sculpta (Ehrenberg) Otto Müller							brackish	benthic	non-motile
Ardissonea cuneata Mills								benthic	non-motile
Astartiella bahusiensis (Grunow in Van Heurck) Witkowski, Lange-Bertalot & Metzeltin in Moser, Lange-Bertalot & Metzeltin								benthic	non-motile
Asterionella formosa Hassall	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N		high	fresh-brackish	planktonic	non-motile
Aulacoseira								planktonic	non-motile
Aulacoseira alpigena (Grunow in Van Heurck) Krammer	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Aulacoseira ambigua (Grunow in Van Heurck) Simonsen	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	planktonic	non-motile
Aulacoseira canadensis (Hustedt) Simonsen								planktonic	non-motile
Aulacoseira crassipunctata K. Krammer								planktonic	non-motile
Aulacoseira crenulata (Ehrenberg) Thwaites	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Aulacoseira distans (Ehrenberg) Simonsen	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Aulacoseira granulata (Ehrenberg) Simonsen	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	planktonic	non-motile
Aulacoseira italica (Ehrenberg) Simonsen	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	planktonic	non-motile
Aulacoseira sp. 2 SCCWRP BSL								planktonic	non-motile
Aulacoseira sp. Coarse SCCWRP JPK								planktonic	non-motile
Aulacoseira subarctica (Müller) Haworth	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Aulacoseira valida (Grunow in Van Heurck) K. Krammer								planktonic	non-motile
Bacillaria								benthic	highly-motile
Bacillaria paradoxa Gmelin in Linneaeus	>30% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish	benthic	highly-motile
Berkeleya									
Biremis circumtexta (Meister ex Hustedt) H. Lange-Bertalot & A. Witkowski in A. Witkowski, H. Lange-Bertalot & D. Metzeltin								benthic	moderately-motil
Biremis sp. 1 SCCWRP JPK								benthic	moderately-moti
Brachysira								benthic	moderately-moti
Brachysira aponina Kützing	1					1		benthic	moderately-moti
Brachysira brebissonii R. Ross in Hartley	>75% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	moderately-motil

