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EXECUTIVE SUMMARY 

Overview 
Ephemeral streams lack surface flow for most of the year and are common features of hydrologic 
networks in arid regions of Southern California. These streams drain large areas of watersheds 
and can greatly influence the quantity and quality of downstream waters. However, ephemeral 
streams are generally excluded from regional assessment programs due to lack of assessment 
tools. For example, there are no reliable maps that show where ephemeral, intermittent, or 
perennial streams occur in Southern California. The assessment of non-perennial streams, in 
addition to traditional monitoring of perennial waters, is critical for developing a complete 
picture of watershed health. 

Identifying the locations and extents of ephemeral streams is the first step towards more 
comprehensive assessments. Existing maps do not adequately represent which streams are 
ephemeral vs. those with longer flow durations. Knowing the extent and locations of these 
streams is important to evaluating the ability of existing assessment tools to characterize 
hydrologic and ecological conditions and to support development of new assessment tools. 

Stream maps that are currently available are insufficient to describe the extent and location of 
ephemeral streams. Existing map products are typically created by manual photointerpretation or 
based on estimates of flow accumulation with elevation changes. Maps produced using both 
methods will under-represent ephemeral streams or provide inaccurate locations. Streams may 
not be visually identified with photointerpretation or maps based on elevation layers may have 
poor sensitivity in low gradient environments. 

The Santa Ana Regional Water Quality Control Board (RWQCB) has recently investigated the 
use of stream periodicity models to map and describe ephemeral streams in Southern California. 
These models improve on traditional mapping methods by estimating the likelihood of perennial 
vs. ephemeral flow at every stream reach in the drainage network. Building on earlier efforts in 
the San Diego region, this report summarizes efforts to develop and apply stream periodicity 
models in four watersheds of the Santa Ana region, plus the adjacent San Gabriel watershed. The 
objective of this application is to better characterize non-perennial streams in this highly 
developed watershed, in addition to understanding the abilities of existing tools to characterize 
flow conditions in different watersheds. 
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Key findings and products 
Historic (pre-developed) flows were estimated by modeling stream discharge at 58 reference 
gauges from arid regions of southern and central California. This model predicts mean monthly 
flow under wet, normal, and dry conditions, based on watershed characteristics (such as area and 
geology) and climate data. Because the model was calibrated with reference gauges, predictions 
reflect undisturbed conditions at catchments that have undergone conversion to urban or 
agricultural uses. A second model was then developed to estimate likelihood of change from 
historic conditions (i.e., inflated or diminished flows) based on land cover. Both models were 
applied to all stream segments in the Santa Ana region, providing maps showing historic and 
present-day hydrologic conditions. 

Ephemeral streams are likely to change from year to year 
Estimates of stream flow vary considerably both throughout the year, and across climate 
conditions. Static classes of flow duration (e.g., “perennial,” “non-perennial”) are unlikely to 
characterize a stream accurately. A probabilistic approach (e.g., “likelihood of flow”) may 
provide a more meaningful way to characterize flow duration. 

The predictive models were able to produce maps of the relative likelihood of short vs. long flow 
duration. Somewhat higher estimates of flow were predicted than is typically encountered in 
undeveloped portions of the region—particularly during low-flow conditions. However, the 
relative patterns were correct, indicating that the maps and models are most useful for estimating 
relative extents within the Santa Ana region. 

 

Estimates of stream flow under reference conditions vary by month, as well as climatic 
conditions. 
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Developed land use leads to reduced stream flow in most years 
Models estimated widespread changes in streamflow from historic conditions. Flows may be 
reduced at most streams for most of the year, although some streams may have inflated flows in 
winter months. These changes are typical of urbanization, where impervious surfaces increase 
peak flows and decrease baseflows, leading to a flashier hydrograph. Conditions in wet years 
may be somewhat more stable than normal or dry years. 

 

In all watersheds, stream-flow reduction (red) from historic levels may be pervasive for most 
months of the year. Stable conditions (blue) may be more common in winter months, while 
inflated flows (green) only occur during the winter. SGB: San Gabriel; LSA: Lower Santa Ana; 
MSA: Middle Santa Ana; USA: Upper Santa Ana; and SJC: San Jacinto. 

 

How can these data support management decisions? 
Maps and models of stream flow dynamics can support a number of management decisions (see 
section 7). For example: 

• Prioritize streams for monitoring of hydromodification impacts. Maps can identify areas 
where modification has likely been altered, which can be verified with follow-up hydrologic 
or habitat monitoring. 

• Set targets for flow management. In some cases, historic flows may be an appropriate target 
to restore biological condition or other beneficial uses. 

• Provide evidence on causes of impairment related to flow alteration. Maps and models can 
be used in streamlined causal assessments to determine if flow alteration is a supported 
cause of poor biological condition. 

• Select assessment tools appropriate for local flow conditions. Certain assessment tools (e.g., 
benthic macroinvertebrates, algae) are best suited for perennial or intermittent streams, 
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while ephemeral streams are best evaluated with other tools (e.g., riparian plants). Maps 
will let monitoring programs know which tools will be best for the task at hand, prior to any 
site visits. 

• Forecast the impacts of climate change or land use conversion. Models allow predictions of 
changes to stream flow under different climatic regimes or impervious cover. These 
predictions can prioritize areas requiring protection or mitigation. Similarly, these tools 
could help evaluate the impacts of changes in water management, such as increased 
stormwater capture or water recycling. 

Because models are spatially explicit, all these decisions can be made on a site-specific basis—
without the costs typically associated with developing site-specific hydrologic models. 

Recommendations 
The development of flow predictions under different land use and climate scenarios for the Santa 
Ana region is a first step towards more holistic stream assessment in Southern California. 
Additional steps can be taken that focus on key components of this work to expand applications 
beyond the Santa Ana region: 

• Improved predictions of low flows. Low flows were likely over-estimated in much of the 
region, and relatively insensitive to climatic variability. This outcome is likely a 
consequence of the scarcity of intermittent and ephemeral streams in the calibration data. 
Incorporation of new data sources (e.g., water-level loggers) from these stream-types is 
likely to improve predictions of low flows. 

• Improve estimates of altered flow. Models estimated the likelihood of flow alteration, but 
not the severity. The finding that alteration was widespread begs questions about the 
magnitude of change, and whether these alterations are having a likely impact on aquatic 
life or other beneficial uses. Incorporation of data about diversions, dam management, and 
other activities that affect flow could improve models. 

• Integrate with other stream flow assessment methods. Maps could be used in tandem with 
other stream flow classification methods, such as those based on field indicators. Stream-
flow maps are likely to enhance these methods for applications where classifications are 
needed (e.g., Federal jurisdictional determinations). The integration of multiple methods 
warrants further investigation. 

• Support use of data products. The impact of this work could be extended if additional tools 
are developed that improve the communication of results. In particular, interactive 
applications could be developed that allow users to better visualize projected impacts within 
the regions. These tools could include online map applications or specific software tools 
that allow a more comprehensive evaluation of the results. 
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Products 
Shapefiles and statistical models may be downloaded here: 
ftp://ftp.sccwrp.org/pub/download/TMP/RaphaelMazor/SantaAnaflowmodels.zip. 

Statistical models 
Two statistical models (as R objects) to predict 1) historic (reference) stream flows and 2) 
likelihood of inflated or diminished flow under present-day conditions. 

Geodatabase of model predictions 
Two geodatabases that represent predictions for every stream segment in the Santa Ana region 
were created for 1) historic (reference) stream flows and 2) likelihood of inflated or diminished 
flow under present-day conditions: 

• Flow estimates under reference conditions in each month for dry, stable, or wet conditions 

• Likelihood of stream flow inflating or diminishing under anthropogenic conditions for each 
month under dry, stable, or wet conditions. 

