APPENDIX A – HYDROMODIFICATION SITE CROSS-SECTIONS, BANKS, AND PHOTOGRAPHS

Figures in Appendix A

Figure A.1 – Santiago_A A8
Figure A.2 – Santiago_B A9
Figure A.3 – Hasley1_A A10
Figure A.4 – Hasley1_B A11
Figure A.5 – Hasley1_TRIB A12
Figure A.6 – Hasley2_A A13
Figure A.7 – Hasley2_B A14
Figure A.8 – Hasley2_TRIB A15
Figure A.9 – Hicks_A A16
Figure A.10 – Hicks_B A17
Figure A.11 – Hicks_C A18
Figure A.12 – Hicks_D A19
Figure A.13 – Hicks_E A20
Figure A.14 – Hicks_F A22
Figure A.15 – Agua_Hedi_A A23
Figure A.16 – Agua_Hedi_B A24
Figure A.17 – Agua_Hedi_C A25
Figure A.18 – Dry_A A26
Figure A.19 – Dry_B A27
Figure A.20 – Dry_C
Figure A.21 – Hovnanian_A A30
Figure A.22 – Hovnanian_B A31
Figure A.23 – Santimeta_A (San Timetao) A32
Figure A.24 – Santimeta_B (San Timetao) A33
Figure A.25 – Santimeta_C (San Timetao) A34
Figure A.26 – Ltl_Cedar_A (Little Cedar)

Figure A.27 – Ltl_Cedar_B (Little Cedar)	A36
Figure A.28 – Proctor_A	A37
Figure A.29 – Proctor_B	A38
Figure A.30 – Proctor_TRIB	A39
Figure A.31 – Perris_1_A	A40
Figure A.32 – Perris_1_B	A41
Figure A.33 – Perris_1_C	A42
Figure A.34 – Perris_2_A	A43
Figure A.35 – Perris_2_B	A44
Figure A.36 – Perris_3_A	A45
Figure A.37 – Perris_3_B	A46
Figure A.38 – AltPerris_A	A47
Figure A.39 – AltPerris_B	A48
Figure A.40 – AltPerris_C	A49
Figure A.41 – Dulzura_A	A50
Figure A.42 – Dulzura_B	A51
Figure A.43 – Acton_A	A52
Figure A.44 – Acton_B	A53
Figure A.45 – Acton_C	A54
Figure A.46 – Acton_D	A55
Figure A.47 – Acton_E	A56
Figure A.48 – Borrego_A	A57
Figure A.49 – Borrego_B	A58
Figure A.50 – Borrego_C	A59
Figure A.51 – Borrego_D	A60
Figure A.52 – Borrego_E	A61
Figure A.53 – Topanga_A	A62
Figure A.54 – Topanga_B	A63

Figure A.55 – Topanga_C	A64
Figure A.56 – Challengr_A (Challenger Park)	A65
Figure A.57 – Challengr_B (Challenger Park)	A66
Figure A.58 – Challengr_C (Challenger Park)	A67
Figure A.59 – McGonigle_A	A68
Figure A.60 – SanJuan_A	A69
Figure A.61 – SanJuan_B	A70
Figure A.62 – Pigeon_A (Pigeon Pass)	A71
Figure A.63 – Pigeon_B (Pigeon Pass)	A72
Figure A.64 – Pigeon_C (Pigeon Pass)	A73
Figure A.65 – Stewart_A	A74
Figure A.66 – Santiagbd_A (Santiago at Tucker Bird Santuary)	A75
Figure A.67 – Santiagbd_B (Santiago at Tucker Bird Santuary)	A76
Figure A.68 – Santiagnl_A (Santiago at Natural-loading site)	A77
Figure A.69 – Santiagnl_B (Santiago at natural-loading site)	A78
Figure A.70 – Silverado_A	A79
Figure A.71 – Silverado_B	A80
Figure A.72 – Escondido_A	A81
Figure A.73 – Escondido_B	A82
Figure A.74 – SanAntoni_A (San Antonio)	A83
Figure A.75 – SanAntoni_B (San Antonio)	A84
Figure A.76 – Alt_RC2_A (unnamed headwater in Riverside County)	A85
Figure A.77 – Yucaipa_A	A86
Figure A.78 – Yucaipa_B	A87
Figure A.79 – OakGlenn_A	A88

PURPOSE AND MEASUREMENT PROTOCOL

These data were used in the development of a "screening tool" which estimates a first-order risk classification of a channel's susceptibility to adversely responding to the effects of hydromodification in southern California. In particular, these data were used to develop the section of the screening tool focused on assessing bank stability at the time of the field assessment based on measurements.

