APPENDIX A - HYDROMODIFICATION SITE CROSS-SECTIONS, BANKS, AND PHOTOGRAPHS

Figures in Appendix A

Figure A. 1 - Santiago_A A8
Figure A. 2 - Santiago_B A9
Figure A. 3 - Hasley1_A A10
Figure A. 4 - Hasley1_B A11
Figure A. 5 - Hasley1_TRIB A12
Figure A. 6 - Hasley2_A A13
Figure A. 7 - Hasley2_B A14
Figure A. 8 - Hasley2_TRIB A15
Figure A. 9 - Hicks_A A16
Figure A. 10 - Hicks_B A17
Figure A. 11 - Hicks_C A18
Figure A. 12 - Hicks_D A19
Figure A. 13 - Hicks_E A20
Figure A. 14 - Hicks_F A22
Figure A. 15 - Agua_Hedi_A A23
Figure A. 16 - Agua_Hedi_B A24
Figure A. 17 - Agua_Hedi_C A25
Figure A. 18 - Dry_A A26
Figure A. 19 - Dry_B A27
Figure A. 20 - Dry_C A29
Figure A. 21 - Hovnanian_A. A30
Figure A. 22 - Hovnanian_B A31
Figure A. 23 - Santimeta_A (San Timetao) A32
Figure A. 24 - Santimeta_B (San Timetao) A33
Figure A. 25 - Santimeta_C (San Timetao) A34
Figure A. 26 - Ltl_Cedar_A (Little Cedar) A35
Figure A. 27 - Ltl_Cedar_B (Little Cedar) A36
Figure A. 28 - Proctor_A A37
Figure A. 29 - Proctor_B A38
Figure A. 30 - Proctor_TRIB A39
Figure A. 31 - Perris_1_A A40
Figure A. 32 - Perris_1_B A41
Figure A. 33 - Perris_1_C A42
Figure A. 34 - Perris_2_A A43
Figure A. 35 - Perris_2_B A44
Figure A. 36 - Perris_3_A A45
Figure A. 37 - Perris_3_B A46
Figure A. 38 - AltPerris_A A47
Figure A. 39 - AltPerris_B A48
Figure A. 40 - AltPerris_C A49
Figure A. 41 - Dulzura_A A50
Figure A. 42 - Dulzura_B A51
Figure A. 43 - Acton_A. A52
Figure A. 44 - Acton_B A53
Figure A. 45 - Acton_C A54
Figure A. 46 - Acton_D A55
Figure A. 47 - Acton_E A56
Figure A. 48 - Borrego_A A57
Figure A. 49 - Borrego_B A58
Figure A. 50 - Borrego_C A59
Figure A. 51 - Borrego_D A60
Figure A. 52 - Borrego_E A61
Figure A. 53 - Topanga_A A62
Figure A. 54 - Topanga_B A63
Figure A. 55 - Topanga_C. A64
Figure A. 56 - Challengr_A (Challenger Park) A65
Figure A. 57 - Challengr_B (Challenger Park) A66
Figure A. 58 - Challengr_C (Challenger Park) A67
Figure A. 59 - McGonigle_A A68
Figure A. 60 - SanJuan_A A69
Figure A. 61 - SanJuan_B A70
Figure A. 62 - Pigeon_A (Pigeon Pass) A71
Figure A. 63 - Pigeon_B (Pigeon Pass) A72
Figure A. 64 - Pigeon_C (Pigeon Pass) A73
Figure A. 65 - Stewart_A A74
Figure A. 66 - Santiagbd_A (Santiago at Tucker Bird Santuary) A75
Figure A. 67 - Santiagbd_B (Santiago at Tucker Bird Santuary) A76
Figure A. 68 - Santiagnl_A (Santiago at Natural-loading site). A77
Figure A. 69 - Santiagnl_B (Santiago at natural-loading site) A78
Figure A. 70 - Silverado_A A79
Figure A. 71 - Silverado_B A80
Figure A. 72 - Escondido_A A81
Figure A. 73 - Escondido_B A82
Figure A. 74 - SanAntoni_A (San Antonio) A83
Figure A. 75 - SanAntoni_B (San Antonio) A84
Figure A. 76 - Alt_RC2_A (unnamed headwater in Riverside County) A85
Figure A. 77 - Yucaipa_A A86
Figure A. 78 - Yucaipa_B A87
Figure A. 79 - OakGlenn_A A88