Interactive web application 
An interactive web application is provided to demonstrate how the model results can be used to 
support management decisions.  This application can be used to evaluate results for reference 
conditions and expectations of flow change.  Individual watersheds and stream estimates can be 
evaluated by zooming and hovering the mouse over a location. Please visit the application at 
https://beckmw.shinyapps.io/santa_ana_flow/ 

 

 

ftp://ftp.sccwrp.org/pub/download/TMP/RaphaelMazor/SantaAnaflowmodels.zip
https://beckmw.shinyapps.io/santa_ana_flow/
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A screenshot of the interactive web app for viewing model results.  
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1. OVERVIEW 

Non-perennial streams are defined as streams that lack surface flow for at least several days per 
year in typical years. Non-perennial streams comprise the majority of streams in southern 
California, but we have little information on which streams are non-perennial, nor how to 
characterize the diverse flow regimes non-perennial streams exhibit. Consequently, it is difficult 
for water quality programs to target waterbodies of interest, nor is it possible to be sure where 
policies that apply to perennial streams may be implemented.  

Updated hydrologic maps are needed because existing maps (such as those provided in the 
National Hydrography Dataset, NHD) do not adequately represent the location and extent of 
non-perennial streams. Because few non-perennial reference streams have been sampled 
throughout California, their hydrology and biology are not well described (particularly within the 
Santa Ana watershed). Preliminary research has shown that some non-perennial streams in San 
Diego are ecologically similar to perennial streams, suggesting that existing assessment tools 
used for perennial streams (such as the California Stream Condition Index) may be adequate for 
some types of non-perennial streams. More data from a range of minimally disturbed non-
perennial streams is needed to determine the extent to which existing assessment tools can be 
used for different types of non-perennial streams, particularly in regions outside San Diego. 

The goal of this project is to build upon previous work, and, refine and apply the stream 
periodicity model created for San Diego Regional Water Quality Control Board (RWQCB 9) to 
watersheds encompassed by the Santa Ana Regional Water Quality Control Board (RWQCB 8), 
in order to, produce a map of likely non-perennial streams and associated stream flow metrics. 
The NHD and/or NHDPlus HydroDEM will be utilized as the base stream network for the 
model. 

 
2. TASKS 

This project involved two tasks: 1) calibration and validation of models to predict historic (i.e., 
reference) flows, and 2) calibration and validation of models to predict likelihood of flows 
changing historic conditions. The steps for each task are described below. 

1. Re-calibrate the stream periodicity model to RWQCB 8, using NHDPlus flowlines as the 
base stream network. This model will be based on reference sites to predict reference 
streamflow characteristics. This task will be referred to as the reference model from this 
point forward. 

• Deliverables: 

o Model to predict reference streamflow characteristics in Region 8 (R 
object), with appropriate documentation and metadata. 

o Model outputs, registered to NHDPlus flowlines (GIS layer), with 
appropriate documentation and metadata. 

o Assist SCCWRP in developing a technical memo that summarizes 
model performance, reference streamflow characteristics in regions of 
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interest within the Santa Ana watershed, and comparison of model 
predictions to field data. 

2. Pilot incorporating anthropogenic factors into a “dirty” model to predict current conditions 
in hydrologically altered watersheds. This task will be referred to as the anthropogenic 
model from this point forward. 

• Deliverables:  

o Pilot “dirty” model to predict current streamflow characteristics in 
Region 8 (R object), with appropriate documentation and metadata. 

o Dirty model outputs, registered to NHDPlus flowlines (GIS layer), 
with appropriate documentation and metadata. 

o Assist SCCWRP in developing a technical memo that summarizes 
dirty model performance, current streamflow characteristics in regions 
of interest within the Santa Ana watershed, comparison of dirty model 
predictions to field data, and comparison of dirty and reference model 
outputs. 

 

3. REFERENCE MODEL METHODS 

  
3.1 General Process Overview 
 

 
 
3.2 Gauge Selection Process 
Fifty-eight stream gauges with minimal human disturbance that were active for at least one full 
month within the target period (1981-2012) were selected to train the reference model (Figure 1). 
Of 58 these gauges, 4 fall within the Santa Ana watershed. The remaining 54 gauges that fall 
outside of the Santa Ana watershed are located in areas with similar landscape and climate 
characteristics. Areas with similar landscape and climate conditions were identified using United 
States Geologic Survey’s (USGS) hydrologic landscape region (HLR) data.  For example, all 
HLR gauges were in xeric regions with low precipitation and high temperatures. 
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Figure 1. Map of gauges selected for model training. 
 
A decision tree for the process of classifying gauges as reference or non-reference is shown in 
Figure 2. This decision tree identified reference sites suitable for modeling based on the absence 
of landscape-level factors that could alter hydrology (e.g., impervious cover, dams), as well as 
presence of a long-term flow data set. 
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Entire Stream Gauge 
Dataset

Is the site identified as 
a Reference site in 
Gauges II dataset?

Is the site active for the 
entire targeted period 
of record (1981-2012)?

Is the site active for any full 
months/years within the 

targeted period of record?

Is the site within study 
area (RWQCB 8)?

Is the site not identified as a Reference 
site in Gauges II dataset, but has HDI <= 9 
(excluding sites that have been manually 

reviewed and deemed unnacceptable)

 Is the site within an HLR  
elsewhere within California 
that is the same as an HLR 

within the study area? 

Ideal gauge sites.   
Include gauge sites.

If other conditions 
are met, Include 

gauge site

If other conditions 
are met, Include 

gauge site

If other conditions 
are met, Include 

gauge site

Gauge site excluded 
from study

NO

ALL YES

NO

YES
NO

YES

NO

YES

Gauge site excluded 
from study

NO

Gauge site excluded 
from study

NO

 

Figure 2. Decision-tree showing how gauges were classified as reference or non-reference, 
adapted from Falcone et al. (2010). HDI is the Hydrologic Disturbance Index, a measure of 
landscape-level sources of hydrologic alteration (e.g., presence of dams or impervious cover). 
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3.3 Included Stream Features 
The NHDPlus dataset was used as the base dataset of streams for this project. Streams have been 
selected from within the NHDPlus dataset if flow direction is applied to the NHDPlus flowlines. 
In order to generate raster streams to be used as the basis for the variables generated and used in 
the project, it was required that the streams selected have a noted flow direction. Features are 
identified as having a flow direction (initialized) within the NHDPlus flowlines if the 
“FLOWDIR” field is populated with the attribute “With Digitized.” However, this identifies 
streams assigned flow direction within vector flowlines and raster data is needed to process 
variables for the model. In order to generate raster streams that align fairly well with the length 
of the NHDPlus initialized flowlines, streams were created using the NHDPlus HydroDEM flow 
accumulation layer. The NHDPlus HydroDEM is a hydrologically modified digital elevation 
model from which the flow accumulation layer is generated, “which contains the number of cells 
within the raster processing unit draining to each cell within the raster processing unit” (United 
States Geologic Survey 2016). The following equation was applied to the flow accumulation 
raster grid in order to extract raster cells that correspond to the NHDPlus initialized flowlines: 
Con (FlowAccumulationRaster > 50, 1). Using this method, 98% (6,327 km) of the NHDPlus-
initialized vector flowlines are captured within the study area. 

3.4 Flow Metrics 
Reference predictions model mean monthly stream flow (cubic feet per second (cfs)) for every 
month of the year under typical normal year (median: 10.56 inches mean annual rainfall), typical 
wet year (16.18), and typical dry year (7.50) conditions. 

3.5 Variable Selection Process 
Eighty-eight landscape and climate variables were included in the variable selection process. The 
source of all landscape variable data is the USGS Gages II (Falcone 2011) dataset while the 
source of the climate variable data is the Prism Climate Group (2014).  

R’s rpart package was used to develop a classification tree which attempted to fit an optimal 
number of trees to the proposed data using all 88 original environmental variables, including: 
ppt_ws_3mo, tmean_3mo, etc. (Table 1, Figure 3). The results of this analysis provided a 
measure of variable importance, which is a sum of the “goodness of fit measures for each split 
for which it was the primary variables” (Therneau and Atkinson 2015). These measures of 
importance were scaled to sum to 100 by the rpart package.  