Since the screening tool is intended to err on the side of overestimating risk, the precautionary principles were used where field indicators were unclear. That is:

- where the stability of a bank was uncertain, we erred on the side of classifying as unstable;
- where an unstable angle was uncertain, the smaller angle was used; and
- where an unstable height was uncertain, the smaller height was used.

•

Banks were measured in vein of capturing the angle and height most representative for purposes of mass wasting based on failure theory presented by Osman and Thorne (1988). Special cases are outlined below:

The 1-m horizontal discriminator was selected based on the fact that observable failure blocks (i.e., still relatively intact) were typically well less than 1 m.

Incised – non-planar banks with a single break due to incision – *if the higher bank is unstable, use it's angle and the total height (left bank below). If the higher bank is stable and the lower bank is unstable (right bank below), use the lower bank height and angle (a slight extension to account for the failure block width less than 1 m may be used). If neither is unstable, use best judgment as to which scenario best represents current stability with respect to mass-wasting potential.*

Table A.1 presents the layout key and Table A.2 presents the bank-stability key for the cross sections, banks, and photographs of surveyed hydromodification sites.

Table A.1 – Layout key

Unique ID (Stream_Cross Section)

Surveyed by (Organization), Month-Year

Note(s)/Site History:

Left Bank (LB) Stability rating Right Bank (RB) Stability rating Photograph(s) Photograph(s) Dashed-dot red line represents Close-up view with object for scale if approximate location of cross available section, bent at bank location. Solid blue arrow indicates flow direction Surveyed Cross Section (looking downstream) Grid provided for individual horizontal to vertical scale Bank height and projected angle used as most representative for mass wasting stability purposes surveyed points

Table A.2 – Bank-stability key

STABLE	no visible bank failure
U-MW-C	unstable, mass wasting, in moderately- or well-consolidated banks
U-MW-PC	unstable, mass wasting, in poorly-consolidated banks
U-FLUVIAL	failure primarily due to fluvial forces (e.g., submerged shear stress, bend erosion, etc.)
U-MW-UC	mass wasting evident but in unconsolidated banks (e.g., old bed of braided channel)
U-FAILED	geometry post-mass failure (i.e., nearing angle of repose for unconsolidated material)
S-CONSTR	stable banks, but constructed/ graded and should not be included in analyses
S-CONFND	stable banks, but confined by hillslope

Santiago_A

Stillwater Sciences, Sept-2007

S-CONSTR

Note(s):

LB U-MW-C

RB

Near Santiago_A looking downstream

Figure A.1 – Santiago_A

Santiago_B

Stillwater Sciences, Sept-2007

Note(s): Flood control embankment constructed on right bank (date unknown)

LB S-CONFND

RB S-CONSTR (upper) and U-MW-UC (lower)

Figure A.2 – Santiago_B

Hasley1_A

Stillwater Sciences, Oct-2007

Note(s): Site was graded and realigned/partially channelized during development circa 2002.

LB U-MW-PC

RB U-MW-PC

Near Hasley1_A looking upstream

Near Hasley1_A looking downstream

Figure A.3 – Hasley1_A

Hasley1_B

Stillwater Sciences, Oct-2007

Note(s): Site was graded and realigned/partially channelized during development circa 2002.