PURPOSE AND MEASUREMENT PROTOCOL

These data were used in the development of a "screening tool" which estimates a first-order risk classification of a channel's susceptibility to adversely responding to the effects of hydromodification in southern California. In particular, these data were used to develop the section of the screening tool focused on assessing bank stability at the time of the field assessment based on measurements.

Since the screening tool is intended to err on the side of overestimating risk, the precautionary principles were used where field indicators were unclear. That is:

- where the stability of a bank was uncertain, we erred on the side of classifying as unstable;
- where an unstable angle was uncertain, the smaller angle was used; and
- where an unstable height was uncertain, the smaller height was used.
-

Banks were measured in vein of capturing the angle and height most representative for purposes of mass wasting based on failure theory presented by Osman and Thorne (1988). Special cases are outlined below:

Convex breaks (top of bank) - in the case of multiple break points, the top of bank may be extended to the adjacent break slope(s) if $>\sim 10^{\circ}$ and $<\sim 1 \mathrm{~m}$ in the horizontal

Convex separations $<\sim 1 \mathrm{~m}$ - non-planar banks separated by a slope less than $\sim 1 \mathrm{~m}$ in the horizontal should be treated as one bank, using the most representative angle for the prefailure slope (similar to the slumped scenario)

The 1-m horizontal discriminator was selected based on the fact that observable failure blocks (i.e., still relatively intact) were typically well less than 1 m .

Incised - non-planar banks with a single break due to incision - if the higher bank is unstable, use it's angle and the total height (left bank below). If the higher bank is stable and the lower bank is unstable (right bank below), use the lower bank height and angle (a slight extension to account for the failure block width less than 1 m may be used). If neither is unstable, use best judgment as to which scenario best represents current stability with respect to mass-wasting potential.

Table A. 1 presents the layout key and Table A. 2 presents the bank-stability key for the cross sections, banks, and photographs of surveyed hydromodification sites.

Table A. 1 - Layout key

Unique ID (Stream_Cross Section) Surveyed by (Organization), Month-Year
Note(s)/Site History:
Left Bank (LB) Stability rating \quad Right Bank (RB) Stability rating

Surveyed Cross Section (looking downstream)
Grid provided for individual horizontal to vertical scale

Table A. 2 - Bank-stability key

STABLE	no visible bank failure
U-MW-C	unstable, mass wasting, in moderately- or well-consolidated banks
U-MW-PC	unstable, mass wasting, in poorly-consolidated banks
U-FLUVIAL	failure primarily due to fluvial forces (e.g., submerged shear stress, bend erosion, etc.)
U-MW-UC	mass wasting evident but in unconsolidated banks (e.g., old bed of braided channel)
S-CAILED	geometry post-mass failure (i.e., nearing angle of repose for unconsolidated material)
S-CONFND	stable banks, but constructed/ graded and should not be included in analyses

Note(s):
LB U-MW-C

RB S-CONSTR

Near Santiago_A looking downstream

Figure A. 1 - Santiago_A

Note(s): Flood control embankment constructed on right bank (date unknown)
LB S-CONFND
RB S-CONSTR (upper) and U-MW-UC (lower)

Figure A. 2 - Santiago_B

Hasley1_A
Note(s): \quad Site was graded and realigned/partially channelized during development circa 2002.

LB U-MW-PC

Near Hasley1_A looking upstream

RB U-MW-PC

Near Hasley1_A looking downstream

Figure A. 3 - Hasley1_A

Note(s): \quad Site was graded and realigned/partially channelized during development circa 2002.