Using this method, 26 of the original 88 variables were selected as most important. Of the 26 
selected variables, those with high levels of correlation (r >= 0.75) were addressed to avoid 
multicollinearity (via Pearson correlation matrix), removing only those with lowest variable 
importance from the correlated pair. This process removed 11 variables, leaving 15 variables to 
be used in subsequent model training (Table 1, Figure 3). 
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Figure 3. Example of a regression tree created with the rpart package in the R statistical software 
language.  The tree shows one example using the fifteen selected variables in Table 1 to predict 
mean monthly stream flow (cfs).  The estimated stream flow is shown above the split for each 
branch of the tree, where the split is defined by a specific value for each predictor.  The final 
model is an average of 500 individual regression trees.  
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Table 1. Final list of variables selected to train the reference model along with their relative 
importance within the model; higher values indicate greater importance. 

 
3.6 Raster Preparation 
Raster files were collected for variables that were selected as predictors during the variable 
selection process. All raster files were clipped to the same area in terms of columns and rows, 
and were resampled using ArcGIS 10 BILINEAR resampling technique for surfaces/continuous 
data (e.g. slope) to the same 30m pixel size. Data sets were projected to the NAD 83 Albers 
(meters) project.  All data sets were clipped to the same region of study (Figure 1) (Mazor et al. 
2015). 

3.7 Model Training and Predictions 
Generalized boosted modeling (gbm) is an iterative machine-learning technique for regression 
and classification, which produces an ensemble of regression trees to make unbiased predictions 
for novel data. Unlike traditional tree-based methods (e.g., random forest), particularly good 
models within the ensemble are “boosted” so that they have a larger influence than individual 
models with weak performance (Elith et al. 2008). 

Using the gbm.step package in R, the final 15 variables were used to train the model against 
mean monthly flow across the 30-year data time span (i.e., 1981 to 2012). The trained model was 

Variable Name Description Relative influence 
ppt_ws_3mo Three-month mean of monthly precipitation of the upstream 

drainage area. 
24.1 

tmean_3mo Three-month mean of monthly mean temperature of the upstream 
drainage area. 

16.6 

DRAIN_SQKM Drainage area in square kilometers above a site. 10.7 
ppt_watershed Monthly mean precipitation of the upstream drainage area. 7.4 
RFACT Rainfall and Runoff erosivity factor ("R factor" of Universal Soil 

Loss Equation); average annual value for period 1971-2000. 
7.0 

ELEV_MEAN_ Mean elevation of upstream drainage area. 5.1 
CaO_pct Percentage of upstream drainage area covered by rock with CaO. 4.9 
TOPWET Topographic wetness index, ln(a/S); where "ln" is the natural log, 

"a" is the upslope area per unit contour length and "S" is the slope 
at that point. 

4.1 

HGD Percentage of soils that have very slow infiltration rates; these soils 
are clayey, have a high-water table, or have a shallow impervious 
layer. 

3.7 

RUNAVE7100 Estimated watershed annual runoff, mm/year, mean for the period 
1971-2000.  

3.4 

ASPECT_EASTNESS Mean aspect "eastness” of the upstream drainage area. Ranges 
from -1 to 1. Value of 1 means watershed is facing/draining due 
east, value of -1 means watershed is facing/draining due west. 

2.9 

HGB Percentage of soils in the upstream drainage area that have 
moderate infiltration rates; these soils are moderately deep, 
moderately well drained, and moderately coarse in texture. 

2.9 

STREAMS_KM Stream density, km of streams per watershed km2, from NHDPlus 
streams 

2.7 

PERDUN Dunne overland flow, also known as saturation overland flow. 2.3 
RRMEAN_30M Dimensionless elevation - relief ratio, calculated as (ELEV_MEAN - 

ELEV_MIN)/(ELEV_MAX - ELEV_MIN). 
2.2 
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applied to all stream segments (30m2) using the predict.gbm function in R to predict stream flow 
for these unknown flow locations, using a set number of trees in the boosting sequence. 

3.8 Model Validation 
Internal Cross-Validation  
The trained model produced a cross validation correlation value of 0.899. This is a k-folds 
internal cross validation within the gbm.step function, which fits the model iteratively to each k-
1 equally sized subset of the data and then tests the model on the remaining folds. 

External Cross-Validation 
Cross-validation was performed using a leave-one-out process. A manual n-1 leave one out 
(LOO) model cross-validation was performed, iteratively dropping the data points for 5 
randomly selected gauges in the dataset (Table 2).  
 
Table 2. Results of LOO cross-validation. PBIAS: percent bias; values closer to zero 
indicate less bias in the model. RMSE: root-mean square error; lower values indicate 
better precision in the model. RSR: rank sum ratio; lower values indicate better 
precision in the model. NSE: Nash-Sutcliffe Efficiency; higher values indicate more 
accurate and precise predictions.  

Gauge ID  PBIAS RMSE RSR NSE 

11063500 259.000 32.010 9.360 -86.872 

11063000 -22.100 3.944 1.002 -0.054 

10259200 -5.900 4.932 0.656 0.568 

10263500 -78.200 28.084 0.867 0.247 

11153900 -82.100 82.035 1.007 -0.064 

 
Prediction Validation 
Reference predictions were validated by comparing the predicted values against 1) NWIS flow 
data, 2) SCCWRP provided logger data, and 3) USFS flow data for the region.  

• USGS National Water Information System (NWIS) Flow Data – observed flow at 49 gauge 
locations. Mean monthly flow (cfs) for each month/year of available data within target 
period. 

• SCCWRP Provided Flow Data – observed flow at 45 locations 

• USFS Flow Data – observed flow at 8 locations 

Observation (gauge) locations have varying degrees of anthropogenic influence. Within the 
validation data, gauge locations were classified as having minimal, moderate, or maximum 
anthropogenic influence and statistics were run on each level of anthropogenic influence as 
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well as for the entire gauge/logger dataset (all levels of anthropogenic influence) for each 
source of data (Table 3).  

 
Table 3. Results of validation for each of the three validation datasets. PBIAS: percent bias; values 
closer to zero indicate less bias in the model. RMSE: root-mean square error; lower values 
indicate better precision in the model. RSR: rank sum ratio; lower values indicate better precision 
in the model. NSE: Nash-Sutcliffe Efficiency; higher values indicate more accurate and precise 
predictions. 

All Observation Locations 
Source PBIAS RMSE RSR NSE 

NWIS 8.546 17224.322 1.387 -0.925 

SCCWRP -130.435 132.021 1.522 -1.316 

USFS -328.274 257.707 0.897 0.195 

Minimal Anthropogenic Influence 
Source PBIAS RMSE RSR NSE 

NWIS -481.867 3011.423 6.072 -35.865 

SCCWRP -427.571 93.579 3.684 -12.573 

USFS -419.758 121.885 0.896 0.197 

Moderate Anthropogenic Influence 
Source PBIAS RMSE RSR NSE 

NWIS -649.136 1515.727 3.610 -12.029 

SCCWRP -118.867 62.576 1.200 -0.439 

USFS -1240.678 143.629 0.972 0.056 

Maximum Anthropogenic Influence 
Source PBIAS RMSE RSR NSE 

NWIS 24.318 16891.157 1.362 -0.856 

SCCWRP -62.365 68.969 1.114 -0.242 

USFS -185.620 175.864 0.848 0.281 

 
Additionally, using the NWIS flow data, predicted and observed values were averaged across all 
gauges by month in order to observe general trends when comparing predictions to observed 
values (Table 4, Figure 4).  Overall, the model generally over-predicts for February, March, and 
April and under-predicts for all other months of the year. 
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Table 4. Comparison of predicted and observed values by month. 

Month Predicted Observed % Change 

Jan 66.1 70.1 -6% 

Feb 109.9 99.1 11% 

Mar 103.9 76.9 35% 

Apr 48.3 40.7 19% 

May 17.7 32.5 -46% 

Jun 8.2 20.8 -61% 

July 7.2 16.3 -56% 

Aug 7.1 14.6 -52% 

Sept 5.4 13.8 -61% 

Oct 7.5 19.6 -62% 

Nov 9.0 22.0 -59% 

Dec 25.6 39.0 -34% 

                     
 

 
 
    Figure 4. Predicted and observed values by month (units in cfs). 
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Although the model generally under-predicts for most months, it has over-predicted for 
approximately 75% of the total observations. And after removing observations that occur in 
February, March, and April (the months showing general over-predictions), the model has over-
predicted for roughly 56% of the observations.   