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Brachysira vitrea (Grunow) R. Ross in Hartley	>75% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Caloneis			-					benthic	moderately-motile
Caloneis alpestris (Grunow) Cleve	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Caloneis amphisbaena (Bory) Cleve	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		brackish- freshwater	benthic	moderately-motile
Caloneis bacillum (Grunow) Cleve	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N		high	fresh-brackish	benthic	moderately-motile
Caloneis branderii (Hustedt) Krammer in Krammer & Lange-Bertalot								benthic	moderately-motile
Caloneis clevei (Lagerstedt) Cleve								benthic	moderately-motile
Caloneis hyalina Hustedt								benthic	moderately-motile
Caloneis lauta Carter & Bailey-Watts	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Caloneis macedonica Hustedt						high		benthic	moderately-motile
Caloneis schumanniana (Grunow in Van Heurck) Cleve	>75% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Caloneis silicula (Ehrenberg) Cleve	>75% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Caloneis tenuis (Gregory) Krammer in Krammer & Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Campylodiscus								benthic	highly-motile
Campylodiscus clypeus Ehrenberg								benthic	highly-motile
Campylodiscus hibernicus Ehrenberg			eutrophic				fresh-brackish	benthic	highly-motile
Cavinula cocconeiformis (Gregory ex Greville) Mann & Stickle in Round, Crawford & Mann	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Cavinula jaernefeltii (Hustedt) Mann & Stickle in Round, Crawford & Mann	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Cavinula lapidosa (Krasske) Lange-Bertalot in Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N		low	freshwater	benthic	moderately-motile
Cavinula pseudoscutiformis (Hustedt in Schmidt et al.) Mann & Stickle in Round, Crawford & Mann	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Centric sp. 1 SCCWRP BSL			•	, i i i i i i i i i i i i i i i i i i i					non-motile
Centric sp. 2 SCCWRP BSL									non-motile
Chamaepinnularia bremensis (Hustedt) Lange-Bertalot in Lange-Bertalot & Metzeltin								benthic	moderately-motile
Chamaepinnularia mediocris (Krasske) Lange-Bertalot in Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	moderately-motile
Chamaepinnularia soehrensis var. hassica (Krasske) Lange-Bertalot in Lange- Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Chamaepinnularia soehrensis var. muscicola (Petersen) Lange-Bertalot & Krammer in Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Cocconeis disculus (Schumann) Cleve		oligosaprobous		-			brackish- freshwater	benthic	non-motile
Cocconeis neodiminuta Krammer				1			fresh-brackish	benthic	non-motile
Cocconeis pediculus Ehrenberg	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	brackish- freshwater	benthic	non-motile
Cocconeis placentula Ehrenberg	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Cocconeis placentula var. euglypta (Ehrenberg) Grunow	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Cocconeis placentula var. lineata (Ehrenberg) Van Heurck	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Cocconeis pseudolineata (Geitler) Lange-Bertalot in Werum & Lange-Bertalot					high			benthic	non-motile
Cocconeis scutellum Ehrenberg								benthic	non-motile
Cocconeis sp. A SWAMP BSL								benthic	non-motile
Coscinodiscus								planktonic	non-motile
Craticula accomoda (Hustedt) Mann in Round, Crawford & Mann	about 10% DO saturation or less	polysaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	moderately-motile
Craticula cuspidata (Kützing) Mann in Round, Crawford & Mann	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Craticula halophila (Grunow ex Van Heurck) Mann in Round, Crawford & Mann	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish	benthic	moderately-motile
Craticula minusculoides (Hustedt) Lange-Bertalot	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (obligate)			fresh-brackish	benthic	moderately-motile
Cyclostephanos dubius (Fricke) Round	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	planktonic	non-motile
Cyclostephanos invisitatus (Hohn & Hellerman) Theriot, Stoermer & Håkansson					high	high		planktonic	non-motile
Cyclostephanos tholiformis Stoermer, Hakansson & Theriot						high		planktonic	non-motile
Cyclotella atomus Hustedt	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	planktonic	non-motile
Cyclotella comensis Grunow in Van Heurck							fresh-brackish	planktonic	non-motile
Cyclotella gamma Sovereign								planktonic	non-motile
Cyclotella meneghiniana Kützing	about 10% DO saturation or less	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	brackish- freshwater	planktonic	non-motile
Cyclotella ocellata Pantocsek	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Cyclotella operculata (Agardh) Kützing								planktonic	non-motile
Cylindrotheca gracilis (Brébisson in Kützing) Grunow in Van Heurck	nearly 100% DO saturation	beta-mesosaprobous	eutrophic				brackish	benthic	highly-motile
Cymatopleura elliptica (Brébisson ex Kützing) W. Smith	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	highly-motile
Cymatopleura solea (Brébisson in Brébisson & Godey) W. Smith	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	highly-motile
Cymbella								benthic	non-motile
Cymbella affinis Kützing	nearly 100% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Cymbella aspera (Ehrenberg) Cleve	nearly 100% DO saturation	oligosaprobous	indifferent	N-autotrophic-low organic N			fresh-brackish	benthic	non-motile
Cymbella austriaca var. erdobenyiana (Pantocsek) Krammer in Krammer & Lange-Bertalot								benthic	non-motile
Cymbella cistula (Hemprich in Hemprich & Ehrenberg) Kirchner	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Cymbella gracilis (Ehrenberg) Kützing	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Cymbella helvetica Kützing	nearly 100% DO	oligosaprobous	mesotrophic	N-autotrophic-low			fresh-brackish	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Cymbella janischii (Schmidt in Schmidt et al.) Cleve	·		-					benthic	non-motile
Cymbella laevis Nägeli in Kützing					low	low		benthic	non-motile
Cymbella lata Grunow ex Cleve							fresh-brackish	benthic	non-motile
Cymbella leptoceras (Ehrenberg) Kützing	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Cymbella mexicana (Ehrenberg) Cleve					low			benthic	moderately-motile
Cymbella proxima Reimer in Patrick & Reimer			mesotrophic				freshwater	benthic	non-motile
Cymbella sp. 1 SCCWRP JPK								benthic	non-motile
Cymbella sp. 3 SCCWRP JPK								benthic	non-motile
Cymbella tumida (Brébisson ex Kützing) Van Heurck	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Cymbella turgidula Grunow in Schmidt et al.				, i i i i i i i i i i i i i i i i i i i				benthic	non-motile
Cymbellafalsa diluviana (Krasske) Lange-Bertalot & Metzeltin in Metzeltin, Lange-Bertalot & Nergui								benthic	non-motile
Cymbopleura amphicephala (Näegeli) Krammer	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Cymbopleura budayana (Pantocsek) K. Krammer	1		•			1		benthic	non-motile
Cymbopleura citrus (Carter & Bailey-Watts) K. Krammer	1					1		benthic	non-motile
Cymbopleura cuspidata (Kützing) K. Krammer		oligosaprobous			low		fresh-brackish	benthic	non-motile
Cymbopleura hauckii (Van Heurck) K. Krammer		3						benthic	non-motile
Cymbopleura hustedtii (Krasske) E. Novelo, R. Tavera & C. Ibarra	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Cymbopleura incerta (Grunow) K. Krammer	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Cymbopleura lapponica (Grunow) Krammer			oligotrophic	Ŭ			freshwater	benthic	non-motile
Cymbopleura naviculiformis (Auerswald ex Heiberg) K. Krammer	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		low	fresh-brackish	benthic	non-motile
Cymbopleura naviculiformis (Auerswald ex Heiberg) K. Krammer				Ŭ				benthic	non-motile
Delicata delicatula (Kützing) K. Krammer								benthic	non-motile
Delicata sp. 1 SWAMP JPK								benthic	non-motile
Denticula								benthic	moderately-motile
Denticula kuetzingii Grunow	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	moderately-motile
Denticula subtilis Grunow	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N			brackish- freshwater	benthic	moderately-motile
Denticula tenuis Kützing	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	moderately-motile
Denticula thermalis Kützing								benthic	moderately-motile
Diadesmis								benthic	moderately-motile
Diadesmis confervacea Kützing	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	brackish- freshwater	benthic	moderately-motile
Diadesmis contenta (Grunow ex Van Heurck) Mann in Round, Crawford & Mann	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Diadesmis gallica W. Smith	1					1		benthic	moderately-motile
Diadesmis perpusilla (Grunow) Mann in Round, Crawford & Mann	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Diatoma anceps (Ehrenberg) Kirchner	1			-		1		benthic	non-motile
Diatoma anceps var. linearis M. Peragallo in Tempère & Peragallo		1					İ	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Diatoma hiemale (Lyngbye) Heiberg								benthic	non-motile
Diatoma mesodon Kützing	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Diatoma moniliforme Kützing in litt., Kützing								benthic	non-motile
Diatoma sp. 1 SWAMP JPK								benthic	non-motile
Diatoma tenuis Agardh	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	non-motile
Diatoma vulgaris Bory	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Diatoma vulgaris var. linearis Grunow in Van Heurck								benthic	non-motile
Diatomella balfouriana Greville								benthic	non-motile
Didymosphenia geminata (Lyngbye) M. Schmidt in Schmidt et al.					low	low		benthic	non-motile
Diploneis								benthic	moderately-motile
Diploneis aestuari Hustedt								benthic	moderately-motile
Diploneis elliptica (Kützing) Cleve	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Diploneis marginestriata Hustedt		oligosaprobous					freshwater	benthic	moderately-motile
Diploneis oblongella (Naegeli in Kutzing) Cleve-Euler in Cleve-Euler	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N	low	low	fresh-brackish	benthic	moderately-motile
Diploneis ovalis (Hilse in Rabenhorst) Cleve	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Diploneis parma Cleve					low	low		benthic	moderately-motile
Diploneis pseudovalis Hustedt					low			benthic	moderately-motile
Diploneis puella (Schumann) Cleve	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	high		fresh-brackish	benthic	moderately-motile
Diploneis smithii (Brébisson in W. Smith) Cleve				- · ·				benthic	moderately-motile
Diploneis sp. 1 SCCWRP JPK								benthic	moderately-motile
Diploneis sp. 2 SCCWRP JPK								benthic	moderately-motile
Diploneis sp. 6 SWAMP JPK								benthic	moderately-motile
Diploneis sp. A SWAMP EWT								benthic	moderately-motile
Diploneis sp. A SWAMP JPK								benthic	moderately-motile
Diploneis sp. B SWAMP EWT								benthic	moderately-motile
Diploneis subovalis Cleve								benthic	moderately-motile
Discostella pseudostelligera (Hustedt) Houk & Klee	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	planktonic	non-motile
Discostella stelligera (Cleve & Grunow) Houk & Klee					high	high	fresh-brackish	planktonic	non-motile
Ellerbeckia arenaria (Moore ex Ralfs) Crawford	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Encyonema				- · ·				benthic	moderately-motile
Encyonema auerswaldii Rabenhorst					low	low		benthic	moderately-motile
Encyonema caespitosum Kützing		alpha-mesosaprobous	indifferent		low	low	fresh-brackish	benthic	moderately-motile
Encyonema elginense (Krammer) Mann in Round, Crawford & Mann				T		T		benthic	moderately-motile
Encyonema hebridicum (Gregory) Grunow in Cleve & Moller	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Encyonema hilliardii (Manguin) Krammer				-				benthic	moderately-motile
Encyonema mesianum (Cholnoky) Mann in Round, Crawford & Mann								benthic	moderately-motile
Encyonema minutum (Hilse in Rabenhorst) Mann in Round, Crawford & Mann					low	low	fresh-brackish	benthic	moderately-motile
Encyonema muelleri (Hustedt) Mann in Round, Crawford & Mann					low	low		benthic	moderately-motile
Encyonema norvegicum (Grunow) Mayer	nearly 100% DO	oligosaprobous	oligotrophic	N-autotrophic-low			freshwater	benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Encyonema obscurum (Krasske) Mann in Round, Crawford & Mann								benthic	moderately-motile
Encyonema prostratum (Berkeley) Kützing	nearly 100% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	moderately-motile
Encyonema silesiacum (Bleisch in Rabenhorst) Mann in Round, Crawford & Mann	>50% DO saturation	alpha-mesosaprobous	indifferent	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	moderately-motile
Encyonopsis cesatii (Rabenhorst) Krammer	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Encyonopsis falaisensis (Grunow) Krammer	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Encyonopsis microcephala (Grunow) Krammer	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Entomoneis								benthic	highly-motile
Entomoneis alata Ehrenberg								benthic	highly-motile
Entomoneis paludosa (W. Smith) Reimer in Patrick & Reimer		oligosaprobous					brackish- freshwater	benthic	highly-motile
Entomoneis sp. A SWAMP JPK								benthic	highly-motile
Eolimna minima (Grunow) Lange-Bertalot								benthic	moderately-motile
Eolimna subadnata (Hustedt) G. Moser, H. Lange-Bertalot & D. Metzeltin								benthic	moderately-motile
Eolimna subminuscula (Manguin) Moser, Lange-Bertalot & Metzeltin	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	moderately-motile
Eolimna tantula (Hustedt) H. Lange-Bertalot in Werum & Lange-Bertalot								benthic	moderately-motile
Epithemia								benthic	moderately-motile
Epithemia adnata (Kützing) Brébisson	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	moderately-motile
Epithemia adnata var. proboscidea (Kützing) Patrick in Patrick & Reimer								benthic	moderately-motile
Epithemia argus (Ehrenberg) Kützing		oligosaprobous	mesotrophic				fresh-brackish	benthic	moderately-motile
Epithemia frickei Krammer in Lange-Bertalot & Krammer							fresh-brackish	benthic	moderately-motile
Epithemia hyndmanii W. Smith								benthic	moderately-motile
Epithemia sorex Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	moderately-motile
Epithemia turgida (Ehrenberg) Kützing	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	moderately-motile
Epithemia turgida var. granulata (Ehrenberg) Brun	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Epithemia turgida var. westermannii (Ehrenberg) Grunow					low	low		benthic	moderately-motile
Eucocconeis flexella (Kützing) Cleve	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low		freshwater	benthic	non-motile
Eucocconeis laevis (Østrup) H. Lange-Bertalot in H. Lange-Bertalot & S.I. Genkal in H. Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Eunotia								benthic	non-motile
Eunotia arcus Ehrenberg		oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Eunotia bilunaris (Ehrenberg) Schaarschmidt	>75% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Eunotia circumborealis Lange-Bertalot & Nörpel in Lange-Bertalot							freshwater	benthic	non-motile
Eunotia cristagalli Cleve								benthic	non-motile
Eunotia flexuosa (Brébisson in Kützing) Kützing	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Eunotia implicata Norpel, Alles & Lange-Bertalot in Alles, Norpel & Lange- Bertalot					low	low	freshwater	benthic	non-motile
Eunotia incisa Smith ex Gregory	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Eunotia intermedia (Krasske ex Hustedt) Nörpel & Lange-Bertalot in Lange- Bertalot			oligotrophic				freshwater	benthic	non-motile
Eunotia minor (Kützing) Grunow in Van Heurck		oligosaprobous					freshwater	benthic	non-motile
Eunotia muscicola Krasske								benthic	non-motile
Eunotia muscicola var. tridentula Nörpel & Lange-Bertalot in Lange-Bertalot								benthic	non-motile
Eunotia pectinalis (Kützing) Rabenhorst	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-high organic N	low	low	freshwater	benthic	non-motile
Eunotia praerupta Ehrenberg	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N		low	freshwater	benthic	non-motile
Eunotia quaternaria Ehrenberg								benthic	non-motile
Eunotia subarcuatoides Alles, Norpel & Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Fallacia								benthic	moderately-motile
Fallacia cryptolyra (Brockmann) Stickle & Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia helensis (Schulz) Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia litoricola (Hustedt) Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia lucinensis (Hustedt) Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia maceria (Schimanski) Lange-Bertalot in Lange-Bertalot & Metzeltin								benthic	moderately-motile
Fallacia monoculata (Hustedt) Mann in Round, Crawford & Mann	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)		high	fresh-brackish	benthic	moderately-motile
Fallacia pulchella Sabbe & Muylaert in Sabbe, Vyverman & Muylaert								benthic	moderately-motile
Fallacia pygmaea (Kützing) Stickle & Mann in Round, Crawford & Mann	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	brackish- freshwater	benthic	moderately-motile
Fallacia sp. A SWAMP BSL								benthic	moderately-motile
Fallacia subforcipata (Hustedt) Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia sublucidula (Hustedt) Mann in Round, Crawford & Mann								benthic	moderately-motile
Fallacia tenera (Hustedt) Mann in Round, Crawford & Mann					high			benthic	moderately-motile
Fistulifera pelliculosa (Brébisson) Lange-Bertalot			oligotrophic- mesotrophic		low	low	fresh-brackish	benthic	non-motile
Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	benthic	non-motile
Fragilaria								benthic	non-motile
Fragilaria capucina Desmazières		beta-mesosaprobous	mesotrophic				fresh-brackish	benthic	non-motile
Fragilaria capucina var. gracilis (Østrup) Hustedt	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Fragilaria construens f. gracilis Rabenhorst								benthic	non-motile
Fragilaria crotonensis Kitton	>75% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-high organic N	low	high	fresh-brackish	planktonic	non-motile
Fragilaria mesolepta Rabenhorst				-			fresh-brackish	benthic	non-motile
Fragilaria neoproducta Lange-Bertalot in Krammer & Lange-Bertalot	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N			freshwater	benthic	non-motile
Fragilaria sp. 2 SCCWRP BSL						1		benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Fragilaria tenera (W. Smith) Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low		freshwater	benthic	non-motile
Fragilaria vaucheriae (Kützing) Petersen	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		low	fresh-brackish	benthic	non-motile
Fragilaria vaucheriae var. capitellata (Grunow in Van Heurck) Ross								benthic	non-motile
Fragilariforma virescens (Ralfs) Williams & Round	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Frustulia								benthic	moderately-motile
Frustulia amphipleuroides (Grunow in Cleve & Grunow) Cleve-Euler	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Frustulia crassinervia (Brébisson) Lange-Bertalot & Krammer in Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N		low	freshwater	benthic	moderately-motile
Frustulia creuzburgensis (Krasske) Hustedt								benthic	moderately-motile
Frustulia krammeri Lange-Bertalot & Metzeltin in Metzeltin & Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	moderately-motile
Frustulia vulgaris (Thwaites) De Toni	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	moderately-motile
Geissleria								benthic	moderately-motile
Geissleria acceptata (Hustedt) Lange-Bertalot & Metzeltin	nearly 100% DO saturation	beta-mesosaprobous				high	freshwater	benthic	moderately-motile
Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin		oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N		high	fresh-brackish	benthic	moderately-motile
Geissleria ignota (Krasske) Lange-Bertalot & Metzeltin								benthic	moderately-motile
Geissleria paludosa (Hustedt) Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Geissleria schoenfeldii (Hustedt) Lange-Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	moderately-motile
Gomphoneis								benthic	non-motile
Gomphoneis eriense (Grunow) Skvortzow & Meyer					low	low		benthic	non-motile
Gomphoneis eriense var. variabilis Kociolek & Stoermer								benthic	non-motile
Gomphoneis geitleri Kociolek & Stoermer								benthic	non-motile
Gomphoneis herculeana var. septiceps M. Schmidt in Schmidt et al.								benthic	non-motile
Gomphoneis mamilla (Ehrenberg) Cleve								benthic	non-motile
Gomphoneis minuta (Stone) Kociolek & Stoermer		beta-mesosaprobous	eutrophic		low	low	fresh-brackish	benthic	non-motile
Gomphoneis olivaceoides (Hustedt) Carter in Carter & Bailey-Watts								benthic	non-motile
Gomphoneis olivaceum (Hornemann) Dawson ex Ross & Sims	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Gomphoneis rhombica (Fricke) Merino, García, Hernández-Mariné & Fernández								benthic	non-motile
Gomphoneis sp. A SWAMP EWT								benthic	non-motile
Gomphonema								benthic	non-motile
Gomphonema acuminatum Ehrenberg	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N		low	fresh-brackish	benthic	non-motile
Gomphonema affine Kützing	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Gomphonema amoenum Lange-Bertalot in Krammer & Lange-Bertalot								benthic	non-motile
Gomphonema angustatum (Kützing) Rabenhorst	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	high	high	fresh-brackish	benthic	non-motile
Gomphonema augur Ehrenberg	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	non-motile