LB U-MW-PC

RB U-MW-PC

Near Hasley1_B

Near Hasley1_B

Figure A.4 – Hasley1_B

Hasley1_TRIB

Stillwater Sciences, Oct-2007

Note(s): Right bank is unconsolidated fill (i.e., built up higher than original floodplain for lot creation)

Figure A.5 – Hasley1_TRIB

Hasley2_A

Stillwater Sciences, Oct-2007

Note(s):

LB U-FAILED

Near Hasley2_A (survey captured geometry of a recently failed bank ($<30^{\circ}$ vs. pictured $>75^{\circ}$))

Figure A.6 – Hasley2_A

Hasley2_B

Stillwater Sciences, Oct-2007

STABLE-PC

Note(s):

LB U-MW-C

Rilling evident, but no mass wasting, possibly graded

RΒ

Figure A.7 – Hasley2_B

Hasley2_TRIB

Stillwater Sciences, Oct-2007

U-MW-PC

RΒ

Note(s):

LB U-MW-PC

Near Hasley2_TRIB, 6-in ruler for scale (just downstream, ~1.5x taller, similar composition)

IMGP0984 Near Hasley2_TRIB (just downstream, ~2x taller similar composition)

Downstream photograph

Figure A.8 – Hasley2_TRIB

Hicks_A

Note(s):

LB STABLE-PC (upper) U-MW-UC (lower) RB

flow

CSU, Jan-2008

Unconsolidated bed of pre-incised channel

Figure A.9 – Hicks_A

CSU/SCCWRP, Jan-2008

Hicks_B

Note(s):

LB U-FAILED (upper) and U-FAILED RB U-MW-PC (lower)

Fluvial activity across failed surfaces makes it difficult to re-project pre-failure geometry

Historic MW (dotted arrows) converges with recent MW (solid arrows) just downstream of survey. Just upstream of cross section, MW through pre-incised bed

Figure A.10 – Hicks_B

CSU/SCCWRP, Jan-2008

STABLE-UC

Hicks_C

Note(s):

U-MW-PC (upper) and U-MW-PC LB (lower)

Fluvial erosion is significant (bend), but mass Looking upstream wasting is ubiquitous

Looking upstream

RB

Figure A.11 – Hicks_C

Hicks_D

Stillwater Sciences, Oct-2007 CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-PC

RB U-MW-PC

Looking upstream

Figure A.12 – Hicks_D

Hicks_E

Stillwater Sciences, Oct-2007 CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-PC

RB U-MW-PC

Looking upstream

Figure A.13 – Hicks_E

The purpose of presenting this detailed figure is to eximplify the differences between surveys. The CSU/SCCWRP 2008 level survey had many more shots, resulting in more precise geometry. In cases, bank angles were significantly different (76° vs. 48° for the right bank of Hicks_E), despite a relatively constant cross section between survey dates.

To Stillwater's credit, they were surveying many cross sections through dense shapparal (prefire). The CSU/SCCWRP surveys were post-fire, which made their collection much easier despite having less precise equipment.

The scarp in the pre-fire (2007) photograph of the right bank below is consistent with the post-fire (2008) photograph on the previous page.

Figure A.13 (continued) – Hicks_E

Hicks_F

Note(s):

LB U-MW-PC RB U-MW-PC

Looking downstream

Figure A.14 – Hicks_F

Agua_Hedi_A

Stillwater Sciences, Oct-2007

Note(s):

LB STABLE RB U-MW-C

Looking upstream

Figure A.15 – Agua_Hedi_A

Agua_Hedi_B

Stillwater Sciences, Oct-2007

Note(s):

LB U-MW-C

RB U-MW-C (upper) U-FLUVIAL (lower)

Upper portion

Lower portion

Figure A.16 – Agua_Hedi_B

Agua_Hedi_C

Stillwater Sciences, Oct-2007

Note(s):

LB U-MW-C

Looking downstream

RB U-MW-C (upper) and U-MW-C (lower)

Looking upstream

Figure A.17 – Agua_Hedi_C

Dry_A

Note(s):

LB STABLE (upper) and U-FAILED (lower) RB

Looking upstream

Looking upstream

Figure A.18 – Dry_A

Dry_B

Stillwater Sciences, Oct-2007

Note(s):

LB STABLE (upper) and U-FAILED (lower)

Looking downstream

RB

STABLE (upper) and U-MW-C (lower)

Looking upstream

Distant view looking downstream

Figure A.19 – Dry_B

With such a wide cross-section, this view is intended to more easily delineate the various bank slopes and break points.