Classified Validation Comparisons 
To provide additional validation, observed monthly mean flows were classified into categories 
and compared to similarly classified predicted data. Specifically, NWIS gauge observations and 
predicted flows were each classified as “dry” (less than 2 cfs), “intermediate” (2 to 10 cfs) or 
“wet” (>10 cfs), based on the observed mean monthly flow (one classification for each month). 
A prediction that matched observed data was given 1 point, and a prediction that was off by half 
(e.g., prediction of wet and an observation of intermediate) was given 0.5 points. The average 
score across all gauges was 0.66. Table 5 shows example scoring for three validation gauges. 

  
Table 5. Cross validation of three example gauges 

  Gauge 11060400   Gauge 11054000   Gauge 11048200 

 Observed Predicted   Observed Predicted   Observed Predicted  
 (NWIS) (Model) Score   (NWIS) (Model) Score   (NWIS) (Model) Score 
Jan Wet Wet 1   Int Wet 0.5   Dry Wet 0 
Feb Wet Wet 1  Int Wet 0.5  Dry Wet 0 
Mar Wet Wet 1  Wet Wet 1  Dry Wet 0 
Apr Wet Wet 1  Wet Wet 1  Dry Wet 0 
May Int Wet 0.5  Wet Wet 1  Dry Int 0.5 
Jun Int Int 1  Wet Int 0.5  Dry Int 0.5 
Jul Int Int 1  Int Int 1  Dry Int 0.5 
Aug Int Int 1  Int Int 1  Dry Int 0.5 
Sep Int Int 1  Int Int 1  Dry Int 0.5 
Oct Int Int 1  Int Int 1  Dry Int 0.5 
Nov Int Int 1  Int Wet 0.5  Dry Int 0.5 
Dec Int Wet 0.5  Int Wet 0.5  Dry Wet 0 
Average Score  0.92       0.79       0.29 

 
Average scores for each gauge were joined to a geospatial point layer and the interpolation 
method inverse-distance-weighted (IDW) was applied to generally identify regions within the 
watershed where the model performed well under each of the conditions modeled (wet, normal, 
dry). This process was used to generate maps that show model performance in a spatially explicit 
fashion (Figure 5). 
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Overall conditions Dry conditions 

  
Normal conditions Wet conditions 

  

 
 
Figure 5: Maps of model performance under different climate conditions, as estimated by inverse-
distance weighting. Darker (greener) colors indicate better performance. 

3.9 Reference Model Testing 
Reference predictions were generated twice due to the level of over-prediction seen in the initial 
predictions.  Several methods were explored to reduce this bias, but only one (#1 on the list 
below) was found to be helpful: 

1. Optimal number of regression trees 
In order to identify if the model was over fitting to the gauge data during model training, the 
optimal number of regression trees were identified and included during the predicting 
process. The optimal number of boosting iterations or trees for the training model (n =4896) 
was estimated using the gbm.perf function. The relative influence of each variable in the 
model, an assessment of the squared model improvement provided by splitting a tree by a 
given variable averaged across all modeled trees, was evaluated before further prediction. 
The results of this testing generally produced slightly drier predictions and the optimal 
number of regression trees was included in the script used to generate the final reference 
predictions. 
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These methods did not improve bias and were ultimately not adopted. 

2. Iterative addition of variables 
In comparing the reference model for RWQCB 8 to that of RWQCB 9, it was noticed that the 
number of variables used for each of the models differ. During the variable selection process 
for RWQCB 8, 15 variables were selected. Whereas, during the variable selection process for 
RWQCB 9, 8 variables were selected. In order to determine if the model was not responding 
well to the increased number of variables used to train RWQCB 8, an iterative addition of 
variables was performed, starting from 8 and working up until the top 12 variables were 
included. During each iteration, the model was trained and values were predicted to identify 
if the model would predict more accurately. Overall, outputs of this testing resulted in wetter 
predictions than expected predictions with decreasing numbers of included variables.  

3. Removed aspect eastness and topographic wetness index variables 
Aspect eastness and topographic wetness index variables were created by CSUN. The values 
of these variables were not as close to the data values that were used to train the model 
(Gages II dataset) as would have been preferred. In order to determine if removing one, or 
both, of the variables would improve the predictive power of the model, testing was 
performed. Three iterations of testing were performed, two iterations where each of the 
variables were removed independently and a third iteration where both variables were 
removed together. The results of testing are as follows: 

• Of the three tests performed, removing aspect eastness produced the driest output 

• Overall geographic trends were the same 

• Not significant enough to re-run predictions for entire model 

4. Leave-one-out testing 
To identify if any specific gauge was contributing to inaccurate predictions produced by the 
model, a manual n-1 leave one out (LOO) model was performed, iteratively dropping data 
points for 30 of the gauges in the dataset. The results of this testing are as follows: 

• Majority of the predictions were wetter than original reference model 

• Some predictions showed minimal change 

• Not significant enough to re-run predictions for entire model 

 
5. Removal of potentially problematic gauges 

Gauges producing questionable error values (PBIAS, RMSE, etc.) and those with 
anthropogenic influencers upstream were removed from the model on separate iterations to 
identify if the gauges were affecting predictions. The results of this testing are as follows: 

• Wetter predictions 

• Not significant enough to re-run predictions for entire model 
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3.10 Prediction Outputs 
Prediction outputs of the model were converted to two different geospatial data formats. First, 
prediction data was converted to 30m2 raster datasets, with predictions for each month/condition 
(wet, normal, dry) contained within separate raster layers. Additionally, outputs have also been 
joined to NHDPlus flowlines using the “COMID” field as the primary key for the join. Raster 
prediction values for each month/condition were aggregated to generate the mean prediction for 
each “COMID” stretch within the NHDPlus flowline layer. In addition to the mean, the max, 
min, and standard deviation for each of the groups of prediction values aggregated to calculate 
the mean are included for each “COMID” stretch. The final product is one flowline layer with a 
separate field for the following: 

• Predictions – each month/condition (e.g., normal January) in separate fields 

• Max – max value used to aggregate prediction value 

• Min – min value used to aggregate prediction  value 

• Standard deviation – standard deviation of the values used to aggregate prediction value 

4. ANTHROPOGENIC MODEL METHODS  

4.1 Part I: Anthropogenic Model Pilot 

4.1.1 General Process Overview 

Variable Selection and model 
training using point data from 

sample stream gauge locations in 
the R rpart packages

Flow Prediction within the study 
area using vector data of selected 

variables and modeled stream 
network using the R gbm package

Model Validation

 
 

4.1.2 Gauge Selection P0rocess 
Forty-nine stream gauges from within the Santa Ana watershed that were active for at least one 
full month within the target period (1981-2010) were selected to train the anthropogenic model; 
this span of years differs from the reference model (i.e., 1981-2012) because complete flow 
records were not available at certain sites. All stream gauges that meet these qualifications were 
selected. This set included the 4 reference gauges used to model historic flows, mentioned above.  

4.1.3 Included Stream Features 
Streams included in the anthropogenic modeling were selected using the same methods used to 
select reference streams features (section 2.3). However, since the variable data used was pre-
processed and provided tabularly by COMIDs, using raster stream segments was not necessary 
(explanation of variables and source of variables is presented in Tables 1 and 5). 