LB U-MW-PC

Near Hasley1_B

RB U-MW-PC

Near Hasley1_B

Figure A. 4 - Hasley1_B

Note(s): Right bank is unconsolidated fill (i.e., built up higher than original floodplain for lot creation)

LB STABLE
RB S-CONSTR

Figure A. 5 - Hasley1_TRIB

Hasley2_A

Note(s):

LB U-FAILED

Stillwater Sciences, Oct-2007

RB U-MW-PC

Near Hasley2_A (survey captured geometry of a recently failed bank ($<30^{\circ}$ vs. pictured $>75^{\circ}$))

Figure A. 6 - Hasley2_A

Stillwater Sciences, Oct-2007

Rilling evident, but no mass wasting, possibly graded

Figure A. 7 - Hasley2_B

Hasley2_TRIB
Note(s):

LB U-MW-PC

Near Hasley2_TRIB, 6-in ruler for scale (just downstream, $\sim 1.5 x$ taller, similar composition)

RB U-MW-PC

IMGP0984
Near Hasley2_TRIB (just downstream, $\sim 2 x$ taller similar composition)

Downstream photograph

Figure A. 8 - Hasley2_TRIB

Note(s):
LB STABLE-PC (upper) U-MW-UC (lower) RB
STABLE-PC (upper) STABLE-UC (lower)

Unconsolidated bed of pre-incised channel

Figure A. 9 - Hicks_A

Note(s):
LB U-FAILED (upper) and U-FAILED (lower)

Fluvial activity across failed surfaces makes it difficult to re-project pre-failure geometry

RB U-MW-PC

Historic MW (dotted arrows) converges with recent MW (solid arrows) just downstream of survey. Just upstream of cross section, MW through pre-incised bed

Figure A. 10 - Hicks_B

Note(s):
LB U-MW-PC (upper) and U-MW-PC
RB STABLE-UC

Looking upstream

Fluvial erosion is significant (bend), but mass
Looking upstream wasting is ubiquitous

Hicks_C

Figure A. 11 - Hicks_C

Hicks_D
Stillwater Sciences, Oct-2007
CSU/SCCWRP, Jan-2008
Note(s):
LB U-MW-PC RB U-MW-PC

Looking upstream

Figure A. 12 - Hicks_D

Note(s):
LB U-MW-PC RB U-MW-PC

Looking upstream

Figure A. 13 - Hicks_E

The purpose of presenting this detailed figure is to eximplify the differences between surveys. The CSU/SCCWRP 2008 level survey had many more shots, resulting in more precise geometry. In cases, bank angles were significantly different (76° vs. 48° for the right bank of Hicks_E), despite a relatively constant cross section between survey dates.

To Stillwater's credit, they were surveying many cross sections through dense shapparal (prefire). The CSU/SCCWRP surveys were post-fire, which made their collection much easier despite having less precise equipment.

The scarp in the pre-fire (2007) photograph of the right bank below is consistent with the post-fire (2008) photograph on the previous page.

Figure A. 13 (continued) - Hicks_E

Note(s):
LB U-MW-PC
RB U-MW-PC

Looking downstream

Figure A. 14 - Hicks_F

Note(s):
LB STABLE RB U-MW-C

Looking upstream

Figure A. 15 - Agua_Hedi_A

Agua_Hedi_B
Note(s):

RB U-MW-C (upper) U-FLUVIAL (lower)

Upper portion

Lower portion

Figure A. 16 - Agua_Hedi_B

Agua_Hedi_C
Note(s):

Looking downstream

Stillwater Sciences, Oct-2007

RB U-MW-C (upper) and U-MW-C (lower)

Looking upstream

Figure A. 17 - Agua_Hedi_C

Dry_A
Stillwater Sciences, Oct-2007
Note(s):
LB STABLE (upper) and U-FAILED (lower) RB U-MW-C (upper) and U-MW-C (lower)

Figure A. 18 - Dry_A
Dry_B
Stillwater Sciences, Oct-2007

Note(s):

LB STABLE (upper) and U-FAILED (lower)

Looking downstream

RB STABLE (upper) and U-MW-C (lower)

Looking upstream

Distant view looking downstream

Figure A. 19 - Dry_B

With such a wide cross-section, this view is intended to more easily delineate the various bank slopes and break points.