Species	Oxygen reguirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Gomphonema brebissonii Kützing		••••••					· · · · · · · · · · · · · · · · · · ·	benthic	non-motile
Gomphonema clavatum Ehrenberg	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Gomphonema clevei Fricke in Schmidt et al.								benthic	non-motile
Gomphonema commutatum Grunow in Van Heurck								benthic	non-motile
Gomphonema contraturris Lange-Bertalot & Reichardt in Lange-Bertalot								benthic	non-motile
Gomphonema entolejum Østrup								benthic	non-motile
Gomphonema exilissimum (Grunow) Lange-Bertalot & Reichardt in Lange- Bertalot & Metzeltin	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Gomphonema freesei Lowe & Kociolek								benthic	non-motile
Gomphonema gracile Ehrenberg	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Gomphonema insigne Gregory					high	high	fresh-brackish	benthic	non-motile
Gomphonema intricatum Kützing					low	low		benthic	non-motile
Gomphonema kobayasii Kociolek & Kingston						high		benthic	non-motile
Gomphonema lagenula Kützing						Ť		benthic	non-motile
Gomphonema mexicanum Grunow in Van Heurck					low	low		benthic	non-motile
Gomphonema micropumilum Reichardt								benthic	non-motile
Gomphonema micropus Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Gomphonema minutum (Agardh) Agardh		beta-mesosaprobous	eutrophic			high	fresh-brackish	benthic	non-motile
Gomphonema montanum (Schumann) Grunow in Schneider	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Gomphonema parvulum (Kützing) Kützing	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	benthic	non-motile
Gomphonema procerum Reichardt & Lange-Bertalot								benthic	non-motile
Gomphonema pseudoaugur Lange-Bertalot		alpha-mesosaprobous	eutrophic				fresh-brackish	benthic	non-motile
Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot			indifferent		low	low	fresh-brackish	benthic	non-motile
Gomphonema sarcophagus Gregory		beta-mesosaprobous	mesotrophic		low		fresh-brackish	benthic	non-motile
Gomphonema sp. 1 SCCWRP EWT								benthic	non-motile
Gomphonema sp. 10 SCCWRP BSL								benthic	non-motile
Gomphonema sp. 10 SWAMP JPK								benthic	non-motile
Gomphonema sp. 15 SWAMP JPK								benthic	non-motile
Gomphonema sp. 3 SCCWRP JPK								benthic	non-motile
Gomphonema sp. 4 SCCWRP JPK								benthic	non-motile
Gomphonema sp. 76 SWAMP JPK								benthic	non-motile
Gomphonema sp. 9 SWAMP JPK								benthic	non-motile
Gomphonema sp. A SWAMP EWT								benthic	non-motile
Gomphonema sp. B SWAMP EWT								benthic	non-motile
Gomphonema sp. B SWAMP JPK								benthic	non-motile
Gomphonema sp. C SWAMP JPK								benthic	non-motile
Gomphonema sp. D SWAMP EWT								benthic	non-motile
Gomphonema sp. E SWAMP EWT								benthic	non-motile
Gomphonema sp. F SWAMP EWT								benthic	non-motile
Gomphonema sp. G SWAMP BSL								benthic	non-motile
Gomphonema sp. G SWAMP EWT								benthic	non-motile
Gomphonema sp. H SWAMP BSL								benthic	non-motile
Gomphonema sp. H SWAMP EWT								benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Gomphonema sp. I SWAMP BSL								benthic	non-motile
Gomphonema sp. J SWAMP BSL								benthic	non-motile
Gomphonema sphaerophorum Ehrenberg					low	low		benthic	non-motile
Gomphonema subclavatum (Grunow in Van Heurck) Grunow	nearly 100% DO saturation	beta-mesosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	non-motile
Gomphonema subtile Ehrenberg	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Gomphonema truncatum Ehrenberg	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	non-motile
Gomphonema truncatum var. elongata (Peragallo & Héribaud) Patrick in Patrick & Reimer								benthic	non-motile
Gomphosphenia sp. 9 JPK								benthic	non-motile
Gomphosphenia sp. A SWAMP EWT								benthic	non-motile
Gomphosphenia sp. B SWAMP EWT								benthic	non-motile
Gomphosphenia sp. C SWAMP EWT								benthic	non-motile
Gyrosigma								benthic	highly-motile
Gyrosigma acuminatum (Kützing) Rabenhorst	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		fresh-brackish	benthic	highly-motile
Gyrosigma attenuatum (Kützing) Rabenhorst	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Gyrosigma nodiferum (Grunow) Reimer								benthic	highly-motile
Gyrosigma obtusatum (Sullivant) Boyer	nearly 100% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Gyrosigma sp. 1 SCCWRP JPK								benthic	highly-motile
Gyrosigma spencerii (Smith) Griffith & Henfrey								benthic	highly-motile
Halamphora acutiuscula (Kützing) Z. Levkov					high			benthic	moderately-motile
Halamphora coffeaeformis (Agardh) Z. Levkov	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Halamphora holsatica (Hustedt) Z. Levkov								benthic	moderately-motile
Halamphora montana (Krasske) Z. Levkov	nearly 100% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Halamphora normanii (Rabenhorst) Z. Levkov	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Halamphora thumensis (A. Mayer) Z. Levkov								benthic	moderately-motile
Halamphora veneta (Kützing) Z. Levkov	>50% DO saturation	alpha- meso/polysaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	moderately-motile
Hannaea arcus (Ehrenberg) Patrick	nearly 100% DO saturation	beta-mesosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Hantzschia								benthic	highly-motile
Hantzschia amphioxys (Ehrenberg) Grunow in Cleve & Grunow	>75% DO saturation	alpha-mesosaprobous	indifferent	N-autotrophic-high organic N	high		fresh-brackish	benthic	highly-motile
Hantzschia sp. 1 SCCWRP MCB								benthic	highly-motile
Hippodonta								benthic	moderately-motile
Hippodonta capitata (Ehrenberg) Lange-Bertalot, Metzeltin & Witkowski	>50% DO saturation	alpha-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Hippodonta costulata (Grunow) Lange-Bertalot, Metzeltin & Witkowski		beta-mesosaprobous	·	1 -		T	fresh-brackish	benthic	moderately-motile
Hippodonta hungarica (Grunow) Lange-Bertalot, Metzeltin & Witkowski	>50% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Hippodonta sp. 1 SCCWRP JPK						1		benthic	moderately-motile
Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
---	------------------------------	------------------------------	---------------------------------	---	--------------------------------	--------------------------------	-------------------------	---------	-------------------
Karayevia amoena (Hustedt) Bukhtiyarova			- -				brackish	benthic	non-motile
Karayevia bottnica (Cleve) Lange-Bertalot in Krammer & Lange-Bertalot								benthic	non-motile
Karayevia clevei (Grunow in Cleve & Grunow) Round & Bukhtiyarova	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	non-motile
Karayevia laterostrata (Hustedt) Bukhtiyarova	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Karayevia nitidiformis (Lange-Bertalot) Bukhtiyarova				-				benthic	non-motile
Karayevia oblongella (Østrup) Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector								benthic	non-motile
Karayevia suchlandtii (Hustedt) Bukhtiyarova	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	non-motile
Kolbesia gessneri (Hustedt) Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector				-				benthic	non-motile
Lemnicola hungarica (Grunow) Round & Basson	>30% DO saturation	alpha-mesosaprobous	polytrophic (hypereutrophic)	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Luticola				-				benthic	moderately-motile
Luticola cohnii (Hilse) Bukhtiyarova	nearly 100% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	moderately-motile
Luticola goeppertiana (Bleisch in Rabenhorst) Mann in Round, Crawford & Mann	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	benthic	moderately-motile
Luticola mutica (Kützing) Mann in Round, Crawford & Mann	nearly 100% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	brackish- freshwater	benthic	moderately-motile
Luticola mutica var. ventricosa (Kützing) Hamilton in Hamilton et al.								benthic	moderately-motile
Luticola muticopsis (Van Heurck) Mann in Round, Crawford & Mann								benthic	moderately-motile
Luticola nivalis (Ehrenberg) Mann in Round, Crawford & Mann		beta-mesosaprobous	eutrophic				brackish- freshwater	benthic	moderately-motile
Luticola sp. A SWAMP EWT								benthic	moderately-motile
Martyana martyi (Héribaud) Round in Round, Crawford & Mann								benthic	non-motile
Mastogloia								benthic	moderately-motile
Mastogloia elliptica (Agardh) Cleve in Schmidt et al.					low	low	brackish	benthic	moderately-motile
Mastogloia grevillei W. Smith in Gregory			eutrophic				fresh-brackish	benthic	moderately-motile
Mastogloia smithii Thwaites in lit. ex W. Smith		beta-mesosaprobous			low	low	brackish	benthic	moderately-motile
Mayamaea agrestis (Hustedt) Lange-Bertalot					high	high	fresh-brackish	benthic	moderately-motile
Mayamaea atomus (Kützing) Lange-Bertalot	>75% DO saturation	alpha- meso/polysaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	moderately-motile
Mayamaea fossalis (Krasske) Lange-Bertalot								benthic	moderately-motile
Mayamaea fossalis var. obsidialis (Hustedt) Lange-Bertalot								benthic	moderately-motile
Mayamaea muraliformis (Hustedt) Lange-Bertalot								benthic	moderately-motile
Melosira								benthic	non-motile
Melosira varians Agardh	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)		high	fresh-brackish	benthic	non-motile
Meridion circulare (Greville) Agardh	>75% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Meridion circulare var. constrictum (Ralfs) Van Heurck	>75% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N		high	fresh-brackish	benthic	non-motile
Microcostatus krasskei (Hustedt) Johansen & Sray	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Muelleria terrestris (Petersen) Spaulding & Stoermer								benthic	highly-motile
Navicula								benthic	moderately-motile
Navicula absoluta Hustedt	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Navicula angusta Grunow	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Navicula arenaria Donkin								benthic	moderately-motile
Navicula arvensis Hustedt								benthic	moderately-motile
Navicula aurora Sovereign								benthic	moderately-motile
Navicula capitatoradiata Germain	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Navicula cari Ehrenberg	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-low organic N		high	fresh-brackish	benthic	moderately-motile
Navicula cincta (Ehrenberg) Ralfs in Pritchard	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		fresh-brackish	benthic	moderately-motile
Navicula concentrica Carter & Bailey-Watts			oligotrophic				freshwater	benthic	moderately-motile
Navicula convexa W. Smith								benthic	moderately-motile
Navicula cryptocephala Kützing	>50% DO saturation	alpha-mesosaprobous	indifferent	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Navicula cryptotenella Lange-Bertalot in Krammer & Lange-Bertalot		beta-mesosaprobous	indifferent		high	high	fresh-brackish	benthic	moderately-motile
Navicula cryptotenelloides Lange-Bertalot		·						benthic	moderately-motile
Navicula detenta Hustedt								benthic	moderately-motile
Navicula difficillima Hustedt	nearly 100% DO saturation		oligotrophic- mesotrophic				freshwater	benthic	moderately-motile
Navicula digitoradiata (Gregory) Ralfs in Pritchard								benthic	moderately-motile
Navicula duerrenbergiana Hustedt in Schmidt et al.					low	low		benthic	moderately-motile
Navicula eidrigiana Carter								benthic	moderately-motile
Navicula elginensis var. cuneata (M. Moller ex Foged) Lange-Bertalot in Krammer & Lange-Bertalot	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Navicula erifuga Lange-Bertalot in Krammer & Lange-Bertalot			eutrophic		high	high	brackish- freshwater	benthic	moderately-motile
Navicula gerloffii Schimanski								benthic	moderately-motile
Navicula gottlandica Grunow in Van Heurck								benthic	moderately-motile
Navicula gregaria Donkin	>30% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	moderately-motile
Navicula harderi Hustedt in Brendemuhl				l v v v		high	freshwater	benthic	moderately-motile
Navicula hasta Pantocsek						low		benthic	moderately-motile
Navicula incertata Lange-Bertalot in Krammer & Lange-Bertalot								benthic	moderately-motile
Navicula ingenua Hustedt					high	high		benthic	moderately-motile
Navicula kotschyi Grunow	nearly 100% DO saturation	oligosaprobous					fresh-brackish	benthic	moderately-motile
Navicula lanceolata (Agardh) Kützing	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	moderately-motile
Navicula leptostriata Jørgensen	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Navicula libonensis Schoeman			···· · · · · · ·					benthic	moderately-motile
Navicula limata Hustedt	Ī							benthic	moderately-motile
Navicula longa (Gregory) Ralfs in Pritchard	Ī							benthic	moderately-motile
Navicula margalithii Lange-Bertalot in Krammer & Lange-Bertalot	1						fresh-brackish	benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Navicula medioconvexa Hustedt			-		high	high	freshwater	benthic	moderately-motile
Navicula menisculus Schumann	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	moderately-motile
Navicula meniscus Schumann			eutrophic				brackish- freshwater	benthic	moderately-motile
Navicula modica Hustedt		oligosaprobous					freshwater	benthic	moderately-motile
Navicula normaloides Cholnoky								benthic	moderately-motile
Navicula oblonga (Kützing) Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Navicula oppugnata Hustedt		oligosaprobous					fresh-brackish	benthic	moderately-motile
Navicula peregrina (Ehrenberg) Kützing			eutrophic		high	high	brackish	benthic	moderately-motile
Navicula perminuta Grunow in Van Heurck					low	low		benthic	moderately-motile
Navicula phyllepta Kützing								benthic	moderately-motile
Navicula phylleptosoma H. Lange-Bertalot in H. Lange-Bertalot & S.I. Genkal								benthic	moderately-motile
Navicula pseudoarvensis Hustedt							fresh-brackish	benthic	moderately-motile
Navicula pseudolanceolata Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Navicula pseudoventralis Hustedt in Schmidt et al.	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N		high	fresh-brackish	benthic	moderately-motile
Navicula radiosa Kützing	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	moderately-motile
Navicula radiosa var. tenella (Brébisson ex Kützing) Van Heurck								benthic	moderately-motile
Navicula recens (Lange-Bertalot) Lange-Bertalot in Krammer & Lange-Bertalot		alpha-mesosaprobous	eutrophic		high	high	brackish- freshwater	benthic	moderately-motile
Navicula reinhardtii (Grunow) Grunow	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Navicula rhynchocephala Kützing	>30% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	low		fresh-brackish	benthic	moderately-motile
Navicula rostellata Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Navicula salinarum Grunow	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish	benthic	moderately-motile
Navicula salinicola Hustedt								benthic	moderately-motile
Navicula schadei Krasske	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Navicula schmassmanni Hustedt								benthic	moderately-motile
Navicula schroeteri Meister	nearly 100% DO saturation	beta-mesosaprobous	eutrophic				brackish- freshwater	benthic	moderately-motile
Navicula sp. 1 SCCWRP JPK								benthic	moderately-motile
Navicula sp. 1 SCCWRP MCB								benthic	moderately-motile
Navicula sp. 10 SCCWRP BSL								benthic	moderately-motile
Navicula sp. 11 SCCWRP BSL								benthic	moderately-motile
Navicula sp. 15 SCCWRP BSL								benthic	moderately-motile
Navicula sp. 16 SCCWRP BSL								benthic	moderately-motile
Navicula sp. 2 SWAMP JPK								benthic	moderately-motile
Navicula sp. 200 JPK								benthic	moderately-motile
Navicula sp. 201 JPK								benthic	moderately-motile
Navicula sp. 22 EPA EWT								benthic	moderately-motile
Navicula sp. 3 SCCWRP BSL								benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Navicula sp. 3 SCCWRP MCB								benthic	moderately-moti
Navicula sp. 3 SWAMP JPK								benthic	moderately-moti
Navicula sp. 4 SCCWRP BSL								benthic	moderately-moti
Navicula sp. 4 SCCWRP JPK								benthic	moderately-moti
Navicula sp. 5 SCCWRP BSL								benthic	moderately-moti
Navicula sp. 5 SCCWRP JPK								benthic	moderately-moti
Navicula sp. 6 SCCWRP BSL								benthic	moderately-moti
Navicula sp. 6 SCCWRP JPK								benthic	moderately-moti
Navicula sp. 8 SCCWRP BSL								benthic	moderately-mot
Navicula sp. 9 SCCWRP BSL								benthic	moderately-moti
Navicula sp. A SWAMP BSL								benthic	moderately-mot
Navicula sp. A SWAMP EWT								benthic	moderately-mot
Navicula sp. A SWAMP JPK								benthic	moderately-mot
Navicula sp. B SWAMP BSL								benthic	moderately-mot
Navicula sp. B SWAMP EWT								benthic	moderately-mot
Navicula sp. B SWAMP JPK								benthic	moderately-mot
Navicula sp. C SWAMP BSL								benthic	moderately-mot
Navicula sp. C SWAMP EWT								benthic	moderately-mot
Navicula sp. D SWAMP BSL								benthic	moderately-mot
Navicula sp. D SWAMP EWT								benthic	moderately-mot
Navicula sp. D SWAMP JPK								benthic	moderately-mot
Navicula sp. E SWAMP BSL								benthic	moderately-mot
Navicula sp. E SWAMP EWT								benthic	moderately-mot
Navicula splendicula VanLandingham								benthic	moderately-mot
Navicula stankovici Hustedt								benthic	moderately-mot
Navicula striolata (Grunow) Lange-Bertalot in Krammer & Lange-Bertalot								benthic	moderately-mot
Navicula subinflatoides Hustedt								benthic	moderately-mot
Navicula subminalis Hustedt						high		benthic	moderately-mot
Navicula subritynchocephala Hustedt						nign		benthic	,
Navicula subrotundata Hustedt		oligosaprobous					fresh-brackish	benthic	moderately-mot moderately-mot
	nearly 100% DO			N-autotrophic-low	1.1				,
Navicula tenelloides Hustedt	saturation	oligosaprobous	eutrophic	organic N	high		fresh-brackish	benthic	moderately-mot
Navicula tripunctata (Müller) Bory	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-mot
Navicula trivialis Lange-Bertalot	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	moderately-mot
Navicula upsaliensis (Grunow in Van Heurck) M. Peragallo		beta-mesosaprobous					fresh-brackish	benthic	moderately-mot
Navicula veneta Kützing	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	moderately-mot
Navicula ventralis Krasske				-				benthic	moderately-mot
Navicula viridula (Kützing) Ehrenberg	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	moderately-mot
Navicula viridula var. linearis Hustedt				Ť		l .		benthic	moderately-mot
Navicula viridulacalcis subsp. viridulacalcis Rumrich & Lange-Bertalot in U. Rumrich, H. Lange-Bertalot, & M. Rumrich								benthic	moderately-mot
Navicula vulpina Kützing				1	1	1		benthic	moderately-mot
Navicula walkeri Sovereign	1							benthic	moderately-mot
Neidium								benthic	moderately-mot
Neidium affine (Ehrenberg) Pfitzer	nearly 100% DO	oligosaprobous	meso/eutrophic	N-autotrophic-low			fresh-brackish	benthic	moderately-mot