Dry_C

LB

U-MW-C

RB

Note(s):

STABLE

flow

IMGP1122 Looking downstream

IMGP1121 Looking upstream

Figure A.20 – Dry_C

Hovnanian_A

Note(s):

LB STABLE

RΒ STABLE

Stillwater Sciences, Oct-2007

Looking downstream

Figure A.21 – Hovnanian_A

Hovnanian_B

Stillwater Sciences, Oct-2007

STABLE

RB

Note(s):

LB STABLE

Looking upstream

Looking downstream

Figure A.22 – Hovnanian_B

Santimeta_A (San Timetao)

Stillwater Sciences, Oct-2007

Note(s):

LB U-MW-C

RB U-MW-C (upper) and U-MW-C (lower)

Looking upstream

Looking downstream

Figure A.23 – Santimeta_A (San Timetao)

Santimeta_B (San Timetao)

Stillwater Sciences, Oct-2007

U-MW-C

RΒ

Note(s):

LB U-MW-C

Looking downstream

Figure A.24 – Santimeta_B (San Timetao)

Santimeta_C (San Timetao)

Stillwater Sciences, Oct-2007

U-MW-C

Note(s):

LB U-MW-C

Looking upstream

Looking downstream

RB

View of left bank

Figure A.25 – Santimeta_C (San Timetao)

Ltl_Cedar_A (Little Cedar)

Stillwater Sciences, Oct-2007

Note(s):

LB U-MW-PC

Looking upstream

Incising through poorly consolidated alluvia downstream of bridge (forced confinement)

RB U-MW-PC

Looking downstream

Figure A.26 – Ltl_Cedar_A (Little Cedar)

Ltl_Cedar_B (Little Cedar)

Stillwater Sciences, Oct-2007

Note(s):

LB STABLE-UC

Looking downstream, w/ distant view of downstream left bank and near view of right bank

RB U-FAILED (lower) and STABLE (upper)

Looking upstream

Figure A.27 – Ltl_Cedar_B (Little Cedar)
Proctor_A

Note(s):

LB U-FAILED

Looking upstream

RB U-MW-UC (lower) and STABLE (upper)

Looking downstream

View from downstream section looking upstream toward Proctor_A

Figure A.28 – Proctor_A

Stillwater Sciences, Oct-2007

Proctor_B

Note(s):

LB STABLE (upper) and U-MW-UC (lower) RB

STABLE (upper) and U-MW-UC (lower)

Looking upstream

Looking downstream

Figure A.29 – Proctor_B

Proctor_TRIB

Stillwater Sciences, Oct-2007

Note(s):

LB STABLE (upper) and U-FAILED (lower) RB

Looking upstream

Looking downstream

Figure A.30 – Proctor_TRIB

Perris_1_A

Riverside County, Oct-2007

Note(s):

LB STABLE-PC RB STABLE-PC

Looking upstream near location of Perris_1_A

This portion of Perris_1 was graded (date unknown) to redirect flow to a single culvert at the bottom of the reach

Figure A.31 – Perris_1_A

Perris_1_B

Riverside County, Oct-2007

Note(s):

LB STABLE-PC RB U-MW-PC

Looking upstream near location of Perris_1_B

Figure A.32 – Perris_1_B

Perris_1_C

Riverside County, Oct-2007

Note(s):

LB U-MW-PC (upper) and U-MW-PC RB U-MW-PC (lower)

Looking upstream near location of Perris_1_C

Figure A.33 – Perris_1_C

Perris_2_A

Riverside County, Oct-2007

Note(s):

LB STABLE-PC RB STABLE-PC

Looking upstream near location of Perris_2_A

Figure A.34 – Perris_2_A

Perris_2_B

Riverside County, Oct-2007

Note(s):

LB STABLE-PC

Looking upstream near location of Perris_2_B

View of right bank near location of Perris_1_C

Figure A.35 – Perris_2_B

Perris_3_A

Note(s):

- LB STABLE-UC
- RB STABLE-PC

Looking upstream near location of Perris_3_A

Figure A.36 – Perris_3_A

Perris_3_B

Riverside County, Oct-2007

(upper)

STABLE-UC (lower) and STABLE-PC

Note(s):

LB STABLE-UC

RB

Looking upstream near location of Perris_3_B

Figure A.37 – Perris_3_B

AltPerris_A

CSU, Jan-2008

STABLE-PC

RB

Note(s):