15 
 

4.1.4 Flow Metrics 
Flow metrics for this model are defined as the probability that anthropogenic flow would be 
inflated or diminished from reference conditions. In order to predict using these classifications, 
training data was classified into “inflated,” “diminished” and “unaltered” categories by dividing 
reference predicted flow (RP) into observed flow (O) (O/RP) for each flow observation at each 
gauge location and then using the following parameters to classify the data into the three 
descriptive categories (Eng et al. 2012): 

• Diminished – O/RP < 90%  

• Inflated – O/RP > 90%  

• Unaltered – O/RP = 90% 

The cutoff for flow being “inflated” or “diminished” occurs at 90% instead of 100% to account 
for a small percentage of the over-prediction that is present within the reference model outputs. 
This is consistent with the methods used by Eng et al. (2012). It should be noted that no flow 
record was classified as being “unaltered,” therefore models predict the probability that stream 
flow would be inflated or diminished from reference conditions. 

The resolution of the variables selected for the anthropogenic model is the extent of NHD 
COMIDs. In order to provide consistency between the dependent (flow comparisons) and 
independent (anthropogenic) variables used, reference prediction values aggregated by COMID 
were used as reference flow (RP) values within the classification calculations.  

4.1.5 Variable Selection Process 
Variables for the anthropogenic models were hand-selected using variables included in Eng et 
al.’s (2012) anthropogenic model as a guide as well as expert feedback from Drs. Eric Stein and 
Raphael Mazor. Fifteen variables were hand-selected from the Environmental Protection 
Agency’s (EPA) StreamCat dataset and included in the variable importance process 
(Environmental Protection Agency n.d.) (Table 6). Variables assigned low values across the 
models were removed and not included in model training. Additionally, 7 pairs of similar 
variables were included in the variable importance process. Of these variables, those receiving an 
overall (across models) lower value of the pair were dropped and not included in model training.  

Table 6. List of hand-selected variables included in the variable selection process for the 
anthropogenic  model. Those with an “x” in the “Included in Model Training” field are the final 
variables selected and included in model training. 

  Variables Description Included in Model 
Training 

PctAg2006Slp20Ws Percent of the upstream watershed classified 
as agriculture (NLCD classes 81 and 82) 
occurring on slopes greater than or equal to 
20% 

x 

PctAg2006Slp10Ws Percent of the upstream watershed classified 
as agriculture (NLCD classes 81 and 82) 
occurring on slopes greater than or equal to 
10% 

 

DamDensWs Density of georeferenced dams within the 
upstream watershed 

x 
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DamNIDStorWs Volume of all reservoirs per unit area of the 
upstream watershed 

x 

DamNrmStorWs Volume all reservoirs (NORM_STORA in NID) 
per unit area of the upstream watershed 

 

PctImp2006Ws Mean of imp2006 values within the upstream 
watershed 

x 

PctImp2006WsRp100 Mean of imp2006 values within the upstream 
watershed within a 100-m buffer of the NHD 
stream lines 

 

RdDensWs Mean of all rddens values within the upstream 
watershed rddens 

x 

RunoffWs Mean of all runoff values within the upstream 
watershed 

x 

NPDESDensWs Density of NPDES sites within the upstream 
watershed 

x 

NPDESDensWsRp100 Density of georeferenced NPDES sites within 
the upstream watershed within a 100-m buffer 
of the NHD stream lines 

 

SuperfundDensWs Density of georeferenced Superfund sites 
within the upstream watershed  

 

SuperfundDensWsRp100 Density of georeferenced Superfund sites 
within the upstream watershedwithin a 100-m 
buffer of the NHD stream lines 

 

TRIDensWs Density of georeferenced Toxic Release 
Inventory sites within the upstream watershed  

 

TRIDensWsRp100 Density of georeferenced Toxic Release 
Inventory sites within the upstream watershed 
within a 100-m buffer (of the NHD stream lines 

 

4.1.6 Model Training and Predictions 
The anthropogenic models employed the train function in the caret package of R to evaluate, 
using resampling, the effect of model tuning parameters on performance, to choose the “optimal” 
model across these parameters, and to estimate the model’s performance from the specified 
training data sets derived from anthropogenic gauges. A two-class (binary) model, classifying 
streams as either diminished or inflated in flow, was chosen given the scale of the training data 
that was readily available within the time frame allowed by this pilot project. Finer scale training 
data, requiring greater processing times, is necessary in our opinion to provide the level of 
accuracy needed to predict specific flow values with any level of confidence.  Therefore, the 
outputs from the anthropogenic models provide a coarser resolution of flow predictions (i.e., 
probability of inflated or diminished flow), compared to the reference models (i.e., mean 
monthly flow). 

A two-class gradient boosted model (gbm) was fit to the training data using 10-fold repeated 
internal cross validation in order to predict inflated versus diminished stream flow probabilities. 
Model performance was measured internally using area under the ROC curve metrics, sensitivity 
and specificity. This model function is designed to pick the tuning parameters associated with the 
best overall results. Specifically, the ROC parameter provided the cut off point for the binary 
prediction with the most accuracy. The relative influence of each variable was also measured to 
determine the reduction in the sum of squares error of the model assigned to each variable.  

4.1.7 Model Validation 
Internal Cross-Validation 
A k-folds internal cross validation within the gbm.step function, which fits the model iteratively 
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to each k-1 equally sized subset of the data and then tests the model on the remaining folds was 
performed 10 times to ensure model validity.  

Prediction Validation 
Anthropogenic predictions were validated by comparing the predicted values against, NWIS 
flow data, SCCWRP provided logger data, and USFS flow data for the region.  

• USGS NWIS Flow Data – observed flow at 49 gauge locations. Mean monthly flow for each 
month/year of available data within target period. Data averaged by month/condition per 
gauge location.  

• SCCWRP Provided Flow Data – observed flow at 45 locations 

• USFS Flow Data – observed flow at 8 locations 

In order to validate the accuracy of the predictions, observed flow was compared against the 
reference prediction at each location. If observed flow was less than predicted reference flow the 
record was classified for validation as being “diminished”, whereas if the observed flow was 
greater than predicted reference flow it was classified as being “inflated.” Next, anthropogenic 
model predictions were classified as being “inflated” or “diminished” based on which of the 
prediction fields had the highest probability. Then, the observed vs. predicted classifications 
were compared against the anthropogenic model prediction classifications to determine if the 
model generally predicted accurately. Using this method, an average of correct predictions was 
calculated using each of the three validation datasets (Table 7). 

 
Table 7. Results of anthropogenic model validation. 

Validation Dataset % Correct 
Predictions 

Number of 
Observations 

NWIS 73% 1643 

SCCWRP 87% 94 

USFS 97% 80 

4.1.8 Prediction Outputs 
Prediction outputs for the anthropogenic model were joined to the NHDPlus flowlines. The final 
product is one flowline layer with a separate field with probability predictions for diminished and 
inflated flow for each month/condition (e.g., normal January). 

4.2 Part II: Regional Comparison of Variable Importance 

4.2.1 Overview of Task 
The objective of this task was to identify important anthropogenic variables within both the 
regional board 8 and 9 watersheds.  This information is important in determining if developing 
separate models for each region is necessary or if the modeling could be combined regionally.  
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4.2.2 Gauge Selection Process 
Forty-five stream gauges from within RWQCB 8 and 33 stream gauges within RWQCB 9 that 
were active for at least one full month within the target period (1981-2010) were selected to use 
for the variable importance process. All stream gauges that meet the listed qualifications were 
selected.  

4.2.3 Flow Metrics 
Two versions of flow metrics were used during the variable importance process. One round of 
variable importance processing consisted of using mean monthly flow (cfs) for each 
month/condition, while another used the anthropogenic classification methods (diminished vs. 
inflated) outlined in section 4.1.4.  

4.2.4 Variable Importance Process 
Nine hand-selected variables from the USGS Gages II (Falcone 2011) dataset were selected for 
the variable importance process (Table 8). Since predictions for RWQCB 9 were only performed 
for March, May, and September, variable importance has only been performed for these three 
months.  
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Table 8. Hand-selected variables used in the variable importance process. 
Variable Description 

ROADS_KM_SQ_KM Road density, km of roads per watershed sq km, from Census 2000 TIGER 
roads 

IMPNLCD06 Watershed percent impervious surfaces from 30-m resolution NLCD06 data 

NPDES_MAJ_DENS Density of NPDES (National Pollutant Discharge Elimination System) "major" 
point locations in watershed; number per 100 km sq. Major locations are 
defined by an EPA-assigned major flag. From download of NPDES national 
database summer 2006. 

