

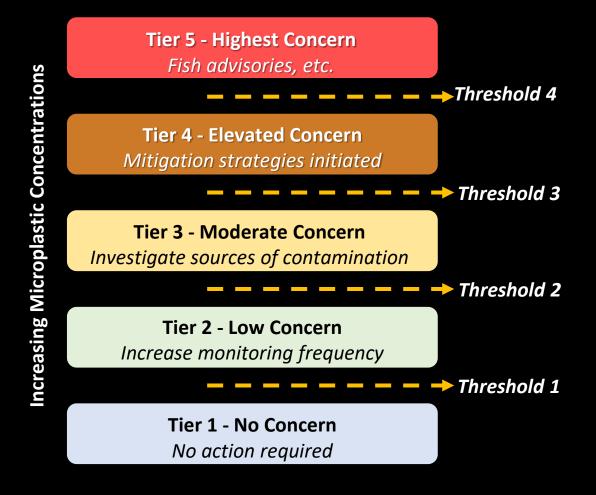
Microplastics Effects in the Ambient Environment

Alvina Mehinto So. Cal. Coastal Water Res. Project

Microplastics Health Effect Workshop September 8, 2021

Rationale and Objectives

- Optimized analytical methods will soon be available to measure microplastics as part of monitoring programs
- Next challenge is understanding the implications of occurrence data
 - I.e., what are the levels of concern for aquatic health?
- This workshop aimed to develop health-based thresholds that will:
 - Support the upcoming legislations
 - Provide context for interpretation of occurrence data

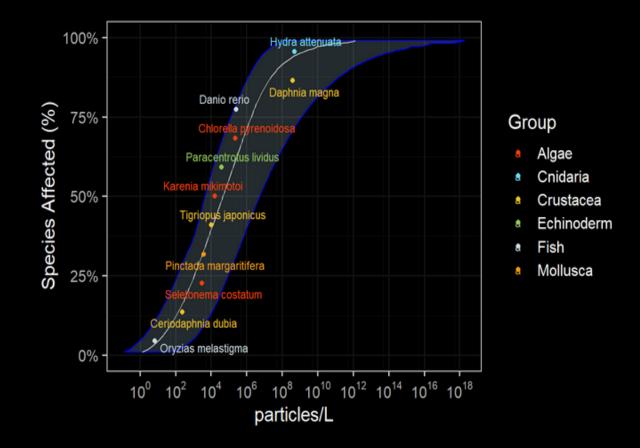

Overall approach

- 1. Select the appropriate decision framework for microplastics assessment in ambient waters
- 2. Develop and apply a process to calculate health-based thresholds
- 3. Conduct expert evaluation of the confidence level in the proposed framework, analytical process and thresholds

Tiered management framework

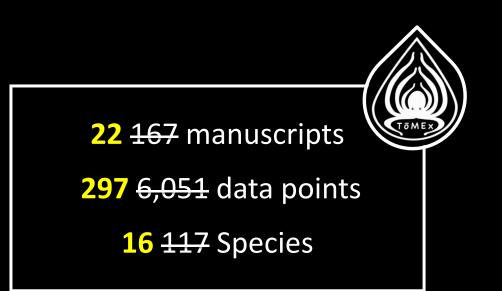
 Experts agreed on the development of multiple thresholds

 Decision framework adapted from the model used by the State of California to monitor emerging contaminants



Progression of management steps

- 1. Invest in monitoring to better characterize the problem
 - Provide funding or encourage inclusion of microplastics into monitoring programs
- 2. Evaluate the pathways for microplastics contamination
 - Include discharge monitoring
- 3. Initiate management planning
 - Identify a water body as impaired
- 4. Implement source control measure and regulate use
 - Classify a water body as inappropriate for recreational and/or commercial use


Deriving microplastics thresholds

- Species Sensitivity Distribution (SSD)
 - Method widely used to set safety limits
 - Summarizes sensitivity of different species to the same stressor
 - Statistical approach to estimate concentration hazardous to a define proportion of the population

Screening toxicity data

- All 167 studies in our database were screened based on the following criteria
 - Minimum reporting requirements (particle characterization, exposure parameters)
 - Minimum of 3 doses + control
 - Established or suspected relationship with higher level of biological organization
- Over 80% of the studies did not meet our QA criteria

SSD parameters for each threshold

Threshold	Hazard concentration (HC)	Data collapsing	HC metric	Biological endpoints
1- Investigative monitoring	HC5	1 st Quartile	Lower 95%	Molecular to Population
2- Discharge monitoring	HC5	1 st Quartile	Mean	Molecular to Population
3- Management planning	HC5	Median	Mean	Organism and Population
4- Source control measures	HC10	Median	Mean	Organism and Population

Comparing across datasets was challenging

- Size matters and species are affected differently by different size ranges
- Data available did not reflect the complexity of microplastics shapes in the environment
- We used a modeling approach to put the data on the same scale and facilitate comparisons
 - Based on Koelmans' lab models (Koelmans et al. 2020; Kooi et al. 2021)

Proposed thresholds- food dilution

• Thresholds based on species specific size distribution (1-5,000 μm)

Threshold	Volume (µm³/L)	Count (particle/L)
1- Investigative monitoring	38	0.5
2- Discharge monitoring	630	8
3- Management planning	1 093	14
4- Source control measures	7 294	94

Proposed thresholds- tissue translocation

- Thresholds based on size distribution between 1- and 83 μm

Threshold	Surface area (µm²/L)	Count (particle/L)
1- Investigative monitoring	16 712	236
2- Discharge monitoring	92 803	1 312
3- Management planning	218 962	3 097
4- Source control measures	1 018 046	14 397

Evaluating confidence level

- Experts had high confidence in the framework and approach to derive the thresholds
- Evaluating the confidence level for the actual numbers is still ongoing
 - Rating will be based on amount and quality of data available
 - .. And consistency of findings among studies

Recommendations to reduce uncertainties

- Better understanding of adverse outcome pathways
- Environmentally relevant exposure scenarios (size, shape and polymer type)
- Dose-response data to better understand effect concentrations (e.g. EC50, LC50)

QUESTIONS?

Alvina Mehinto

Head of Toxicology Department So. Cal. Coastal Water Res. Project

alvinam@sccwrp.org