LB STABLE-PC

Looking upstream (including right bank) of AltPerris_A

Looking upstream (including left bank) of AltPerris_A

Figure A.38 – AltPerris_A

AltPerris_B

CSU, Jan-2008

Note(s):

LB STABLE-PC RB STABLE-PC

Looking downstream at AltPerris_B

Figure A.39 – AltPerris_B

AltPerris_C

CSU, Jan-2008

Note(s):

LB STABLE-PC RB STABLE-PC

Looking upstream at AltPerris_C

Figure A.40 – AltPerris_C

Dulzura_A

CSU, Jan-2008

Note(s):

LB STABLE-PC

RB STABLE-UC (lower) and STABLE-PC (upper)

Looking upstream at Dulzura_A

Figure A.41 – Dulzura_A

Dulzura_B

CSU, Jan-2008

Note(s):

LB U-FAILED

Looking downstream at left bank of Dulzura_B

Looking downstream at right bank of Dulzura_B

Figure A.42 – Dulzura_B

Acton_A

Note(s):

LB STABLE-PC RB STABLE-PC

Looking downstream at Acton_A

Figure A.43 – Acton_A

Acton_B

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-PC RB U-MW-PC

Looking upstream at Acton_B

Figure A.44 – Acton_B

CSU/SCCWRP, Jan-2008

Acton_C

Note(s):

LB U-MW-C (upper) and U-MW-PC (lower) RB U-MW-C

Looking downstream at Acton_C

Lower left bank appears to be at edge of old channel bank and bed. It's not fully unconsolidated, but not nearly as consolidated as the outer banks.

Figure A.45 – Acton_C

Acton_D

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C RB U-MW-C

Looking upstream at Acton_D

Figure A.46 – Acton_D

CSU/SCCWRP, Jan-2008

Station (m)

Acton_E

Note(s):

LB U-MW-C

Looking upstream and down into Acton_E

Cross-section was taped, not surveyed due to hazard risk

Figure A.47 – Acton_E

Borrego_A

Note(s):

LB S-CONSTR RB S-CONSTR

Looking downstream near Borrego_A

Cross section was drawn from aerials and photographs - not surveyed

Figure A.48 – Borrego_A

Borrego_B

Note(s):

LB U-MW-C

Lleft bank of Borrego_B

RB U-MW-C

Looking upstream at right bank of Borrego_B

Looking from left to right bank of Borrego_B

Figure A.49 – Borrego_B

Borrego_C

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C

Looking downstream at left bank of Borrego_C

Looking downstream at right bank of Borrego_C

Looking downstream at Borrego_C

Figure A.50 – Borrego_C

Borrego_D

Note(s):

LB U-MW-C

RB U-MW-C

Looking downstream at Borrego_D

Figure A.51 – Borrego_D

Borrego_E

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C (upper) and U-MW-PC (lower) RB

U-FAILED (upper) and U-MW-PC (lower)

Incised section is classified as PC (poorly consolidated) instead of UC (unconsolidated) because, although they are a part of a historic bed, tree locations indicate that the tops of these banks have been at that elevation for 20+ yrs, which is considerably different from the way we've been applying the UC rating.

Looking upstream at Borrego_E

Looking downstream at Borrego_E

Figure A.52 – Borrego_E

Topanga_A

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-UC (left) and STABLE-UC (right)

Looking downstream at left bank of right main channel of Topanga_A

RB U-MW-UC (left) and STABLE-UC (right)

Looking upstream the right main channel toward Topanga_A (left main channel hidden by vegetated island)

Figure A.53 – Topanga_A

Topanga_B

CSU/SCCWRP, Jan-2008

Note(s):

LB U-CONFND

Looking upstream at base of left bank of Topanga_B

RB STABLE-UC

Looking upstream toward Topanga_B with view of right bank

Figure A.54 – Topanga_B

Topanga_C

Note(s):

LB U-CONFND RB U-CONFND

Looking from left to right bank of Topanga_C

Figure A.55 – Topanga_C

CSU/SCCWRP, Jan-2008

STABLE

Challengr_A (Challenger Park)

Note(s):

LB U-MW-C

Looking downstream at Challengr_A with view of Looking upstream toward Challengr_A with view of right bank