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Neidium ampliatum (Ehrenberg) Krammer in Krammer & Lange-Bertalot			oligotrophic- mesotrophic				fresh-brackish	benthic	moderately-motile
Neidium binodeforme Krammer in Krammer & Lange-Bertalot								benthic	moderately-motile
Neidium binodis (Ehrenberg) Hustedt	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Neidium dubium (Ehrenberg) Cleve	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	moderately-motile
Neidium sp. A SWAMP BSL								benthic	moderately-motile
Neidium sp. A SWAMP EWT								benthic	moderately-motile
Nitzschia								benthic	highly-motile
Nitzschia acicularioides Hustedt								benthic	highly-motile
Nitzschia acicularis (Kützing) Smith	>30% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	highly-motile
Nitzschia acidoclinata Lange-Bertalot	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N			freshwater	benthic	highly-motile
Nitzschia agnita Hustedt					high		brackish	benthic	highly-motile
Nitzschia alpina Hustedt	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	highly-motile
Nitzschia amphibia Grunow	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	benthic	highly-motile
Nitzschia amphibioides Hustedt								benthic	highly-motile
Nitzschia angustatula Lange-Bertalot in Lange-Bertalot & Krammer			eutrophic			low	brackish- freshwater	benthic	highly-motile
Nitzschia archibaldii Lange-Bertalot	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	highly-motile
Nitzschia aurariae Cholnoky	>30% DO saturation	alpha-mesosaprobous		N-heterotrophic- high organic N (facultative)			brackish	benthic	highly-motile
Nitzschia austriaca Hustedt	>50% DO saturation	beta-mesosaprobous	eutrophic	N-heterotrophic- high organic N (obligate)	high	high	brackish- freshwater	benthic	highly-motile
Nitzschia bacilliformis Hustedt								benthic	highly-motile
Nitzschia bacillum Hustedt							fresh-brackish	benthic	highly-motile
Nitzschia bryophila (Hustedt) Hustedt	nearly 100% DO saturation	oligosaprobous		N-autotrophic-low organic N			freshwater	benthic	highly-motile
Nitzschia calica Grunow in Cleve & Grunow								benthic	highly-motile
Nitzschia capitellata Hustedt in Schmidt et al.		polysaprobous	polytrophic (hypereutrophic)		high	high	brackish	benthic	highly-motile
Nitzschia clausii Hantzsch	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish	benthic	highly-motile
Nitzschia communis Rabenhorst	>50% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (obligate)			fresh-brackish	benthic	highly-motile
Nitzschia commutata Grunow in Cleve & Grunow							brackish	benthic	highly-motile
Nitzschia commutatoides Lange-Bertalot in Lange-Bertalot & Krammer								benthic	highly-motile
Nitzschia compressa var. vexans (Grunow) Lange-Bertalot in Lange-Bertalot & Krammer								benthic	highly-motile
Nitzschia desertorum Hustedt								benthic	highly-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Nitzschia dissipata (Kützing) Grunow	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Nitzschia dubia W. Smith	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	highly-motile
Nitzschia elegantula Grunow in Van Heurck								benthic	highly-motile
Nitzschia fasciculata (Grunow) Grunow in Van Heurck							brackish	benthic	highly-motile
Nitzschia filiformis (W. Smith) Van Heurck	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	brackish	benthic	highly-motile
Nitzschia flexa Schumann		oligosaprobous					fresh-brackish	benthic	highly-motile
Nitzschia flexoides Geitler								benthic	highly-motile
Nitzschia fonticola (Grunow) Grunow in Van Heurck	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Nitzschia frustulum (Kützing) Grunow in Cleve & Grunow	>50% DO saturation	beta-mesosaprobous	eutrophic	N-heterotrophic- high organic N (obligate)	high	high	brackish- freshwater	benthic	highly-motile
Nitzschia gracilis Hantzsch in Rabenhorst	>75% DO saturation	beta-mesosaprobous	mesotrophic		high	high	freshwater	benthic	highly-motile
Nitzschia hantzschiana Rabenhorst	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N		high	freshwater	benthic	highly-motile
Nitzschia heufleriana Grunow		beta-mesosaprobous					fresh-brackish	benthic	highly-motile
Nitzschia incognita Legler & Krasske					low	low	brackish	benthic	highly-motile
Nitzschia inconspicua Grunow	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	brackish- freshwater	benthic	highly-motile
Nitzschia intermedia Hantzsch ex Cleve & Grunow		beta-mesosaprobous	eutrophic		high	high	fresh-brackish	benthic	highly-motile
Nitzschia kotschii (Grunow) F.W. Mills								benthic	highly-motile
Nitzschia lacuum Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	highly-motile
Nitzschia lanceolata W. Smith			eutrophic				brackish	benthic	highly-motile
Nitzschia liebethruthii Rabenhorst					low	low		benthic	highly-motile
Nitzschia linearis (Agardh) W. Smith	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Nitzschia littorea Grunow in Van Heurck								benthic	highly-motile
Nitzschia microcephala Grunow	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	highly-motile
Nitzschia minuta Bleisch								benthic	highly-motile
Nitzschia nana Grunow in Van Heurck	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic				fresh-brackish	benthic	highly-motile
Nitzschia normanii Grunow ex Van Heurck								benthic	highly-motile
Nitzschia obtusa Smith						high		benthic	highly-motile
Nitzschia ovalis Arnott in Cleve & Grunow								benthic	highly-motile
Nitzschia palea (Kützing) W. Smith	>30% DO saturation	polysaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	highly-motile
Nitzschia palea var. tenuirostris Grunow in Van Heurck							fresh-brackish	benthic	highly-motile
Nitzschia paleacea Grunow in Van Heurck	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (obligate)			fresh-brackish	benthic	highly-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Nitzschia pellucida Grunow in Cleve & Grunow	•		•				,	benthic	highly-motile
Nitzschia perminuta (Grunow in Van Heurck) M. Peragallo	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	high	high	fresh-brackish	benthic	highly-motile
Nitzschia perpusilla Rabenhorst			•					benthic	highly-motile
Nitzschia perspicua Cholnoky								benthic	highly-motile
Nitzschia pseudofonticola Hustedt			eutrophic				fresh-brackish	benthic	highly-motile
Nitzschia pumila Hustedt								benthic	highly-motile
Nitzschia pura Hustedt		oligosaprobous					fresh-brackish	benthic	highly-motile
Nitzschia pusilla Grunow	>75% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Nitzschia recta Hantzsch ex Rabenhorst	>75% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	highly-motile
Nitzschia reversa Smith					high			benthic	highly-motile
Nitzschia romana Grunow in Van Heurck								benthic	highly-motile
Nitzschia rosenstockii Lange-Bertalot							fresh-brackish	benthic	highly-motile
Nitzschia scalpelliformis Grunow in Cleve & Grunow								benthic	highly-motile
Nitzschia sigma (Kützing) W. Smith	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		brackish	benthic	highly-motile
Nitzschia sigmoidea (Nitzsch) W. Smith	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	highly-motile
Nitzschia siliqua Archibald								benthic	highly-motile
Nitzschia sinuata (Thwaites in W. Smith) Grunow in Cleve & Grunow	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	highly-motile
Nitzschia sinuata var. delognei (Grunow in Van Heurck) Lange-Bertalot	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low		fresh-brackish	benthic	highly-motile
Nitzschia sinuata var. tabellaria (Grunow) Grunow in Van Heurck	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	highly-motile
Nitzschia solita Hustedt			eutrophic		high	high	brackish- freshwater	benthic	highly-motile
Nitzschia sp. 3 SCCWRP JPK								benthic	highly-motile
Nitzschia sp. 4 SCCWRP JPK								benthic	highly-motile
Nitzschia sp. 5 SCCWRP JPK								benthic	highly-motile
Nitzschia sp. 6 SCCWRP BSL								benthic	highly-motile
Nitzschia sp. 7 SCCWRP BSL								benthic	highly-motile
Nitzschia sp. A SWAMP EWT								benthic	highly-motile
Nitzschia sp. A SWAMP JPK								benthic	highly-motile
Nitzschia sp. B SWAMP EWT								benthic	highly-motile
Nitzschia subacicularis Hustedt in Schmidt et al.	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-low organic N			fresh-brackish	benthic	highly-motile
Nitzschia supralitorea Lange-Bertalot	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-heterotrophic- high organic N (facultative)		high	fresh-brackish	benthic	highly-motile
Nitzschia tubicola Grunow in Cleve & Grunow								benthic	highly-motile
Nitzschia umbonata (Ehrenberg) Lange-Bertalot	about 10% DO saturation or less	polysaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (obligate)	high	high	fresh-brackish	benthic	highly-motile
Nitzschia valdecostata Lange-Bertalot & Simonsen								benthic	highly-motile
Nitzschia valdestriata Aleem & Hustedt	nearly 100% DO saturation							benthic	highly-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Nitzschia vermicularis (Kützing) Hantzsch in Rabenhorst	nearly 100% DO saturation	beta-mesosaprobous	indifferent				fresh-brackish	benthic	highly-motile
Nitzschia vitrea Norman			eutrophic		low		brackish	benthic	highly-motile
Nupela								benthic	non-motile
Nupela silvahercynia (Lange-Bertalot) Lange-Bertalot in Lange-Bertalot & Metzeltin								benthic	non-motile
Opephora								benthic	non-motile
Opephora americana M. Peragallo in Tempère & Peragallo								benthic	non-motile
Opephora marina (Gregory) Petit								benthic	non-motile
Opephora olsenii Møller								benthic	non-motile
Opephora pacifica (Grunow) Petit								benthic	non-motile
Orthoseira roeseana (Rabenhorst) O'Meara								benthic	non-motile
Parlibellus protracta (Grunow) Witkowski, Lange-Bertalot & Metzeltin	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	moderately-motile
Pinnularia								benthic	moderately-motile
Pinnularia acrosphaeria (Brébisson) W. Smith	>50% DO saturation	oligosaprobous	oligotrophic- mesotrophic				freshwater	benthic	moderately-motile
Pinnularia appendiculata (Agardh) Cleve	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Pinnularia biceps Gregory								benthic	moderately-motile
Pinnularia borealis Ehrenberg	nearly 100% DO saturation	beta-mesosaprobous	oligotrophic- mesotrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Pinnularia borealis var. rectangularis Carlson								benthic	moderately-motile
Pinnularia divergens W. Smith		oligosaprobous	oligotrophic				freshwater	benthic	moderately-motile
Pinnularia divergentissima (Grunow in Van Heurck) Cleve			oligotrophic				freshwater	benthic	moderately-motile
Pinnularia gibba (Ehrenberg) Ehrenberg	>50% DO saturation	alpha-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Pinnularia hemiptera (Kützing) Rabenhorst	nearly 100% DO saturation	oligosaprobous	oligotrophic				freshwater	benthic	moderately-motile
Pinnularia interrupta Smith	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Pinnularia legumen Ehrenberg		oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Pinnularia maior (Kützing) Rabenhorst	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Pinnularia microstauron (Ehrenberg) Cleve	>50% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	low		fresh-brackish	benthic	moderately-motile
Pinnularia sp. A SWAMP EWT								benthic	moderately-motile
Pinnularia subrostrata (A. Cleve) Cleve-Euler								benthic	moderately-motile
Pinnularia viridis (Nitzsch) Ehrenberg	>50% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Placoneis				-				benthic	moderately-motile
Placoneis clementioides (Hustedt) Cox								benthic	moderately-motile
Placoneis clementis (Grunow) Cox	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	moderately-motile
Placoneis elginensis (Gregory) Cox	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Placoneis gastrum (Ehrenberg) Mereschkowsky	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Placoneis hambergii (Hustedt) K. Bruder in Bruder & Medlin	nearly 100% DO saturation					low		benthic	moderately-motil
Placoneis placentula (Ehrenberg) Mereschkowsky	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N		low	fresh-brackish	benthic	moderately-moti
Placoneis sp. A SWAMP EWT								benthic	moderately-moti
Plagiotropis								benthic	moderately-moti
Plagiotropis lepidoptera (Gregory) Kuntze								benthic	moderately-moti
Planothidium daui (Foged) Lange-Bertalot	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			fresh-brackish	benthic	non-motile
Planothidium delicatulum (Kützing) Round & Bukhtiyarova					high		brackish	benthic	non-motile
Planothidium dubium (Grunow) Round & Bukhtiyarova								benthic	non-motile
Planothidium engelbrechtii (Cholnoky) Round & Bukhtiyarova							brackish	benthic	non-motile
Planothidium granum (Hohn & Hellerman) Lange-Bertalot	>75% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Planothidium haynaldii (Schaarschmidt) Lange-Bertalot	>50% DO saturation	alpha-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Planothidium lanceolatum (Brébisson ex Kützing) Lange-Bertalot	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Planothidium lanceolatum var. omissum (C.W. Reimer) N.A. Andresen, E.F. Stoermer, & R.G. Kreis, Jr.								benthic	non-motile
Planothidium peragallii (Brun & Héribaud) Round & Bukhtiyarova	nearly 100% DO saturation	beta-mesosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Planothidium pericavum (Carter) H. Lange-Bertalot								benthic	non-motile
Planothidium pungens (Cleve-Euler) H. Lange-Bertalot								benthic	non-motile
Planothidium robustum (Hustedt) H. Lange-Bertalot					high	high		benthic	non-motile
Planothidium rostratum (Østrup) Lange-Bertalot	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		fresh-brackish	benthic	non-motile
Platessa conspicua (A. Mayer) H. Lange-Bertalot in Krammer & Lange-Bertalot	>75% DO saturation	oligosaprobous	indifferent	N-autotrophic-low organic N	high	high	freshwater	benthic	non-motile
Pleurosigma								benthic	highly-motile
Pleurosigma elongatum W. Smith					high			benthic	highly-motile
Pleurosigma salinarum (Grunow) Grunow in Cleve & Grunow		oligosaprobous			high	high	brackish	benthic	highly-motile
Pleurosigma sp. 1 SCCWRP JPK								benthic	highly-motile
Pleurosira laevis (Ehrenberg) Compère		oligosaprobous	eutrophic		high	high	brackish	benthic	non-motile
Prestauroneis integra (W. Smith) Bruder in Bruder & Medlin	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	non-motile
Proschkinia bulnheimii (Grunow) Karajeva								benthic	moderately-mot
Psammodictyon constrictum (Gregory) Mann in Round, Crawford & Mann	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish	benthic	highly-motile
Psammothidium abundans fo. rosenstockii (Lange-Bertalot in Lange-Bertalot & Krammer) Bukhtiyarova in Round & Bukhtiyarova								benthic	non-motile
Psammothidium bioretii (Germain) Bukhtiyarova & Round	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N		high	fresh-brackish	benthic	non-motile
Psammothidium chlidanos (Hohn & Hellerman) H. Lange-Bertalot								benthic	non-motile
Psammothidium curtissimum (J.R. Carter) Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector								benthic	non-motile
Psammothidium daonense (Lange-Bertalot in Lange-Bertalot & Krammer) H. Lange-Bertalot								benthic	non-motile
Psammothidium didymum (Hustedt) Bukhtiyarova & Round	1			1				benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Psammothidium levanderi (Hustedt) Bukhtiyarova & Round	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	non-motile
Psammothidium marginulatum (Grunow) Bukhtiyarova & Round	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N		low	freshwater	benthic	non-motile
Psammothidium rechtensis (Leclercq) H. Lange-Bertalot								benthic	non-motile
Psammothidium sacculum (Carter) Bukhtiyarova in Bukhtiyarova & Round								benthic	non-motile
Psammothidium subatomoides (Hustedt) Bukhtiyarova & Round	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N		high	freshwater	benthic	non-motile
Pseudostaurosira brevistriata (Grunow in Van Heurck) Williams & Round	nearly 100% DO saturation	oligosaprobous	indifferent	N-autotrophic-low organic N	high	low	fresh-brackish	benthic	non-motile
Pseudostaurosira elliptica (Schumann) Edlund, Morales & Spaulding	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	non-motile
Pseudostaurosira parasitica (Smith) Morales	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	high	high	fresh-brackish	benthic	non-motile
Pseudostaurosira parasitica var. subconstricta (Grunow) Morales								benthic	non-motile
Pseudostaurosira pseudoconstruens (Marciniak) Williams & Round						L		benthic	non-motile
Pseudostaurosira subsalina (Hustedt) Morales	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	non-motile
Puncticulata bodanica (Grunow in Schneider) Håkansson	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	planktonic	non-motile
Reimeria sinuata (Gregory) Kociolek & Stoermer	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	non-motile
Reimeria uniseriata Sala, Guerrero & Ferrario								benthic	non-motile
Rhoicosphenia								benthic	non-motile
Rhoicosphenia abbreviata (Agardh) Lange-Bertalot	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	non-motile
Rhoicosphenia sp. 1 SCCWRP EWT								benthic	non-motile
Rhoicosphenia sp. 1 SCCWRP JPK								benthic	non-motile
Rhoicosphenia sp. 2 SCCWRP EWT								benthic	non-motile
Rhoicosphenia sp. 3 SWAMP JPK								benthic	non-motile
Rhoicosphenia sp. A SWAMP JPK								benthic	non-motile
Rhoicosphenia sp. B SWAMP EWT								benthic	non-motile
Rhoicosphenia sp. C SWAMP EWT								benthic	non-motile
Rhopalodia								benthic	moderately-motile
Rhopalodia acuminata Krammer in Lange-Bertalot & Krammer								benthic	moderately-motile
Rhopalodia brebissonii Krammer in Lange-Bertalot & Krammer					low	low	brackish- freshwater	benthic	moderately-motile
Rhopalodia constricta (W. Smith) Krammer in Lange-Bertalot & Krammer								benthic	moderately-motile
Rhopalodia gibba (Ehrenberg) Müller	>50% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-low organic N	high	low	fresh-brackish	benthic	moderately-motile
Rhopalodia gibba var. minuta Krammer in Lange-Bertalot & Krammer								benthic	moderately-motile
Rhopalodia gibberula (Ehrenberg) Müller	nearly 100% DO saturation				high	low	brackish- freshwater	benthic	moderately-motile
Rhopalodia musculus (Kützing) Müller		oligosaprobous					brackish	benthic	moderately-motile
Rhopalodia operculata (C. A. Agardh) Håkansson								benthic	moderately-motile
Rhopalodia rupestris (W. Smith) Krammer in Lange-Bertalot & Krammer								benthic	moderately-motile
Rossithidium nodosum (A. Cleve) Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector								benthic	non-motile
Rossithidium pusillum (Grunow) Round & Bukhtiyarova	nearly 100% DO	oligosaprobous	oligotrophic	N-autotrophic-low			fresh-brackish	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Sellaphora								benthic	moderately-motile
Sellaphora bacillum (Ehrenberg) Mann	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	moderately-motile
Sellaphora disjuncta (Hustedt) Mann	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	moderately-motile
Sellaphora hustedtii (Krasske) H. Lange-Bertalot & M. Werum in Werum & Lange-Bertalot	nearly 100% DO saturation				high		freshwater	benthic	moderately-motile
Sellaphora joubaudii (Germain) Aboal in Aboal, Alvarez-Cobelas, Cambra & Ector		beta-mesosaprobous					fresh-brackish	benthic	moderately-motile
Sellaphora laevissima (Kützing) Mann	nearly 100% DO saturation	oligosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	freshwater	benthic	moderately-motile
Sellaphora mutata (Krasske) Lange-Bertalot in Lange-Bertalot, Kulbs, Lauser, Norpel-Schempp & Willmann		beta-mesosaprobous	oligotrophic- mesotrophic		high	high	fresh-brackish	benthic	moderately-motile
Sellaphora nyassensis (Müller) Mann								benthic	moderately-motile
Sellaphora pseudopupula (Krasske) Lange-Bertalot in Lange-Bertalot, Kulbs, Lauser, Norpel-Schempp & Willmann								benthic	moderately-motile
Sellaphora pupula (Kützing) Mereschkowsky	>50% DO saturation	alpha-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	moderately-motile
Sellaphora seminulum (Grunow) Mann	>30% DO saturation	alpha- meso/polysaprobous	eutrophic	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	benthic	moderately-motile
Sellaphora sp. 1 SCCWRP JPK								benthic	moderately-motile
Sellaphora stroemii (Hustedt) Kobayasi in Mayama, Idei, Osada & Nagumo								benthic	moderately-motile
Seminavis pusilla (Grunow) E.J. Cox & G. Reid								benthic	moderately-motile
Simonsenia delognei (Grunow) Lange-Bertalot	nearly 100% DO saturation	alpha-mesosaprobous	eutrophic		high		brackish- freshwater	benthic	highly-motile
Stauroneis								benthic	moderately-motile
Stauroneis anceps Ehrenberg	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Stauroneis gracilis Ehrenberg								benthic	moderately-motile
Stauroneis kriegeri Patrick	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Stauroneis obtusa Lagerstedt	nearly 100% DO saturation	oligosaprobous	oligotrophic	N-autotrophic-low organic N			freshwater	benthic	moderately-motile
Stauroneis phoenicenteron (Nitzsch) Ehrenberg	>50% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Stauroneis smithii Grunow	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N			fresh-brackish	benthic	moderately-motile
Stauroneis sp. A SWAMP EWT								benthic	moderately-motile
Stauroneis sp. B SWAMP EWT								benthic	moderately-motile
Stauroneis tackei (Hustedt) Krammer & Lange-Bertalot							fresh-brackish	benthic	moderately-motile
Stauroneis undata Hustedt								benthic	moderately-motile
Stauroneis wislouchii Poretzky & Anissimova								benthic	moderately-motile
Staurosira								benthic	non-motile
Staurosira bidens (Heiberg) Grunow								benthic	non-motile
Staurosira construens Ehrenberg	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N			fresh-brackish	benthic	non-motile
Staurosira construens var. binodis (Ehrenberg) Hamilton in Hamilton, Poulin, Charles & Angell	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Staurosira construens var. pumila (Grunow) Kingston	·	• •	•					benthic	non-motile
Staurosira construens var. venter (Ehrenberg) Hamilton in Hamilton, Poulin, Charles & Angell	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic	N-autotrophic-high organic N			fresh-brackish	benthic	non-motile
Staurosira punctiformis A. Witkowski, D. Metzeltin & H. Lange-Bertalot in A. Witkowski, H. Lange-Bertalot & D. Metzeltin								benthic	non-motile
Staurosira sp. 1 SCCWRP JPK								benthic	non-motile
Staurosirella lapponica (Grunow in Van Heurck) Williams & Round					low		fresh-brackish	benthic	non-motile
Staurosirella leptostauron (Ehrenberg) Williams & Round	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic	N-autotrophic-low organic N	low	low	fresh-brackish	benthic	non-motile
Staurosirella pinnata (Ehrenberg) Williams & Round	nearly 100% DO saturation	beta-mesosaprobous	indifferent	N-autotrophic-high organic N	high	low	fresh-brackish	benthic	non-motile
Staurosirella pinnata var. intercedens (Grunow in Van Heurck) Hamilton in Hamilton, et al.								benthic	non-motile
Stephanodiscus								planktonic	non-motile
Stephanodiscus hantzschii Grunow in Cleve & Grunow	>30% DO saturation	alpha- meso/polysaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (facultative)	high	high	fresh-brackish	planktonic	non-motile
Stephanodiscus medius Håkansson								planktonic	non-motile
Stephanodiscus minutulus (Kützing) Cleve & Möller	>50% DO saturation	alpha-mesosaprobous	polytrophic (hypereutrophic)	N-autotrophic-high organic N		high	fresh-brackish	planktonic	non-motile
Stephanodiscus sp. 1 SCCWRP JPK								planktonic	non-motile
Surirella								benthic	highly-motile
Surirella angusta Kützing	>75% DO saturation	beta-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	fresh-brackish	benthic	highly-motile
Surirella bifrons Ehrenberg		oligosaprobous	eutrophic				fresh-brackish	benthic	highly-motile
Surirella biseriata Brébisson in Brébisson & Godey		beta-mesosaprobous	eutrophic				fresh-brackish	benthic	highly-motile
Surirella brebissonii Krammer & Lange-Bertalot					high	high	brackish- freshwater	benthic	highly-motile
Surirella brebissonii var. kuetzingii Krammer & Lange-Bertalot	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	fresh-brackish	benthic	highly-motile
Surirella brightwellii W. Smith								benthic	highly-motile
Surirella elegans Ehrenberg	nearly 100% DO saturation	oligosaprobous	mesotrophic- eutrophic				fresh-brackish	benthic	highly-motile
Surirella linearis var. constricta Grunow								benthic	highly-motile
Surirella minuta Brébisson	>50% DO saturation	alpha-mesosaprobous	eutrophic		high	high	fresh-brackish	benthic	highly-motile
Surirella ovalis Brébisson	>30% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	low	low	brackish	benthic	highly-motile
Surirella ovata Kützing								benthic	highly-motile
Surirella robusta Ehrenberg	>75% DO saturation	beta-mesosaprobous	indifferent				fresh-brackish	benthic	highly-motile
Surirella sp. A SWAMP EWT								benthic	highly-motile
Surirella splendida (Ehrenberg) Kützing	>75% DO saturation	beta-mesosaprobous	mesotrophic- eutrophic			low	fresh-brackish	benthic	highly-motile
Surirella striatula Turpin			eutrophic				brackish	benthic	highly-motile
Surirella tenera Gregory	>75% DO saturation	beta-mesosaprobous	eutrophic		low		fresh-brackish	benthic	highly-motile
Synedra								benthic	non-motile
Synedra acus Kützing	>75% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	non-motile
Synedra cyclopum Brutschy								benthic	non-motile
Synedra delicatissima W. Smith			mesotrophic	l	low		fresh-brackish	benthic	non-motile

