Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

Emily B. Graham^{1,2*}, Joseph E. Knelman^{1,3}, Andreas Schindlbacher⁴, Steven Siciliano⁵, Marc Breulmann⁶, Anthony Yannarell⁷, J. M. Beman⁸, Guy Abell⁹, Laurent Philippot¹⁰, James Prosser¹¹, Arnaud Foulquier¹², Jorge C. Yuste¹³, Helen C. Glanville¹⁴, Davey L. Jones¹⁴, Roey Angel¹⁵, Janne Salminen¹⁶, Ryan J. Newton¹⁷, Helmut Bürgmann¹⁸, Lachlan J. Ingram¹⁹, Ute Hamer²⁰, Henri M. P. Siljanen²¹, Krista Peltoniemi²², Karin Potthast²³, Lluís Bañeras²⁴, Martin Hartmann²⁵, Samiran Banerjee²⁶, Ri-Qing Yu²⁷, Geraldine Nogaro²⁸, Andreas Richter²⁹, Marianne Koranda³⁰, Sarah C. Castle³¹, Marta Goberna³², Bongkeun Song³³, Amitava Chatterjee³⁴, Olga C. Nunes³⁵, Ana R. Lopes³⁵, Yiping Cao³⁶, Aurore Kaisermann³⁷, Sara Hallin³⁸, Michael S. Strickland³⁹, Jordi Garcia-Pausas⁴⁰, Josep Barba⁴¹, Hojeong Kang⁴², Kazuo Isobe⁴³, Sokratis Papaspyrou⁴⁴, Roberta Pastorelli⁴⁵, Alessandra Lagomarsino⁴⁵, Eva S. Lindström⁴⁶, Nathan Basiliko⁴⁷ and Diana R. Nemergut^{1,48}

¹Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO

²Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA

³US Department of Energy, Joint Genome Institute, Walnut Creek, CA

⁴Department of Forest Ecology, Federal Research and Training Centre for Forests, Bundesforschungs- und Ausbildungszentrum für Wald, Vienna, Austria

⁵Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada

⁶Helmholtz Centre for Environmental Research – Centre for Environmental Biotechnology, Leipzig, Germany

⁷Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL

⁸Life and Environmental Sciences and Sierra Nevada Research Institute, University of California – Merced, Merced, CA

⁹School of Medicine, Flinders University, Adelaide, SA, Australia

¹⁰Institut National de la Recherche Agronomique – Agroecology, Dijon, France

¹¹Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK

¹²Irstea, UR MALY, Centre de Lyon-Villeurbanne, Villeurbanne, France

¹³Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain

¹⁴Environment Centre Wales, Bangor University, Gwynedd, UK

¹⁵Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria

¹⁶Häme University of Applied Sciences, Hämeenlinna, Finland

¹⁷School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI

¹⁸Department of Surface Waters, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland

¹⁹Centre for Carbon, Water and Food, The University of Sydney, Sydney, NSW, Australia

²⁰Institute of Landscape Ecology, University of Münster, Münster, Germany

²¹Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland

²²Natural Resources Institute, Vantaa, Finland

²³Institute of Soil Science and Site Ecology, Technische University, Dresden, Germany

²⁴Institute of Aquatic Ecology, Facultat de Ciències, University of Girona, Girona. Spain

²⁵Institute for Sustainability Sciences – Agroscope, Zurich, Switzerland

- ²⁶CSIRO Agriculture Flagship, Crace, ACT, Australia
- ²⁷Department of Biology, University of Texas at Tyler, Tyler, TX
- ²⁸EDF R&D, National Hydraulics and Environmental Laboratory, Chatou, France
- ²⁹Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- ³⁰Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- ³¹Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT
- ³²Centro de Investigación y Docencia Económicas Consejo Superior de Investigaciones Científicas, Valencia, Spain
- ³³Department of Biological Science, Virginia Institute of Marine Science, Gloucester Point, VA
- ³⁴AES School of Natural Resources Sciences, North Dakota State University, Fargo, ND
- ³⁵LEPABE Laboratory for Process Engineering, Environmental, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- ³⁶Southern California Coastal Water Research Project Authority, Costa Mesa, CA
- ³⁷UMR, Interactions Sol Plante Atmosphère, INRA Bordeaux, Villenave d'Ornon, France
- ³⁸Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- ³⁹Department of Biological Sciences, Virginia Polytechnic Institute, State University, Blacksburg, VA
- ⁴⁰Centre Tecnològic Forestal de Catalunya, Solsona, Spain
- ⁴¹Centre de Recerca Ecològica i Aplicacions Forestals, Cerdanyola del Vallès, Barcelona, Spain
- ⁴²School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
- ⁴³Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- ⁴⁴Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, Puerto Real, Spain
- ⁴⁵Research Centre for Agrobiology and Pedology, Florence, Italy
- ⁴⁶Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
- ⁴⁷Vale Living with Lakes Centre and Department of Biology, Laurentian University, Sudbury, ON, Canada
- ⁴⁸Biology Department, Duke University, Durham, NC

ABSTRACT

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

Full Text
http://ftp.sccwrp.org/pub/download/DOCUMENTS/JournalArticles/915_MicrobesEnginesEcosystemFunction.pdf