Figure A. 19 (continued) - Dry_B

Dry_C
Note(s):

LB STABLE

IMGP1122
Looking downstream

RB U-MW-C

IMGP1121
Looking upstream

Figure A. 20 - Dry_C

Hovnanian_A
Note(s):

Figure A. 21 - Hovnanian_A

Hovnanian_B

Note(s):

LB STABLE

Looking upstream

Stillwater Sciences, Oct-2007

RB STABLE

Looking downstream

Figure A. 22 - Hovnanian_B

Santimeta_A (San Timetao)

Note(s):
LB U-MW-C

Looking upstream

Stillwater Sciences, Oct-2007

RB U-MW-C (upper) and U-MW-C (lower)

Looking downstream

Figure A. 23 - Santimeta_A (San Timetao)

Note(s):

LB U-MW-C

Looking upstream

RB U-MW-C

Looking downstream

Figure A. 24 - Santimeta_B (San Timetao)

Santimeta_C (San Timetao)
Note(s):

LB U-MW-C

Looking upstream

RB U-MW-C

Looking downstream

View of left bank

Figure A. 25 - Santimeta_C (San Timetao)

LtI_Cedar_A (Little Cedar)
Note(s):
LB U-MW-PC

Looking upstream
Incising through poorly consolidated alluvia downstream of bridge (forced confinement)

Stillwater Sciences, Oct-2007

Figure A. 26 - LtI_Cedar_A (Little Cedar)

Note(s):

LB STABLE-UC

Looking downstream, w/ distant view of downstream left bank and near view of right bank

RB U-FAILED (lower) and STABLE (upper)

Looking upstream

Figure A. 27 - Ltl_Cedar_B (Little Cedar)

Note(s):

LB U-FAILED

Looking upstream

RB U-MW-UC (lower) and STABLE (upper)

Looking downstream

View from downstream section looking upstream toward Proctor_A

Figure A. 28 - Proctor_A

Note(s):
LB STABLE (upper) and U-MW-UC (lower) RB STABLE (upper) and U-MW-UC (lower)

Looking upstream

Looking downstream

Figure A. 29 - Proctor_B

Note(s):

LB STABLE (upper) and U-FAILED (lower) RB STABLE (upper) and U-FAILED (lower)

Figure A. 30 - Proctor_TRIB

Perris_1_A
Riverside County, Oct-2007
Note(s):
LB STABLE-PC
RB STABLE-PC

Looking upstream near location of Perris_1_A
This portion of Perris_1 was graded (date unknown) to redirect flow to a single culvert at the bottom of the reach

Figure A. 31 - Perris_1_A

Perris_1_B
Note(s):
LB STABLE-PC
RB U-MW-PC

Looking upstream near location of Perris_1_B

Figure A. 32 - Perris_1_B

Note(s):
LB U-MW-PC (upper) and U-MW-PC RB U-MW-PC (lower)

Looking upstream near location of Perris_1_C

Figure A. 33 - Perris_1_C

Note(s):
LB STABLE-PC RB STABLE-PC

Looking upstream near location of Perris_2_A

Figure A. 34 - Perris_2_A

Perris_2_B
Note(s):
LB STABLE-PC

Looking upstream near location of Perris_2_B

Figure A. 35 - Perris_2_B

Note(s):

LB STABLE-UC RB STABLE-PC

Looking upstream near location of Perris_3_A

Figure A. 36 - Perris_3_A

```
Perris_3_B Riverside County, Oct-2007
```

Note(s):
LB STABLE-UC RB STABLE-UC (lower) and STABLE-PC

Looking upstream near location of Perris_3_B

Figure A. 37 - Perris_3_B

AltPerris_A
Note(s):
LB STABLE-PC
RB STABLE-PC

Looking upstream (including right bank) of AltPerris_A

CSU, Jan-2008 AltPerris_A

Looking upstream (including left bank) of

Figure A. 38 - AltPerris_A

AltPerris_B
Note(s):
LB STABLE-PC RB STABLE-PC

Looking downstream at AltPerris_B

Figure A. 39 - AltPerris_B

AltPerris_C

Note(s):
LB STABLE-PC RB STABLE-PC

Looking upstream at AltPerris_C

Figure A. 40 - AltPerris_C

Note(s):
LB STABLE-PC RB STABLE-UC (lower) and STABLE-PC (upper)