Species	Oxygen requirements	Saprobity	Trophic state	Nitrogen uptake metabolism	TP indicator classification	TN indicator classification	Salinity	Habit	Motility
Synedra gaillonii (Bory; Turpin) Ehrenberg	•	• •	•					benthic	non-motile
Synedra goulardi Brébisson ex Cleve & Grunow								benthic	non-motile
Synedra mazamaensis Sovereign					low	low		benthic	non-motile
Synedra rumpens Kützing			oligotrophic- mesotrophic		low		fresh-brackish	benthic	non-motile
Synedra tenera W. Smith	nearly 100% DO saturation	oligosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low		freshwater	benthic	non-motile
Synedra ulna (Nitzsch) Ehrenberg	>50% DO saturation	alpha- meso/polysaprobous	indifferent	N-autotrophic-high organic N	low	low	fresh-brackish	benthic	non-motile
Synedra ulna f. contracta Hustedt								benthic	non-motile
Tabellaria fenestrata (Lyngbye) Kützing	nearly 100% DO saturation	beta-mesosaprobous	oligotrophic- mesotrophic	N-autotrophic-low organic N	low		freshwater	planktonic	non-motile
Tabellaria flocculosa (Roth) Kützing	nearly 100% DO saturation	beta-mesosaprobous	mesotrophic	N-autotrophic-low organic N	low	low	freshwater	planktonic	non-motile
Tabellaria ventricosa Kützing								planktonic	non-motile
Tabularia								benthic	non-motile
Tabularia fasciculata (Agardh) Williams & Round	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N		high	brackish	benthic	non-motile
Tabularia investiens (W. Smith) Williams & Round								benthic	non-motile
Tabularia tabulata (Agardh) Snoeijs						high		benthic	non-motile
Terpsinoë musica Ehrenberg							brackish- freshwater	benthic	non-motile
Thalassionema nitzschioides (Grunow) Van Heurck								planktonic	non-motile
Thalassiosira								planktonic	non-motile
Thalassiosira lacustris (Grunow) Hasle								planktonic	non-motile
Thalassiosira levanderi Van Goor								planktonic	non-motile
Thalassiosira pseudonana Hasle & Heimdal	>50% DO saturation	alpha-mesosaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (facultative)		high	brackish- freshwater	planktonic	non-motile
Thalassiosira sp. 1 SCCWRP JPK								planktonic	non-motile
Thalassiosira sp. 2 SWAMP JPK								planktonic	non-motile
Thalassiosira sp. 3 SWAMP JPK								planktonic	non-motile
Thalassiosira weissflogii (Grunow) Fryxell & Hasle	>50% DO saturation	alpha-mesosaprobous	polytrophic (hypereutrophic)	N-heterotrophic- high organic N (facultative)	high	high	brackish- freshwater	planktonic	non-motile
Tryblionella acuminata W. Smith								benthic	highly-motile
Tryblionella angustata W. Smith								benthic	highly-motile
Tryblionella calida (Grunow in Cleve & Grunow) Mann in Round, Crawford & Mann			eutrophic		high	high	brackish- freshwater	benthic	highly-motile
Tryblionella constricta (Kützing) Poulin in Poulin, Berard-Therriault, Cardinal & Hamilton	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish	benthic	highly-motile
Tryblionella debilis Arnott ex O'Meara	nearly 100% DO saturation	alpha-mesosaprobous		N-autotrophic-high organic N			fresh-brackish	benthic	highly-motile
Tryblionella gracilis W. Smith	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N			brackish- freshwater	benthic	highly-motile
Tryblionella hungarica (Grunow) Frenguelli	>30% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high	high	brackish- freshwater	benthic	highly-motile
Tryblionella levidensis W. Smith	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		brackish- freshwater	benthic	highly-motile

