

26<sup>h</sup> Oct 2020

# Potential for microplastics in drinking water to impact health SCCWRP

Dr Stephanie Wright | Environmental Research Group & MRC Centre for Environment and Health School of Public Health | Imperial College London



26<sup>th</sup> Oct 2020

### **Microplastics in Drinking Water – the Headlines**

- Polyethylene terephthalate and polypropylene
- Variation in the minimum size of particles extracted due to different methods
- Maximum concentrations: 628 MP/L tap, 4889 MP/L bottled water
- ... max yearly adult exposure of 458,000 MPs via TW and 3,569,000 MPs via BW.



Danopoulos et al., 2020

**Microplastics Health Symposium** 

26<sup>th</sup> Oct 2020

## What's Going In?



Environmental conditioning

### Imperial College London

### **The Digestive Environment**



### What Goes in Comes Out?



- Some particles may pass through.
- 8 to 416 (median 20) microplastic 50-500 µm per 10 g stool.
- Does the size distribution accurately reflect exposure?

Schwabl et al., 2019; Wright & Mudway, 2019

26<sup>th</sup> Oct 2020

### Imperial College London

## **Active Uptake**

- Peyer's Patches: up to ~5-10 μm (Hussain et al., 2001).
- Rate of uptake increases with decreasing size.
- <0.3 % 2 µm latex MPs (Carr et al., 2012).
- 1,374 MPs via TW (458,000 MPs).
- Surface chemistry.



Large intestine

Stomach

Small intestine

Duod

26<sup>th</sup> Oct 2020

### **Passive Uptake**



- Persorption
- Up to 150 µm PVC particles [dogs]
  Up to 110 µm starch [humans]
  (Volkheimer 1975).
- <0.002% particles absorbed (Steffens et al., 1992).
- 9.16 MPs via TW (458,000 MPs).

26th Oct 2020

# As particle size increases the rate of uptake decreases



Steffens et al., 1992; Carr et al., 2012

26<sup>th</sup> Oct 2020

### Imperial College London

## Where Do Particles Go?

- <1.5 µm = systemically available</p>
- Kidney, spleen, heart, stomach wall, small intestine (PS<sup>-</sup> (50 nm)) (Walczak et al., 2015).
  - Up to **1.7%** of ingested bioavailable
- Mesentary lymph nodes (1000 nm), spleen and liver (50, 500 nm) (Jani et al., 1992).
- Fate, rate = size and surface charge dependent.



26<sup>th</sup> Oct 2020

### What Type of Harm?



- No studies on population-level effects (epidemiology).
- No studies on human subjects (health).
- Animal (in vivo) and cell (in vitro) toxicity studies.

26<sup>th</sup> Oct 2020

#### Imperial College London

## **Toxicity in Animals**

- Effects in the gut:
  - Inflammation (Li et al., 2020)
  - Reduced mucus secretion (Lu et al., 2018)
  - Altered gut microbiota (dysbiosis) (Lu et al., 2018; Jin et al., 2019; Luo et al., 2019; Li et al., 2020)
- Effects in the liver:
  - Changes in fat composition (Lu et al., 2018; Luo et al., 2019)
  - Metabolic disorder (Lu et al., 2018; Luo et al., 2019; Jin et al., 2019)
- No effects:
  - Oxidative stress, inflammation, lesions (Stock et al., 2019)

26<sup>th</sup> Oct 2020

### **Experimental Parameters**

| Reference         | Particle size<br>(um) | Polymer | Dose                                           | Duration                   | Administration |
|-------------------|-----------------------|---------|------------------------------------------------|----------------------------|----------------|
| Lu et al., 2018   | 0.5 and 50            | PS      | 100 and 1000<br>ug/L                           | 5 wk                       | Water          |
| Jin et al., 2019  | 5                     | PS      | 100 and 1000                                   | 6 wk                       | Water          |
| Luo et al., 2019a | 5                     | PS      | 100 and 1000                                   | Gestation and<br>lactation | Water          |
| Luo et al., 2019b | 0.5 and 5             | PS      | 100 and 1000                                   | Gestation                  | Water          |
| Stock et al.,     |                       |         | 4.55 × 10^7,<br>4.55 × 10^7 and<br>1.49 × 10^6 |                            |                |
| 2019              | 1, 4, 10              | PS      | particles                                      | 4 wk                       | Gavage, 3x/wk  |
| Li et al., 2020   | 10–150 μm             | PE      | 6, 60, and 600<br>μg/d                         | 5 wk                       | Feed           |

# **Toxicity in Human Gut Cells**

• No (cyto)toxicity:

**Imperial College** 

London

- PET (100 nm) 1-30 µg/mL (Magri et al., 2019)
- PS beads (50 & 500 nm) up to 100  $\mu$ g/mL (Heseler et al., 2019)
- Mix including PP, tire rubber, PA & PU (50–500 µm) 823.5–1380.0 µg/cm<sup>2</sup> (Lehner et al., 2020)
- Variable effects on membrane integrity
  - Weak effect: 48 h 5 µm PS beads 50 µg/mL genes related to tight junction pathways differentially expressed (Wu, S et al., 2019)
  - No effect: 24 h 0.046 to 5 µm PS beads up to 200 µg/mL (Wu, B et al., 2019; Hesler et al., 2019)



26<sup>th</sup> Oct 2020



#### 26<sup>th</sup> Oct 2020

## **Toxicity in Human Gut Cells**

- Variable ROS generation:
  - Weak effect: 24 h 0.1 and 5 µm PS beads 200 µg/mL (Wu, B et al., 2019)
  - No effect: 48 h 5 μm PS beads 12.5 50 μg/mL (Wu, S et al., 2019)
- Inflammation and immune responses
  - 48 h 5 µm PS beads (Wu, S et al., 2019)
  - No effect: Lehner et al., 2020

26<sup>th</sup> Oct 2020

#### Imperial College London

# **Chemical Toxicity?**

- 1) Leaching during gut transit
- 2) Leaching in a cell
- 3) Release of new chemical products does oxidation in stomach acid generate compounds?
- Rate of leaching relative to time in gut or cell
- Relative concentration in relation to body's equilibrium

26<sup>th</sup> Oct 2020

#### Imperial College London

## **Chemical Toxicity?**



26<sup>th</sup> Oct 2020

# **Chemical Toxicity?**

- Accumulation of phthalate esters in the gut followed the order of sorption: DEHP > DBP > DEP > DMP.
- 30 d increased intestinal permeability and enhanced intestinal inflammation.
- Differentially expressed genes involved in oxidative stress, immune response, lipid metabolism, and hormone metabolism.
- Effects induced by DEHP-contaminated MPs were higher than individual DEHP and MPs.
- BUT when we ingest MP with food, their PhE burden will be in balance with the environmental medium.

#### 26<sup>th</sup> Oct 2020

### Summary

- Humans are likely exposed to microplastics via water consumption
- Still a lot of gaps concerning microplastic uptake, distribution and elimination in the human body
- The observed size distributions thus far indicate low rate of uptake, with little potential to redistribute to secondary organs
- Animal studies indicate mucus secretion and microbiota alteration, in addition to metabolic disorders, but there are question marks over interpretation
- Few cell studies indicate strong toxic effects, but these are mostly preformed using pristine polystyrene
- Need more dose-response studies
- The potential mixture effects need to be investigated.
- Need long term, chronic exposure studies.

#### **Microplastics Health Symposium**

26<sup>th</sup> Oct 2020

# Thank you! Centre for Toxicology Environment MRC MRC and Health Unit