Looking upstream at Dulzura_A

Figure A. 41 - Dulzura_A

Dulzura_B

CSU, Jan-2008
Note(s):
LB U-FAILED
RB U-MW-PC

Looking downstream at left bank of Dulzura_B

Looking downstream at right bank of Dulzura_B

Figure A. 42 - Dulzura_B

Note(s):
LB STABLE-PC RB STABLE-PC

Looking downstream at Acton_A

Figure A. 43 - Acton_A

Note(s):

Looking upstream at Acton_B

Figure A. 44 - Acton_B

Note(s):
LB U-MW-C (upper) and U-MW-PC (lower) RB U-MW-C

Looking downstream at Acton_C
Lower left bank appears to be at edge of old channel bank and bed. It's not fully unconsolidated, but not nearly as consolidated as the outer banks.

Figure A. 45 - Acton_C

Note(s):
LB U-MW-C
RB U-MW-C

Looking upstream at Acton_D

Figure A. 46 - Acton_D

Acton_E
CSU/SCCWRP, Jan-2008

Note(s)
LB U-MW-C
RB U-MW-C

Looking upstream and down into Acton_E
Cross-section was taped, not surveyed due to hazard risk

Figure A. 47 - Acton_E

Note(s):

Looking downstream near Borrego_A
Cross section was drawn from aerials and photographs - not surveyed

Figure A. 48 - Borrego_A

Borrego_B
Note(s):
LB U-MW-C

Lleft bank of Borrego_B

CSU/SCCWRP, Jan-2008

RB U-MW-C

Looking upstream at right bank of Borrego_B

Looking from left to right bank of Borrego_B

Figure A. 49 - Borrego_B

Borrego_C
Note(s):

LB U-MW-C

Looking downstream at left bank of Borrego_C

RB U-MW-C

Looking downstream at right bank of Borrego_C

Looking downstream at Borrego_C

Figure A. 50 - Borrego_C

Borrego_D
Note(s):
CSU/SCCWRP, Jan-2008

Figure A. 51 - Borrego_D

Note(s):

LB U-MW-C (upper) and U-MW-PC (lower) RB
 U-FAILED (upper) and U-MW-PC (lower)

Incised section is classified as PC (poorly consolidated) instead of UC (unconsolidated) because, although they are a part of a historic bed, tree locations indicate that the tops of these banks have been at that elevation for 20+ yrs, which is considerably different from the way we've been applying the UC rating.

Looking upstream at Borrego_E

Looking downstream at Borrego_E

Figure A. 52 - Borrego_E

Topanga_A
Note(s):
LB U-MW-UC (left) and STABLE-UC
(right)

Looking downstream at left bank of right main channel of Topanga_A

RB U-MW-UC (left) and STABLE-UC (right)

Looking upstream the right main channel toward Topanga_A (left main channel hidden by vegetated island)

Figure A. 53 - Topanga_A

Topanga_B
Note(s):
LB U-CONFND

Looking upstream at base of left bank of Topanga_B

CSU/SCCWRP, Jan-2008

Looking upstream toward Topanga_B with view of right bank

Figure A. 54 - Topanga_B

Topanga_C
Note(s):
LB U-CONFND RB U-CONFND

Looking from left to right bank of Topanga_C

Figure A. 55 - Topanga_C

Note(s):

LB U-MW-C

Looking downstream at Challengr_A with view of left bank

Close up of left bank

RB STABLE

Looking upstream toward Challengr_A with view of right bank

Although fluvial is a factor (downstream of a bend, along with scouring at tree), MW is extensive upstream and to a small extent downstream

Figure A. 56 - Challengr_A (Challenger Park)