	Oxygen			Nitrogen uptake	TP indicator	TN indicator			
Species	requirements	Saprobity	Trophic state	metabolism	classification	classification	Salinity	Habit	Motility
Tryblionella littoralis (Grunow in Cleve & Grunow) Mann in Round, Crawford & Mann	>50% DO saturation		eutrophic				brackish	benthic	highly-motile
Tryblionella salinarum (Grunow in Cleve & Grunow) Pelletan								benthic	highly-motile
Tryblionella scalaris (Ehrenberg) Siver & Hamilton			eutrophic				brackish- freshwater	benthic	highly-motile
Tryblionella sp. 1 SWAMP JPK								benthic	highly-motile
Tryblionella sp. A SWAMP JPK								benthic	highly-motile
Tryblionella victoriae Grunow	>50% DO saturation	alpha-mesosaprobous	eutrophic	N-autotrophic-high organic N	high		brackish- freshwater	benthic	highly-motile
Unidentified Achnanthaceae								benthic	non-motile
Unidentified Araphid									non-motile
Unidentified Centrales								planktonic	non-motile
Unidentified Cymbelloid								benthic	moderately-motile
Unidentified Fragilariaceae									non-motile
Unidentified Naviculaceae								benthic	moderately-motile
Unidentified Pennales									
Unidentified Pennales									
Unidentified Raphid								benthic	moderately-motile