PCT_IRRIG_AG Percent of watershed in irrigated agriculture, from USGS 2002 250-m MODIS 
data 

DDENS_2009 Dam density; number per 100 km sq 

STOR_NID_2009 Dam storage in watershed ("NID_STORAGE"); megaliters total storage per 
sq km  (1 megaliters = 1,000,000 liters = 1,000 cubic meters)   

STOR_NOR_2009 Dam storage in watershed ("NORMAL_STORAGE"); megaliters total storage 
per sq km  (1 megaliters = 1,000,000 liters = 1,000 cubic meters) 

MAJ_NDAMS_2009 Number of "major" dams in watershed. Major dams defined as being >= 50 
feet in height (15m) or having storage >= 5,000 acre feet (National Atlas 
definition) 

MAJ_DDENS_2009 Major dam density; number per 100 km sq 

 

4.2.5 Outputs 
Two rounds of variable importance processing were run, one using mean monthly flow and 
another using the binary classification methods. Results from each round are shown in Table 9. 
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Table 9. Variable importance for predicting mean monthly flows or binary classifications (e.g., inflated, diminished) for the 
anthropogenic model. Dashes indicate that the variable was not included in the model. 

        Wet Normal Dry 

  Overall March May Sep March May Sep March May Sep 
Binary classification RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 RB8 RB9 
   ROADS_KM_SQ_KM 19 21 16 23 14 27 20 12 18 16 17 10 19 12 18 24 18 15 18 13 

 IMPNLCD06 15 21 11 25 15 21 15 12 12 18 16 12 18 12 9 19 13 10 12 12 

 NPDES_MAJ_DENS 13 7 10 4 9 4 11 7 12 - 12 6 8 5 15 4 15 10 15 5 

 PCT_IRRIG_AG 9 10 4 13 5 12 8 9 9 12 10 8 10 5 10 14 9 12 9 6 

 DDENS_2009 13 11 10 5 11 9 13 10 13 9 15 11 13 8 9 8 13 11 10 9 

 STOR_NID_2009 6 13 11 9 10 10 10 16 7 14 6 18 5 17 11 9 6 15 8 17 

 STOR_NOR_2009 6 10 12 8 12 10 7 15 8 14 6 17 7 17 10 9 7 16 9 17 

 MAJ_NDAMS_2009 6 3 17 3 18 4 5 9 10 8 5 6 6 13 15 5 7 3 7 11 

 MAJ_DDENS_2009 12 6 8 11 7 4 11 10 10 10 14 12 14 11 3 7 12 8 11 10 
Mean monthly flow                     
 ROADS_KM_SQ_KM 9 11 6 9 13 5 8 7 - 5 - 9 3 12 2 9 - 5 - 15 

 IMPNLCD06 1 8 3 11 3 5 6 6 1 4 1 6 3 8 2 9 - 2 - 9 

 NPDES_MAJ_DENS 16 8 15 4 21 3 9 9 1 3 1 10 4 11 3 16 2 9 2 7 

 PCT_IRRIG_AG 17 8 14 8 16 4 45 8 65 3 62 6 60 2 53 7 57 2 55 6 

 DDENS_2009 1 6 2 5 3 4 7 8 3 3 7 8 6 7 5 7 5 5 6 7 

 STOR_NID_2009 10 29 6 25 9 66 9 8 3 8 6 13 6 40 5 41 6 20 7 41 

 STOR_NOR_2009 11 2 4 25 12 1 3 37 - 52 - 36 - - 1 1 1 43 1 - 

 MAJ_NDAMS_2009 33 16 47 7 21 8 12 14 22 21 15 10 12 15 25 9 23 9 22 8 
  MAJ_DDENS_2009 1 12 2 7 3 3 2 2 3 1 7 2 5 6 5 1 5 4 7 7 
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5. REFERENCE & ANTHROPOGENIC MODELING COMPARISON 

This section highlights the differences between the reference and anthropogenic models to 
facilitate a better understanding of the modeling processes used (Figure 6).  

The main difference between the modeling processes used is that reference modeling was 
performed using one model and anthropogenic modeling was performed using a separate model 
for each month/condition being modeled (36 models). This is due to the methods used to predict 
to months and year conditions (wet, normal, dry) within the reference and anthropogenic models. 
When developing the reference model, the process for predicting to each month/condition was 
built into the independent climate variables as climate variables were tailored to the 
month/condition being modeled. These tailored climate variables were included in the dataset 
used to train the model as well as the dataset used to generate predictions. For model training, 
each record included information on the month and year that flow values were captured. Using 
this information, specific climate variable values associated with the month and year of the flow 
record were used. This trained the model to the different climate conditions that occurred within 
each of the months/conditions being modeled. When it came to predicting, landscape variables 
remained consistent across the 36 input datasets, while the climate variables were tailored to the 
month/condition being modeled. For example, if predicting for a normal January, climate 
variables only consisted of observations that occurred in January under normal climate 
conditions.  

Since the anthropogenic model does not contain variables with specific information associated 
with the months or conditions (wet, normal, dry) being modeled, the flow dates (months and 
years) were separated into 36 groupings each only consisting of flow observations occurring 
during a given month/condition. Each group of specific month/condition data was used to train a 
separate anthropogenic model. Wet, normal, and dry conditions were defined using the same 
condition years used to classify the climate data within the reference model. When predicting, 
one input dataset with anthropogenic variables was used to generate predictions for each model.  
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Reference Model
One model trained using the following:
• All flow data within study period for all 

selected gauges
• All Variable data:

Landscape variables
Climate variables tailored to the 
month/condition (wet, normal, dry).
Each gauge record contains climate 
data that is tailored to the month 
and climate condition present for 
the given year the flow was 
observed.

Input Files
36 input files contain the following:
• Landscape variables
• Climate variables with values that are 

specific to the month and condition 
(year) being predicted

Example: If predicting for a 
normal January, climate 
variables only consist of 
observations that occurred in 
January under normal 
conditions (years).

Anthropogenic Models
36 models trained using the following:
• Flow data specific to the month and condition 

(year) being modeled 
Example: If modeling for a normal 
January, flow data only consists of 
observations that occurred in January 
under normal conditions (years).

• All Variable data:
Only consists of anthropogenic 
variables. 

Input File
One input file contains the following:
• Anthropogenic variables

 
Figure 6. Diagrams explaining differences between reference and anthropogenic models and input   
prediction files. 
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6. SUMMARY OF FLOW SIMULATIONS UNDER REFERENCE AND ANTHROPOGENIC 
CONDITIONS 

Stream flow estimates from the two geodatabases were used to assess hydrologic conditions in 
the Santa Ana region. The purpose of this analysis was to demonstrate where and when stream 
flow conditions are expected to change in each watershed. Modelled flow estimates from 3447 
stream reaches in five catchments were summarized to quantify stream miles under different 
hydrologic conditions. Flow estimates were based on reference scenarios under historical, non-
impacted land use conditions. Monthly flow was estimated for dry, normal, and wet years. 
Likelihood of flow conditions inflating, diminishing, or remaining stable under present-day land 
cover was also summarized for each watershed. 

Historic flows were estimated to be highest in the high elevations of the San Gabriel, San 
Bernardino, and San Jacinto mountains, while the lowest flows were in the inland valleys (Figure 
7). Flow estimates for the Upper Santa Ana were generally higher than those for the Lower Santa 
Ana. Flow estimates also increased as expected under different climate conditions such that 
greater flow was estimated during wet years. 

Estimates were highest during winter to early spring (January through April) when estimated 
flows > 100 cfs were more common, across all watersheds (Figure 8, Table 10). Similarly, low 
flows < 1 cfs were more common during the summer and fall. Unsurprisingly, flows were higher 
in wet conditions than dry, although this impact was more obvious in some watersheds (e.g., 
Upper Santa Ana) than others (e.g., Lower Santa Ana). Late summer flows over 10 cfs were 
limited to small portions of the region—and nearly eliminated from certain watersheds (e.g., San 
Jacinto, Lower Santa Ana), even in wet years. 