Challengr_B (Challenger Park) CSU/SCCWRP, Jan-2008
Note(s):
LB

Looking upstream at Challengr_B - incision w/ MW through poorly consolidated alluvia (old bed), with beginnings of MW of original left bank (white arrows)

Figure A. 57 - Challengr_B (Challenger Park)

Challengr_C (Challenger Park)
Note(s):

LB STABLE

Looking upstream at Challengr_C with view of left bank

RB STABLE

Looking downstream at Challengr_C with view of right bank - MW evident just upstream

View of right bank of Challengr_C - slight MW upstream, but not at surveyed section

Figure A. 58 - Challengr_C (Challenger Park)

McGonigle_A
Note(s):
LB STABLE-UC RB STABLE-UC

Looking downstream at McGonigle_A (main channel) MW through unconsolidated alluvia

No photograph looking far left thick vegetation (hydrophilic trees and shrubs) through the 'island', after which the valley floor is poorly maintained as a grassed access road

Looking toward far right bank of McGonigle_A

Figure A. 59 - McGonigle_A

Note(s):

LB U-MW-UC

Representative of left bank of main channel of SanJuan_A - MW of unconsolidated alluvia

RB U-MW-C

Looking downstream at SanJuan_A with view of far right bank

View of far left valley wall - not captured by the survey

Figure A. 60 - SanJuan_A

SanJuan_B

Note(s):

LB STABLE-UC

Looking upstream at left bank of SanJuan_B

CSU/SCCWRP, Jan-2008

RB S-CONFND

Looking downstream at right bank of SanJuan_B

Although slight MW is evident in the photo of the left bank (left), it is just downstream of the surveyed cross-section, and not representative of the shot geometry. Similarly, the right bank photo (above) shows slight MW through unconsolidated alluvia upstream of the surveyed crosssection, which is itself stable.

Figure A. 61 - SanJuan_B

Pigeon_A (Pigeon Pass)
Note(s):
LB U-MW-PC RB U-MW-UC

Looking upstream at Pigeon_A - site was graded during development in the 1980's. Left bank does not appear to be fill (inset) - seems poorly to moderately consolidated. Right bank composed of more alluvial material (unconsolidated)

Figure A. 62 - Pigeon_A (Pigeon Pass)

Pigeon_B (Pigeon Pass)
CSU, Jan-2008
Note(s):
LB U-MW-PC
RB STABLE-UC

Looking from right to left bank of Pigeon_B

Figure A. 63 - Pigeon_B (Pigeon Pass)

Pigeon_C (Pigeon Pass)
Note(s):
LB U-MW-PC

View of left bank of Pigeon_C

CSU, Jan-2008

RB U-MW-PC

Just downstream of Pigeon_C - MW evident both banks

Figure A. 64 - Pigeon_C (Pigeon Pass)

Stewart_A
Note(s):
LB STABLE-UC

Looking downstream with view of left bank of Stewart_A

CSU, Jan-2008

RB S-CONFND and S-CONFND

Looking downstream with view of right bank of Stewart_A - survey captured geometry of boulder embedded in bank (rather than unconsolidated MW just up and downstream

MW in unconsolidated right bank (left) just upstream from cross-section. ~ 2 m @ 70

Figure A. 65 - Stewart_A

Santiagbd_A (Santiago at Tucker Bird Santuary)

Note(s):
LB U-CONFND (upper) and U-MW-UC (lower)

Looking upstream with view of left bank (valley wall) of Santiagbd_A

RB STABLE (upper) and U-MW-UC (lower)

Right bank of Santiagbd_A

Figure A. 66 - Santiagbd_A (Santiago at Tucker Bird Santuary)

Santiagbd_B (Santiago at Tucker Bird Santuary)

Note(s):
LB U-CONFND (upper) and STABLE-UC RB STABLE (upper) and U-MW-UC (lower) (lower)

Looking downstream with view of the left bank (valley wall) of Santiagbd_B

Looking downstream with view of right bank of Santiagbd_B

Looking upstream with view of the right bank of Santiagbd_B

Figure A. 67 - Santiagbd_B (Santiago at Tucker Bird Santuary)

