Core principles of the California Current Acidification Network: Linking chemistry, physics, and ecological effects.

McLaughlin¹, K., S.B. Weisberg¹, A.G. Dickson², G.E. Hofmann³, J.A. Newton⁴, D. Aseltine-Neilson⁵, A. Barton⁶, S. Cudd⁶, R.A. Feely⁷, I.W. Jefferds⁸, E.B. Jewett⁹, T. King¹⁰, C.J. Langdon¹¹, S. McAfee¹², D. Pleschner-Steele¹³, and B. Steele¹⁴.

ABSTRACT

Numerous monitoring efforts are underway to improve understanding of ocean acidification and its impacts on coastal environments, but there is a need to develop a coordinated approach that facilitates spatial and temporal comparisons of drivers and responses on a regional scale. Toward that goal, the California Current Acidification Network (C-CAN) held a series of workshops to develop a set of core principles for facilitating integration of ocean acidification monitoring efforts on the US West Coast. The recommended core principles include: (1) monitoring measurements should facilitate determination of aragonite saturation state (Ω_{arag}) as the common currency of comparison, allowing a complete description of the inorganic carbon system; (2) maximum uncertainty of ± 0.2 in the calculation of Ω_{arag} is required to adequately link changes in ocean chemistry to changes in ecosystem function; (3) inclusion of a variety of monitoring platforms and levels of effort in the network will insure collection of high-frequency temporal data at fixed locations as well as spatial mapping across locations; (4) physical and chemical oceanographic monitoring should be linked with biological monitoring; and (5) the monitoring network should share data and make it accessible to a broad audience.

Full text: 866 CorePrinAcidNetwork mclaughlin.pdf

¹Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA.

²Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.

³University of California, Santa Barbara, Santa Barbara, CA, USA.

⁴Northwest Association of Networked Ocean Observing Systems, and University of Washington, Seattle, WA, USA.

⁵California Department of Fish and Wildlife, Sacramento, CA, USA.

⁶Whiskey Creek Shellfish Hatchery, Tillamook, OR, USA

⁷National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory, and University of Washington, Seattle, WA, USA.

⁸Penn Cove Shellfish, Coupeville, WA, USA.

⁹NOAA Ocean Acidification Program, Washington, DC, USA.

¹⁰Washington Sea Grant, Shelton, WA, USA.

¹¹Oregon State University, Newport, OR, USA.

¹²California Ocean Science Trust, Palo Alto, CA, USA

¹³California Wetfish Producers Association, Buellton, CA, USA.

¹⁴California sea urchin diver, Buellton, CA, USA.