¹ Based on indicators values for national data set, when available, or regional values as long as there was no conflict in indicator assignment among regions (Potapova and Charles (2007)).

[Type text]

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description	Spearman's rho¹ (all p values are < 0.01)	signal:noise
kept ("long list")	proportion requiring >50% DO saturation (d)	diatom	autecological guild	dissolved oxygen	proportion of valves	van Dam et al. (1994)	proportion of valves that require at least 50% dissolved oxygen saturation (sum 50+75+100)	-0.478	19.8
kept ("long list")	proportion requiring nearly 100% DO saturation (d)	diatom	autecological guild	dissolved oxygen	proportion of valves	van Dam et al. (1994)	proportion of valves that require nearly 100% dissolved oxygen saturation	-0.371	12.3
kept ("long list")	proportion halobiontic (d)	diatom	autecological guild	ionic strength/ salinity	proportion of valves	van Dam et al. (1994)	proportion of valves that are brackish-fresh+brackish (i.e., they have a tolerance of, or requirements for, dissolved salts)	-0.600	7.5
kept ("long list")	proportion poly- & eutrophic (d)	diatom	autecological guild	nutrients	proportion of valves	van Dam et al. (1994)	proportion of valves that are polytrophic+eutrophic	-0.450	16.5
kept ("long list")	proportion N heterotrophs (d)	diatom	autecological guild	organic pollution	proportion of valves	van Dam et al. (1994)	proportion of valves that are heterotrophs (includes both obligate and facultative heterotrophs)	-0.525	6.6
kept ("long list")	proportion oligo- & beta- mesosaprobic (d)	diatom	autecological guild	organic pollution	proportion of valves	van Dam et al. (1994)	proportion of valves that are oligosaprobous+(beta- mesosaprobous)	-0.324	13.1
kept ("long list")	proportion highly motile (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of valves that are highly motile	-0.377	4.6
kept ("long list")	proportion sediment tolerant (highly motile) (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of valves for which there is information that are highly motile + all planktonic	-0.437	11.2
kept ("long list")	proportion "non- reference" indicators (s, b)	soft	relationship to reference	reference	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of "non-Reference" sites	-0.391	5.6
kept ("long list")	proportion "non- reference" indicators (s, sp)	soft	relationship to reference	reference	relative species numbers	indicator species analysis	proportion of total species richness composed of indicators of "non-Reference" sites	-0.531	3.2
kept ("long list")	proportion A. minutissimum (d)	diatom	taxonomic group	A. minutissimum	proportion of valves		proportion of valves that are Achnanthidium minutissimum	-0.539	13.1

Appendix D: Metric definitions and screening results summary

[Type text]

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description	Spearman's rho (all p values are < 0.01)	signal:noise
kept ("long list")	proportion Chlorophyta (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of total micro+macro biovolume composed of Chlorophyta	-0.268	3.3
kept ("long list")	proportion of green algae belonging to CRUS (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of green algae (Chlorophyta+Charophyta) micro+macro biovolume composed of Cladophora glomerata, Rhizoclonium hieroglyphicum, Ulva flexuosa, and Stigeoclonium spp.	-0.395	23.4
kept ("long list")	proportion ZHR (s, b)	soft	taxonomic group	ZygnHetero Rhod	relative biovolumes		Zygnemataceae+ heterocystous cyanobacteria + Rhodophyta	-0.337	5.6
kept ("long list")	proportion ZHR (s, m)	soft	taxonomic group	ZygnHetero Rhod	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics	-0.406	10.2
kept ("long list")	proportion high Cu indicators (s, sp)	soft	tolerance/sensi tivity	copper	relative species numbers	indicator species analysis	proportion of total species richness composed of high copper (dissolved) indicators	-0.414	2.6
kept ("long list")	proportion low TN indicators (d)	diatom	tolerance/sensi tivity	nitrogen	proportion of valves	Potapova and Charles (2007)	proportion of valves that are indicators for low TN levels	-0.493	17.2
kept ("long list")	proportion high DOC indicators (s, b)	soft	tolerance/sensi tivity	organic pollution	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of high DOC	-0.519	13.3
kept ("long list")	proportion high DOC indicators (s, sp)	soft	tolerance/sensi tivity	organic pollution	relative species numbers	indicator species analysis	proportion of total species richness composed of high DOCq indicators	-0.596	6.5
kept ("long list")	proportion low TP indicators (d)	diatom	tolerance/sensi tivity	phosphorus	proportion of valves	Potapova and Charles (2007)	proportion of valves that are indicators for low TP levels	-0.483	17.2
kept ("long list")	proportion low TP indicators (s, sp)	soft	tolerance/sensi tivity	phosphorus	relative species numbers	indicator species analysis	proportion of total species richness composed of low TP indicators	-0.646	3.2

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
2	proportion requiring >75% DO saturation (d)	diatom	autecological guild	dissolved oxygen	proportion of valves	van Dam et al. (1994)	proportion of valves that require at least 75% dissolved oxygen saturation (sum 75+100)
2	proportion heterocystous (s, m)	soft	autecological guild	nitrogen	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
2	proportion heterocystous (s, sp)	soft	autecological guild	nitrogen	relative species numbers		proportion of total species that are heterocystous
2	proportion of cyanobacteria belonging to heterocystous species (s, b)	soft	autecological guild	nitrogen	relative biovolumes		proportion of cyanobacteria micro+macro biovolume composed of heterocystous species
2	proportion of cyanobacteria belonging to heterocystous species (s, m)	soft	autecological guild	nitrogen	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
2	proportion of cyanobacteria belonging to heterocystous species (s, sp)	soft	autecological guild	nitrogen	relative species numbers		proportion of cyanobacteria species that are heterocystous
2	proportion motile (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of valves that are motile (includes highly + moderately motile)
2	proportion sediment tolerant (motile) (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of all valves for which there is information that are motile (highly or moderately) + all planktonic
2	proportion "reference" indicators (s, b)	soft	relationship to reference	reference	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of "Reference" sites
2	proportion "reference" indicators (s, sp)	soft	relationship to reference	reference	relative species numbers	indicator species analysis	proportion of total species richness composed of indicators of "Reference" sites
2	proportion CRU (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of total micro+macro biovolume composed of Cladophora glomerata, Rhizoclonium hieroglyphicum, and Ulva flexuosa
2	proportion of Chlorophyta belonging to CRU (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of Chlorophyta micro+macro biovolume composed of Cladophora glomerata, Rhizoclonium hieroglyphicum, and Ulva flexuosa