Diminishing flow was the most common prediction under anthropogenic conditions, although 
some exceptions were observed (Figure 9, Table 11). Stream reaches were more likely to remain 
stable during the winter, particularly in December. Flow conditions were also more likely to be 
stable during wet years. Interestingly, stream conditions in January under normal precipitation 
were most likely to be inflated, whereas conditions were expected to be stable during wet years. 
Patterns between catchments were generally consistent. 
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Figure 7. Estimated flow under historic (reference) conditions. 
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Figure 8. Percent of stream length for the estimated discharge (< 1 cfs, 1 - 10 cfs, 10 - 100 cfs, > 
100 cfs) under reference conditions. Discharges were also estimated for different climate 
scenarios for years that were dry, normal, or wet. SGB: San Gabriel; LSA: Lower Santa Ana; MSA: 
Middle Santa Ana; USA: Upper Santa Ana; and SJC: San Jacinto. 

 
Figure 9. Percent of stream length for the estimated likelihood of a change in discharge as 
inflating, remaining stable, or diminishing under anthropogenic conditions. Likelihoods were 
estimated for different climate scenarios for years that were dry, normal, or wet. SGB: San 
Gabriel; LSA: Lower Santa Ana; MSA: Middle Santa Ana; USA: Upper Santa Ana; and SJC: San 
Jacinto. 
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Table 10. Stream-length (km) in flow classes in each watershed, by month and climate condition. Flows are in cfs. Dashes indicate zero 
values. 

    Dry   Normal   Wet 

Watershed < 1 1 - 10 10 - 100 > 100   < 1 1 - 10 10 - 100 > 100   < 1 1 - 10 10 - 100 > 100 

San Gabriel              
    Oct -- 8.07 3.79 --  -- 8.12 3.73 --  -- 6.45 5.41 -- 

 Nov -- 5.18 6.68 --  -- 4.18 7.68 --  -- 3.83 8.03 -- 

 Dec -- 2.97 8.89 --  -- 2.09 9.75 0.02  -- 0.62 10.25 0.99 

 Jan -- 1.16 10.70 --  -- 0.01 10.98 0.86  -- 0.01 3.67 8.19 

 Feb -- 0.01 11.44 0.40  -- -- 5.26 6.59  -- -- 2.88 8.98 

 Mar -- 0.77 11.09 --  -- 0.01 10.54 1.31  -- -- 0.58 11.27 

 Apr -- 1.72 10.14 --  -- 0.15 11.52 0.19  -- -- 3.86 7.99 

 May -- 3.33 8.53 --  -- 3.30 8.55 --  -- 0.15 11.29 0.42 

 Jun -- 5.83 6.03 --  -- 5.71 6.14 --  -- 4.82 7.04 -- 

 Jul -- 8.41 3.45 --  -- 8.30 3.55 --  -- 7.35 4.50 -- 

 Aug -- 8.55 3.31 --  -- 8.74 3.12 --  -- 8.25 3.61 -- 

 Sep -- 8.33 3.52 --  -- 7.79 4.06 --  -- 8.35 3.51 -- 

Lower Santa Ana              

 Oct 0.01 7.22 -- --  0.01 7.22 -- --  0.01 7.22 -- -- 

 Nov 0.01 7.22 -- --  0.01 7.22 -- --  0.01 7.22 -- -- 

 Dec -- 7.10 0.14 --  -- 4.58 2.65 --  -- 2.40 4.84 -- 

 Jan -- 3.77 3.47 --  -- 0.18 7.05 --  -- 0.15 6.52 0.57 

 Feb -- 0.23 7.01 --  -- 0.07 6.98 0.18  -- 0.05 6.17 1.01 

 Mar -- 3.98 3.26 --  -- 0.24 6.99 --  -- 0.01 2.98 4.25 

 Apr -- 5.50 1.74 --  -- 1.00 6.24 --  -- 0.06 6.95 0.23 

 May -- 7.21 0.03 --  -- 7.12 0.11 --  -- 0.81 6.42 -- 

 Jun 0.01 7.22 -- --  0.01 7.22 -- --  -- 7.24 -- -- 

 Jul 0.01 7.22 -- --  0.01 7.22 -- --  0.01 7.22 -- -- 

 Aug 0.01 7.22 -- --  0.01 7.22 -- --  0.01 7.22 -- -- 

 Sep 0.01 7.22 -- --  0.01 7.22 -- --  0.01 7.22 -- -- 
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Middle Santa Ana              

 Oct -- 10.30 2.96 --  -- 10.30 2.96 --  -- 9.91 3.34 -- 

 Nov -- 10.18 3.08 --  -- 9.18 4.08 --  -- 8.92 4.34 -- 

 Dec -- 8.05 5.21 --  -- 7.05 5.15 1.06  -- 5.38 5.16 2.72 

 Jan -- 6.31 6.55 0.40  -- 3.41 7.36 2.49  -- 2.45 6.11 4.70 

 Feb -- 2.06 8.94 2.26  -- 0.76 8.83 3.67  0.01 0.08 7.72 5.46 

 Mar -- 7.06 5.91 0.30  -- 2.66 8.07 2.53  0.01 0.03 6.01 7.21 

 Apr -- 7.52 5.65 0.09  -- 5.04 7.09 1.12  0.01 0.10 9.10 4.05 

 May -- 8.49 4.77 --  -- 8.51 4.74 --  -- 4.79 7.15 1.32 

 Jun -- 10.23 3.03 --  -- 10.23 3.03 --  -- 10.01 3.25 -- 

 Jul -- 10.33 2.93 --  -- 10.33 2.93 --  -- 10.30 2.96 -- 

 Aug -- 10.33 2.93 --  -- 10.33 2.93 --  -- 10.33 2.93 -- 

 Sep -- 10.33 2.93 --  -- 10.22 3.04 --  -- 10.33 2.93 -- 

Upper Santa Ana              

 Oct -- 14.02 1.10 --  0.01 13.27 1.83 --  0.01 10.53 4.58 -- 

 Nov -- 10.81 4.31 --  -- 6.75 8.31 0.05  -- 6.57 8.55 -- 

 Dec -- 4.80 10.32 --  -- 2.46 12.53 0.13  -- 1.43 12.56 1.12 

 Jan -- 2.30 12.74 0.07  -- 0.83 12.27 2.03  -- 0.19 4.64 10.29 

 Feb -- 0.26 12.49 2.37  -- 0.19 10.23 4.70  0.01 0.13 2.70 12.28 

 Mar -- 2.58 12.54 --  -- 0.30 12.26 2.55  0.01 0.07 1.39 13.65 

 Apr -- 3.01 12.11 --  -- 1.54 13.55 0.03  -- 0.15 7.89 7.07 

 May -- 6.17 8.95 --  -- 5.81 9.31 --  -- 0.84 14.20 0.08 

 Jun -- 12.25 2.87 --  -- 12.56 2.56 --  -- 9.20 5.92 -- 

 Jul -- 14.30 0.82 --  -- 14.34 0.78 --  -- 13.85 1.27 -- 

 Aug 0.01 14.43 0.68 --  0.01 14.46 0.65 --  0.01 14.39 0.72 -- 

 Sep 0.01 14.43 0.68 --  0.01 13.39 1.72 --  0.01 14.31 0.80 -- 

San Jacinto              

 Oct -- 11.42 0.05 --  -- 11.42 0.05 --  -- 10.95 0.53 -- 

 Nov -- 10.92 0.56 --  -- 10.36 1.12 --  -- 9.93 1.54 -- 

 Dec -- 9.75 1.72 --  -- 7.23 4.24 --  -- 4.06 7.41 -- 

 Jan -- 6.32 5.15 --  -- 2.66 8.63 0.18  -- 0.57 9.56 1.35 



28 
 

 Feb -- 1.06 10.11 0.30  -- 0.24 10.78 0.44  -- -- 9.23 2.24 

 Mar -- 6.77 4.70 --  -- 1.80 9.52 0.15  -- -- 6.07 5.41 

 Apr -- 7.33 4.15 --  -- 5.17 6.30 --  -- -- 10.68 0.80 

 May -- 10.47 1.01 --  -- 10.15 1.32 --  -- 3.86 7.61 -- 

 Jun -- 11.24 0.23 --  -- 11.28 0.20 --  -- 10.90 0.58 -- 

 Jul -- 11.47 -- --  -- 11.47 -- --  -- 11.38 0.09 -- 

 Aug -- 11.47 -- --  -- 11.47 -- --  -- 11.44 0.03 -- 

  Sep -- 11.47 -- --   -- 11.45 0.03 --   -- 11.47 -- -- 
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Table 11. Stream-length (km) in flow alteration class in each watershed, by month and climate condition. Inflated: Probability that flow is 
increased from historic conditions ≥ 0.9. Diminished: Probability that flow is decreased from historic conditions ≥ 0.9. Stable: 
Probability that flow has neither increased nor decreased from historic conditions ≥ 0.8. Dashes indicate zero values. 