RΒ

Although fluvial is a factor (downstream of a bend, along with scouring at tree), MW is extensive upstream and to a small extent downstream

Close up of left bank

Figure A.56 – Challengr_A (Challenger Park)

Challengr_B (Challenger Park)

Note(s):

LB U-MW-UC RB U-MW-UC

Looking upstream at Challengr_B – incision w/ MW through poorly consolidated alluvia (old bed), with beginnings of MW of original left bank (white arrows)

Figure A.57 – Challengr_B (Challenger Park)

Challengr_C (Challenger Park)

Note(s):

LB STABLE

Looking upstream at Challengr_C with view of left bank

RB STABLE

Looking downstream at Challengr_C with view of right bank – MW evident just upstream

View of right bank of Challengr_C – slight MW upstream, but not at surveyed section

Figure A.58 – Challengr_C (Challenger Park)

McGonigle_A

Note(s):

LB STABLE-UC RB STABLE-UC

Looking downstream at McGonigle_A (main channel) MW through unconsolidated alluvia

No photograph looking far left – thick vegetation (hydrophilic trees and shrubs) through the 'island', after which the valley floor is poorly maintained as a grassed access road

Looking toward far right bank of McGonigle_A

Figure A.59 – McGonigle_A

SanJuan_A

Note(s):

LB U-MW-UC

Representative of left bank of main channel of SanJuan_A – MW of unconsolidated alluvia

RB U-MW-C

Looking downstream at SanJuan_A with view of far right bank

View of far left valley wall - not captured by the survey

Figure A.60 – SanJuan_A

SanJuan_B

CSU/SCCWRP, Jan-2008

Note(s):

LB STABLE-UC

Looking upstream at left bank of SanJuan_B

RB S-CONFND

Looking downstream at right bank of SanJuan_B

Although slight MW is evident in the photo of the left bank (left), it is just downstream of the surveyed cross-section, and not representative of the shot geometry. Similarly, the right bank photo (above) shows slight MW through unconsolidated alluvia upstream of the surveyed cross-section, which is itself stable.

Figure A.61 – SanJuan_B

Pigeon_A (Pigeon Pass)

CSU, Jan-2008

Note(s):

LB U-MW-PC RB U-MW-UC

Looking upstream at Pigeon_A – site was graded during development in the 1980's. Left bank does not appear to be fill (inset) – seems poorly to moderately consolidated. Right bank composed of more alluvial material (unconsolidated)

Figure A.62 – Pigeon_A (Pigeon Pass)

Pigeon_B (Pigeon Pass)

CSU, Jan-2008

Note(s):

LB U-MW-PC RB STABLE-UC

Looking from right to left bank of Pigeon_B

Figure A.63 – Pigeon_B (Pigeon Pass)
Pigeon_C (Pigeon Pass)

CSU, Jan-2008

U-MW-PC

RΒ

Note(s):

LB U-MW-PC

View of left bank of Pigeon_C

Just downstream of Pigeon_C – MW evident both banks

Figure A.64 – Pigeon_C (Pigeon Pass)

Stewart_A

CSU, Jan-2008

Note(s):

LB STABLE-UC

Looking downstream with view of left bank of Stewart_A

RB S-CONFND and S-CONFND

Looking downstream with view of right bank of Stewart_A – survey captured geometry of boulder embedded in bank (rather than unconsolidated MW just up and downstream

MW in unconsolidated right bank (left) just upstream from cross-section. ~ 2 m @ 70°

Figure A.65 – Stewart_A

Santiagbd_A (Santiago at Tucker Bird Santuary)

CSU, Jan-2008

RΒ

Note(s):

LB U-CONFND (upper) and U-MW-UC (lower)

STABLE (upper) and U-MW-UC (lower)

Looking upstream with view of left bank (valley wall) of Santiagbd_A

Right bank of Santiagbd_A

Figure A.66 – Santiagbd_A (Santiago at Tucker Bird Santuary)

Santiagbd_B (Santiago at Tucker Bird Santuary)

CSU, Jan-2008

Note(s):

LB U-CONFND (upper) and STABLE-UC RB (lower)

Looking downstream with view of the left bank (valley wall) of Santiagbd_B

STABLE (upper) and U-MW-UC (lower)