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
2	proportion ZHR (s, sp)	soft	taxonomic group	ZygnHetero Rhod	relative species numbers	Vuloes	Zygnemataceae+ heterocystous cyanobacteria + Rhodophyta
2	proportion low TN indicators (s, sp)	soft	tolerance/sensit ivity	nitrogen	relative species numbers	indicator species analysis	proportion of total species richness composed of low TN indicators
1	proportion characteristic of "freshwater" (d)	diatom	autecological guild	ionic strength/ salinity	proportion of valves	van Dam et al. (1994)	proportion of valves that are considered characteristic of freshwater (not brackish) habitats
1	proportion heterocystous (s, b)	soft	autecological guild	nitrogen	relative biovolumes		proportion of total micro+macro biovolume composed of heterocystous species
1	proportion N fixers (d)	diatom	autecological guild	nitrogen	proportion of valves		proportion of valves belonging to genera that can fix N2 (Epithemia + Rhopalodia)
1	proportion meso- & oligo-meso- & oligotrophic (d)	diatom	autecological guild	nutrients	proportion of valves	van Dam et al. (1994)	proportion of valves that are mesotrophic+(oligo- mesotrophic)+oligotrophic
1	proportion oligo- meso- & oligotrophic (d)	diatom	autecological guild	nutrients	proportion of valves	van Dam et al. (1994)	proportion of valves that are (oligotrophic- mesotrophic)+oligotrophic
1	proportion alpha- poly- & polysaprobic (d)	diatom	autecological guild	organic pollution	proportion of valves	van Dam et al. (1994)	proportion of valves that are (alpha- meso/polysaprobous)+polysaprobous
1	proportion N autotrophs (low N) (d)	diatom	autecological guild	organic pollution	proportion of valves	van Dam et al. (1994)	proportion of valves that are "N autotroph - low organic N"
1	proportion obligate N heterotrophs (d)	diatom	autecological guild	organic pollution	proportion of valves	van Dam et al. (1994)	proportion of valves that are "N heterotroph - high organic N (obligate)"
1	proportion of total soft algae biovolume as microalgae	soft	community form	primary productivity	relative biovolumes		proportion of total biovolume of all micro+macro algae in the form of microalgae
1	total soft algal biovolume	soft	community form	primary productivity	total biovolume		cubed root of total biovolume of all micro+macro algae
1	proportion centric (d)	diatom	morphological guild	flow regime	proportion of valves		proportion of valves that are centric
1	proportion planktonic (d)	diatom	morphological guild	flow regime	proportion of valves		proportion of valves that are planktonic
1	proportion tychoplanktonic (s, b)	soft	morphological guild	flow regime	relative biovolumes		proportion of total micro+macro biovolume composed of tychoplanktonic species (includes "benthic/tychoplanktonic" species)

Phase when (if)			Metric			Source of indicator	
eliminated	Metric	Assemblage	category	Metric theme	Data type	values	Metric description
1	proportion tychoplanktonic (s, m)	soft	morphological guild	flow regime	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion tychoplanktonic (s, sp)	soft	morphological guild	flow regime	relative species numbers		proportion of total species that are tychoplanktonic (includes "benthic/tychoplanktonic " species)
1	proportion stagnation tolerant (s, b)	soft	morphological guild	flow regime	relative biovolumes		proportion of total micro+macro biovolume composed of stagnation indicators
1	proportion stagnation tolerant (s, m)	soft	morphological guild	flow regime	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion stagnation tolerant (s, sp)	soft	morphological guild	flow regime	relative species numbers		proportion of total species that are stagnation indicator species
1	proportion araphid (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of valves that are araphid
1	proportion biraphid (d)	diatom	morphological guild	sedimentation	proportion of valves		proportion of valves that are biraphid (includes reduced biraphids)
1	proportion flagellated (s, b)	soft	morphological guild	sedimentation	relative biovolumes		proportion of total micro+macro biovolume composed of flagellated species
1	proportion flagellated (s, m)	soft	morphological guild	sedimentation	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion flagellated (s, sp)	soft	morphological guild	sedimentation	relative species numbers		proportion of total species that are flagellated
1	proportion motile (s, b)	soft	morphological guild	sedimentation	relative biovolumes		proportion of total micro+macro biovolume composed of motile species
1	proportion motile (s, m)	soft	morphological guild	sedimentation	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion motile (s, sp)	soft	morphological guild	sedimentation	relative species numbers		proportion of total species that are motile

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
1	proportion sediment tolerant (motile) (s, b)	soft	morphological guild	sedimentation	relative biovolumes		proportion of total micro+macro biovolume composed of species deemed to be sedimentation tolerant (meaning all benthic species known to grow on silt plus all motile species (flagellated or otherwise motile))
1	proportion sediment tolerant (motile) (s, m)	soft	morphological guild	sedimentation	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion sediment tolerant (motile) (s, sp)	soft	morphological guild	sedimentation	relative species numbers		proportion of total species that are species deemed to be sedimentation tolerant (meaning all benthic species known to grow on silt plus all motile species (flagellated or otherwise motile))
1	proportion sediment tolerant (motile/ tychoplanktonic) (s, b)	soft	morphological guild	sedimentation	relative biovolumes		proportion of total micro+macro biovolume composed of species deemed to be sedimentation tolerant (meaning all benthic species known to grow on silt plus all motile species (flagellated or otherwise motile) plus all tychoplanktonic species)
1	proportion sediment tolerant (motile/ tychoplanktonic) (s, m)	soft	morphological guild	sedimentation	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion sediment tolerant (motile/ tychoplanktonic) (s, sp)	soft	morphological guild	sedimentation	relative species numbers		proportion of total species that are species deemed to be sedimentation tolerant (meaning all benthic species known to grow on silt plus all motile species (flagellated or otherwise motile) plus all tychoplanktonic species)
1	proportion Chlorophyta (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion Chlorophyta (s, sp)	soft	taxonomic group	Chlorophyta	relative species numbers		proportion of total species that belong to Chlorophyta
1	proportion CRU (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion CRU (s, sp)	soft	taxonomic group	Chlorophyta	relative species numbers		proportion of total species that are Cladophora glomerata, Rhizoclonium hieroglyphicum, and Ulva flexuosa
1	proportion CRUS (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of total micro+macro biovolume composed of C. glomerata, R. hieroglyphicum, U. flexuosa, and Stigeoclonium

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
1	proportion CRUS (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion CRUS (s, sp)	soft	taxonomic group	Chlorophyta	relative species numbers		proportion of total species that are Cladophora glomerata, Rhizoclonium hieroglyphicum, Ulva flexuosa, and Stigeoclonium spp.
1	proportion of Chlorophyta belonging to CRU (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion of Chlorophyta belonging to CRUS (s, b)	soft	taxonomic group	Chlorophyta	relative biovolumes		proportion of Chlorophyta micro+macro biovolume composed of Cladophora glomerata, Rhizoclonium hieroglyphicum, Ulva flexuosa, and Stigeoclonium spp.
1	proportion of Chlorophyta belonging to CRUS (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion of green algae belonging to CRUS (s, m)	soft	taxonomic group	Chlorophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion of green algae belonging to CRUS (s, sp)	soft	taxonomic group	Chlorophyta	relative species numbers		proportion of total green algae (Chlorophyta+Charophyta) species that are Cladophora glomerata, Rhizoclonium hieroglyphicum, Ulva flexuosa, and Stigeoclonium spp.
1	proportion cyanobacteria (s, b)	soft	taxonomic group	cyanobacteria	relative biovolumes		proportion of total micro+macro biovolume composed of cyanobacteria
1	proportion cyanobacteria (s, m)	soft	taxonomic group	cyanobacteria	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion cyanobacteria (s, sp)	soft	taxonomic group	cyanobacteria	relative species numbers		proportion of total species that belong to cyanobacteria
1	proportion Rhodophyta (s, b)	soft	taxonomic group	Rhodophyta	relative biovolumes		proportion of total micro+macro biovolume composed of Rhodophyta
1	proportion Rhodophyta (s, m)	soft	taxonomic group	Rhodophyta	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
1	proportion Rhodophyta (s, sp)	soft	taxonomic group	Rhodophyta	relative species numbers		proportion of total species that belong to Rhodophyta
1	proportion of green algae belonging to Zygnemataceae (s, b)	soft	taxonomic group	Zygnematace ae	relative biovolumes		proportion of green algae (Chlorophyta+Charophyta) micro+macro biovolume composed of Zygnemataceae
1	proportion of green algae belonging to Zygnemataceae (s, m)	soft	taxonomic group	Zygnematace ae	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion of green algae belonging to Zygnemataceae (s, sp)	soft	taxonomic group	Zygnematace ae	relative species numbers		proportion of total green algae (Chlorophyta+Charophyta) species belonging to Zygnemataceae
1	proportion Zygnemataceae (s, b)	soft	taxonomic group	Zygnematace ae	relative biovolumes		proportion of total micro+macro biovolume composed of Zygnemataceae
1	proportion Zygnemataceae (s, m)	soft	taxonomic group	Zygnematace ae	relative species number and biovolumes		mean of scores for the corresponding species number and biovolume metrics
1	proportion Zygnemataceae (s, sp)	soft	taxonomic group	Zygnematace ae	relative species numbers		proportion of total species that belong to Zygnemataceae
1	proportion high Cu indicators (s, b)	soft	tolerance/ sensitivity	copper	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of high copper (dissolved)
1	proportion low Cu indicators (s, b)	soft	tolerance/ sensitivity	copper	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of low copper (dissolved)
2	proportion low Cu indicators (s, sp)	soft	tolerance/ sensitivity	copper	relative species numbers	indicator species analysis	proportion of total species richness composed of low copper (dissolved) indicators
1	proportion high TN indicators (s, b)	soft	tolerance/ sensitivity	nitrogen	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of high TN
1	proportion high TN indicators (s, sp)	soft	tolerance/ sensitivity	nitrogen	relative species numbers	indicator species analysis	proportion of total species richness composed of high TN indicators

Phase when (if) eliminated	Metric	Assemblage	Metric category	Metric theme	Data type	Source of indicator values	Metric description
2	proportion low TN indicators (s, b)	soft	tolerance/ sensitivity	nitrogen	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of low TN
1	proportion low DOC indicators (s, b)	soft	tolerance/ sensitivity	organic pollution	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of low DOC
1	proportion low DOC indicators (s, sp)	soft	tolerance/ sensitivity	organic pollution	relative species numbers	indicator species analysis	proportion of total species richness composed of low DOC indicators
1	proportion organic pollution tolerant (s, b)	soft	tolerance/ sensitivity	organic pollution	relative biovolumes	several sources cited in Methods	proportion of total micro+macro biovolume composed of species deemed "tolerant" to organic pollution
1	proportion organic pollution tolerant (s, m)	soft	tolerance/ sensitivity	organic pollution	relative species number and biovolumes	several sources cited in Methods	mean of scores for the corresponding species number and biovolume metrics
1	proportion organic pollution tolerant (s, sp)	soft	tolerance/ sensitivity	organic pollution	relative species numbers	several sources cited in Methods	proportion of total species that are species deemed "tolerant" to organic pollution
1	proportion high TP indicators (s, b)	soft	tolerance/ sensitivity	phosphorus	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of high TP
1	proportion high TP indicators (s, sp)	soft	tolerance/ sensitivity	phosphorus	relative species numbers	indicator species analysis	proportion of total species richness composed of high TP indicators
2	proportion low TP indicators (s, b)	soft	tolerance/ sensitivity	phosphorus	relative biovolumes	indicator species analysis	proportion of total micro+macro biovolume composed of indicators of low TP

¹ Based on correlation with generalized water chemistry gradient from principal components analysis as described in Methods.