    Dry   Normal   Wet 

Watershed Inflated Stable Diminished   Inflated Stable Diminished   Inflated Stable Diminished 

San Gabriel           
     Oct -- -- 11.9  -- -- 11.9  -- 11.9 -- 

 Nov -- -- 11.9  -- -- 11.9  -- 2.1 9.7 

 Dec 2.3 9.6 --  -- 8.8 3.0  -- 11.9 -- 

 Jan -- -- 11.9  6.3 3.7 1.8  -- 11.9 -- 

 Feb -- -- 11.9  0.1 8.7 3.1  -- 11.9 -- 

 Mar -- -- 11.9  -- -- 11.9  -- 11.9 -- 

 Apr -- -- 11.9  -- -- 11.9  -- -- 11.9 

 May -- -- 11.9  -- -- 11.9  -- 11.9 -- 

 Jun -- -- 11.9  -- -- 11.9  -- 11.8 -- 

 Jul -- 2.1 9.8  -- -- 11.9  -- -- 11.9 

 Aug -- -- 11.9  -- -- 11.9  -- 2.1 9.7 

 Sep -- -- 11.9  -- -- 11.9  -- -- 11.9 

Lower Santa Ana           

 Oct -- -- 7.2  -- -- 7.2  -- 7.2 -- 

 Nov -- -- 7.2  -- 0.1 7.1  -- 1.4 5.8 

 Dec 1.3 5.9 --  -- 5.6 1.6  -- 7.2 -- 

 Jan -- -- 7.2  4.5 2.7 --  -- 7.1 0.1 

 Feb -- 0.1 7.1  -- 5.9 1.3  -- 7.2 -- 

 Mar -- -- 7.2  -- -- 7.2  -- 7.2 -- 

 Apr -- 0.1 7.1  -- -- 7.2  -- -- 7.2 

 May -- 0.1 7.1  -- 0.1 7.1  -- 7.0 0.2 
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 Jun -- -- 7.2  -- -- 7.2  -- 7.0 0.2 

 Jul -- 1.3 5.9  -- -- 7.2  -- -- 7.2 

 Aug -- -- 7.2  -- -- 7.2  -- 1.4 5.9 

 Sep -- -- 7.2  -- -- 7.2  -- 0.1 7.1 

Middle Santa Ana           

 Oct -- -- 13.3  -- -- 13.3  -- 13.3 -- 

 Nov -- -- 13.3  -- -- 13.3  -- 1.5 11.7 

 Dec 1.9 11.4 --  -- 10.1 3.1  -- 13.3 -- 

 Jan -- -- 13.3  8.9 4.2 0.1  -- 13.3 -- 

 Feb -- -- 13.3  0.1 11.0 2.2  -- 13.3 -- 

 Mar -- -- 13.3  -- -- 13.3  -- 13.3 -- 

 Apr -- -- 13.3  -- -- 13.3  -- -- 13.3 

 May -- -- 13.3  -- -- 13.3  -- 13.3 -- 

 Jun -- -- 13.3  -- -- 13.3  -- 13.2 0.1 

 Jul -- 1.6 11.7  -- -- 13.3  -- -- 13.3 

 Aug -- -- 13.3  -- -- 13.3  -- 1.6 11.7 

 Sep -- -- 13.3  -- -- 13.3  -- -- 13.3 

Upper Santa Ana           

 Oct -- -- 15.1  -- -- 15.1  -- 15.1 -- 

 Nov -- -- 15.1  -- -- 15.1  -- 0.3 14.9 

 Dec 0.3 14.9 --  -- 14.6 0.5  -- 15.1 -- 

 Jan -- -- 15.1  14.2 0.8 0.1  -- 15.1 -- 

 Feb -- -- 15.1  -- 14.5 0.6  -- 15.1 -- 

 Mar -- -- 15.1  -- -- 15.1  -- 15.1 -- 

 Apr -- -- 15.1  -- -- 15.1  -- -- 15.1 

 May -- -- 15.1  -- -- 15.1  -- 15.1 -- 

 Jun -- -- 15.1  -- -- 15.1  -- 15.0 0.1 
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 Jul -- 0.2 14.9  -- -- 15.1  -- -- 15.1 

 Aug -- -- 15.1  -- -- 15.1  -- 0.3 14.9 

 Sep -- -- 15.1  -- -- 15.1  -- -- 15.1 

San Jacinto           

 Oct -- -- 11.5  -- -- 11.5  -- 11.5 -- 

 Nov -- -- 11.5  -- -- 11.4  -- 0.3 11.2 

 Dec 0.3 11.2 --  -- 10.8 0.7  -- 11.5 -- 

 Jan -- -- 11.5  9.9 1.4 0.1  -- 11.5 -- 

 Feb -- -- 11.4  -- 10.3 1.2  -- 11.5 -- 

 Mar -- -- 11.5  -- -- 11.5  -- 11.5 -- 

 Apr -- -- 11.4  -- -- 11.5  -- -- 11.5 

 May -- -- 11.4  -- -- 11.5  -- 11.4 -- 

 Jun -- -- 11.5  -- -- 11.5  -- 11.4 -- 

 Jul -- 0.2 11.2  -- -- 11.5  -- -- 11.5 

 Aug -- -- 11.5  -- -- 11.5  -- 0.2 11.2 
  Sep -- -- 11.5   -- -- 11.5   -- -- 11.5 
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7. USING THE DATA TO SUPPORT MANAGEMENT DECISIONS 

Flow models may help determine causes of poor biological condition (Figure 10). The circled 
area in the left plot shows a cluster of bioassessment sites with low CSCI scores in the lower 
Santa Ana watershed. However, stable flow (green) is predicted on the mainstem of the Santa 
Ana River and inflated flow (blue) is predicted on the Santiago Creek tributary. Stressors from 
elevated flow could be further investigated as a potential cause of low CSCI scores in the 
Santiago Creek tributary, whereas flow stressors are less likely in the Santa Ana River.  This 
information is helpful for identifying flow as a potential stressor of biological condition or if 
additional information is needed to characterize other stressors. 

 
Figure 10. An example identifying stressors of poor biological condition from model output. 

 
Models may also be used to prioritize locations for additional monitoring or habitat evaluation 
from potential effects of hydromodification (Figure 11). The estimated flows in January under 
normal climatic conditions for the Santa Ana region are shown.  Reference flows increase from 
the lower to upper watersheds. Under anthropogenic conditions, stream reaches are estimated as 
having a mix of stable or inflated flows in most of the region. However, stream reaches in the 
upper watershed near the San Antonia area are projected to have diminished flows (red circle).  
These areas may have non-perennial streams under anthropogenic flows and normal climatic 
scenarios.  An effective approach may prioritize stream monitoring in these areas that are most 
likely to change to non-perennial status.   
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Figure 11. An example identifying streams for prioritizing monitoring efforts in the 
Santa Ana region. 
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