Looking downstream with view of right bank of Santiagbd_B

Looking upstream with view of the right bank of Santiagbd_B

Figure A.67 – Santiagbd_B (Santiago at Tucker Bird Santuary)

Santiagnl_A (Santiago at natural-loading site)

Note(s):

LB U-CONFND (upper) and U-MW-UC RB STABLE (lower)

Looking downstream at SantiagnI_A

Figure A.68 – Santiagnl_A (Santiago at Natural-loading site)

Santiagnl_B (Santiago at natural-loading site)

Note(s):

LB U-MW-UC

RB STABLE (upper) and STABLE (lower)

Looking downstream at Santiagnl_B with view of Looking upstream at Santiagnl_B left bank

Although not at one of the cross-sections, the purpose of the close-up bank photo (left) is to show how unstable the unconsolidated alluvia are

Figure A.69 – Santiagnl_B (Santiago at natural-loading site)

Silverado_A

CSU/SCCWRP, Jan-2008

Note(s):

LB STABLE

Looking upstream at Silverado_A with view of left bank

RB STABLE

Looking at right bank of Silverado_A

Figure A.70 – Silverado_A

CSU/SCCWRP, Jan-2008

Silverado_B

Note(s):

LB S-CONFND (upper) and STABLE (lower)

Looking from right to left bank (valley wall) of Silverado_B

Looking upstream at Silverado_B

Looking downstream at Silverado_B

Figure A.71 – Silverado_B

Escondido_A

CSU/SCCWRP, Jan-2008

Note(s):

- <image>
- LB S-CONFND (upper) and STABLE-UC RB (lower)
- S-CONFND (upper) and S-CONFND (lower)

Looking downstream at Escondido_A

Figure A.72 – Escondido_A

Escondido_B

Note(s):

LB S-CONFND (upper) and U-MW-UC (lower)

Looking upstream at left bank of Escondido_B

RB S-CONFND (upper) and STABLE-UC (lower)

Looking downstream right channel of Escondido_B

Looking from left bank upstream toward middle island of Escondido_B

Figure A.73 – Escondido_B

SanAntoni_A (San Antonio)

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-UC

Looking from right bank of SanAntoni_A at knickpoint just upstream from SanAntoni_B

RB STABLE-UC

Looking upstream from near SanAntoni_A, toward left bank of SanAntoni_B

These sites are literally less than 30-m apart. Therefore, the outer banks are only counted once (see SanAntoni_B next page). Only the within the additional incision within the main channel are counted for SanAntoni_A.

Figure A.74 – SanAntoni_A (San Antonio)

SanAntoni_B (San Antonio)

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-PC (upper) and STABLE-UC (lower)

RB U-MW-PC (upper) and STABLE-UC (lower)

Looking at left bank of SanAntoni_B

Looking downstream of SanAntoni_B

Although banks are composed of mixed alluvia, they seem to have at least a small degree of consolidation (i.e., poorly consolidated). They stand at angles well over the angle of repose. Furthermore, their height and location indicate that they were formed from deposition quite some time ago (i.e., 50+yrs). I've been using the UC (unconsolidated) label on material that literally just a few years ago was deposited/ a part of the channel bed.

Figure A.75 – SanAntoni_B (San Antonio)

Alt_RC2_A (unnamed headwater in Riverside County)

Note(s):

LB STABLE

RB STABLE

Looking upstream at Alt_RC2_A

Figure A.76 – Alt_RC2_A (unnamed headwater in Riverside County)

Yucaipa_A

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C

Looking at left bank of Yucaipa_A

RB S-CONSTR

Looking upstream at right bank of Yucaipa_A

Looking upstream at Yucaipa_A

Figure A.77 – Yucaipa_A

Yucaipa_B

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C

Looking upstream at left bank of Yucaipa_B

Looking at upstream toward right bank of Yucaipa_B

Looking downstream at Yucaipa_B

Figure A.78 – Yucaipa_B

OakGlenn_A

CSU/SCCWRP, Jan-2008

Note(s):

LB U-MW-C RB U-MW-C

Looking upstream at OakGlenn_A

Looking downstream at OakGlenn_A

Figure A.79 – OakGlenn_A