Microplastic characteristics and their relevance to risk assessment

September, 8th, 2021;

Chelsea M Rochman, U of Toronto chelsea.Rochman@utoronto.ca

Microplastics are a diverse & multidimensional contaminant suite

Rochman et al., 2019 ET&C

Overarching Question

- Which microplastic characteristics are most relevant and/or meaningful for risk?
 - Counts vs. mass (vs volume vs surface area)
 - Size, type, shape of microplastics

Concentration of Microplastics

(MASS concentration OR PARTICLE COUNT concentration)

Concentration of Microplastics

(MASS concentration OR PARTICLE COUNT concentration)

Mortality

Overarching Question

- Which microplastic characteristics are most relevant and/or meaningful for risk?
 - Counts vs. mass
 - Size, type, shape of microplastics

Count, shape, colour, size

Mass, maybe size fraction

Patterns for mass and count concentrations don't always align

Can we be flexible??

Kooi and Koelmans 2019 ES&T

Overarching Question

- Which microplastic characteristics are most relevant and/or meaningful for risk?
 - Counts vs. mass
 - Size, type, shape of microplastics

Worth noting:

 The dataset is biased towards PE and PS spheres (and fragments), generally purchased for science and thus less relevant to plastic products (i.e., less complex morphologies and chemistries).

Shape might matter... too early to tell

More complex shapes may be more hazardous?

There is plentiful SPHERE data but very little for FIBRES (research priority).

Polymer type MIGHT matter... too early to tell

YES for numerical concentrations
→ PS particles less toxic than the other polymer types
Ambiquous for mass-based concentrations
→ PE and PS similarly toxic, other polymers tested at high conc. only

SIZE MATTERS

For numerical concentrations

 \rightarrow 100 µm to 1 mm particles most toxic, 1-100 nm particles least

For mass-based concentrations

 \rightarrow 1-100 µm particles most toxic, 1-100 nm particles least

Size Matters

At lower concentrations larger plastics are more hazardous; at higher concentrations smaller particles are more hazardous

Crustacea, Fitness, Organism-level Effects Only

Future Research Needs:

Experiments designed to test whether polymer type and shape are drivers of toxicity.

Koelmans et al., 2020 ES&T

Thank you!

3 - 0344