Santiagnl_A (Santiago at natural-loading site) CSU/SCCWRP, Jan-2008
Note(s):
LB U-CONFND (upper) and U-MW-UC RB STABLE (lower)

Looking downstream at Santiagnl_A

Figure A. 68 - Santiagnl_A (Santiago at Natural-loading site)

Santiagnl_B (Santiago at natural-loading site) CSU/SCCWRP, Jan-2008
Note(s):

LB U-MW-UC

RB STABLE (upper) and STABLE (lower)

Looking downstream at SantiagnI_B with view of Looking upstream at Santiagnl_B left bank

Although not at one of the cross-sections, the purpose of the close-up bank photo (left) is to show how unstable the unconsolidated alluvia are

Figure A. 69 - Santiagnl_B (Santiago at natural-loading site)

Silverado_A
Note(s):
LB STABLE

Looking upstream at Silverado_A with view of left bank

CSU/SCCWRP, Jan-2008
-

Figure A. 70 - Silverado_A

Note(s):

LB S-CONFND (upper) and STABLE (lower)

Looking from right to left bank (valley wall) of Silverado_B

RB S-CONFND

Looking upstream at Silverado_B

Looking downstream at Silverado_B

Figure A. 71 - Silverado_B

Note(s):
LB S-CONFND (upper) and STABLE-UC (lower)

S-CONFND (upper) and S-CONFND (lower)

Looking downstream at Escondido_A

Figure A. 72 - Escondido_A

Escondido_B
Note(s):
LB S-CONFND (upper) and U-MW-UC (lower)

Looking upstream at left bank of Escondido_B n
RB S-CONFND (upper) and STABLE-UC (lower)

Looking downstream right channel of Escondido_B

Looking from left bank upstream toward middle island of Escondido_B

Figure A. 73 - Escondido_B

Note(s):

LB U-MW-UC

Looking from right bank of SanAntoni_A at knickpoint just upstream from SanAntoni_B

RB STABLE-UC

Looking upstream from near SanAntoni_A, toward left bank of SanAntoni_B

These sites are literally less than 30-m apart. Therefore, the outer banks are only counted once (see SanAntoni_B next page). Only the within the additional incision within the main channel are counted for SanAntoni_A.

Figure A. 74 - SanAntoni_A (San Antonio)

Note(s):

LB U-MW-PC (upper) and STABLE-UC (lower)

Looking at left bank of SanAntoni_B

RB U-MW-PC (upper) and STABLE-UC (lower)

Looking downstream of SanAntoni_B

Although banks are composed of mixed alluvia, they seem to have at least a small degree of consolidation (i.e., poorly consolidated). They stand at angles well over the angle of repose. Furthermore, their height and location indicate that they were formed from deposition quite some time ago (i.e., $50+y r s)$. I've been using the UC (unconsolidated) label on material that literally just a few years ago was deposited/ a part of the channel bed.

Figure A. 75 - SanAntoni_B (San Antonio)

Alt_RC2_A (unnamed headwater in Riverside County)

Note(s)
LB STABLE RB STABLE

Looking upstream at Alt_RC2_A

Figure A. 76 - Alt_RC2_A (unnamed headwater in Riverside County)

Yucaipa_A
Note(s):
LB U-MW-C

Looking at left bank of Yucaipa_A

Lóngata_

CSU/SCCWRP, Jan-2008

Looking upstream at Yucaipa_A

Figure A. 77 - Yucaipa_A

Yucaipa_B
Note(s):
LB U-MW-C

Looking upstream at left bank of Yucaipa_B

CSU/SCCWRP, Jan-2008

RB U-MW-C

Looking at upstream toward right bank of Yucaipa_B

Looking downstream at Yucaipa_B

Figure A. 78 - Yucaipa_B

OakGlenn_A
CSU/SCCWRP, Jan-2008
Note(s):
LB U-MW-C RB U-MW-C

Looking upstream at OakGlenn_A

Looking downstream at OakGlenn_A

Figure A.79- OakGlenn_A

