SCCWRP #839

Effect of ecological group classification schemes on performance of the AMBI benthic index in US coastal waters

David J. Gillett¹,*, Stephan B. Weisberg¹, Treda Grayson², Anna Hamilton³, Virginia Hansen⁴, Erik W. Leppo³, Marguerite C. Pelletier⁵, Angel Borja⁶, Donald Cadien⁷, Daniel Dauer⁸, Robert Diaz⁹, Margaret Dutch¹⁰, Jeffrey L. Hyland¹¹, Michael Kellogg¹², Peter F. Larsen¹³, Jeffrey S. Levinton¹⁴, Roberto Llansó¹⁵, Lawrence L. Lovel⁷, Paul A. Montagna¹⁶, Dean Pasko¹⁷, Charles A. Phillips¹⁸, Chet Rakocinski¹⁹, J. Ananda Ranasinghe¹, Denise M. Sanger²⁰, Heliana Teixeira²¹, Robert F. Van Dolah²⁰, Ronald G. Velarde²², Kathy I. Welch¹⁰

¹Southern California Coastal Water Research Project, Costa Mesa, CA, USA

²United States Environmental Protection Agency, Office of Water, Washington DC, USA

³Tetra Tech., Owings Mills, MD, USA

⁴USEPA, Gulf Ecology Division,, Gulf Breeze, FL, USA

⁵USEPA, Atlantic Ecology Division, Narragansett, RI, USA

⁶AZTI Tecnalia Marine Research Division, Herrera Kaia Portualdea n/s, Pasaia, Spain

⁷Ocean Monitoring Research Group County Sanitation Districts of Los Angeles County, Carson, CA, USA

⁸Department of Biological Sciences, Norfolk, VA 23529, USA

⁹Virginia Institute of Marine Science, Gloucester Point, VA, USA

¹⁰Washington State Department of Ecology, Olympia, WA, USA

¹¹NOAA, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA

¹²Oceanside Biology Laboratory, San Francisco Public Utilities Commission, San Francisco, CA, USA

¹³Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA

¹⁴Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA

¹⁵Versar Inc. ESA, Columbia, MD, USA

¹⁶Harte Research Institute, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA

¹⁷Orange County Sanitation District, Fountain Valley, CA, USA

¹⁸Dancing Coyote Environmental, Aliso Viejo, CA, USA

¹⁹The University of Southern Mississippi, Gulf Coast Research Laboratory, Ocean Springs, MS, USA

²⁰South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, SC, USA ²¹European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Water Resources Unit, Ispra (VA), Italy

²²City of San Diego, Marine Biology Laboratory, San Diego, CA, USA

ABSTRACT

The AZTI Marine Biotic Index (AMBI) requires less geographically-specific calibration than other benthic indices, but has not performed as well in US coastal waters as it has in the European waters for which it was originally developed. Here we examine the extent of improvement in index performance when the Ecological Group (EG) classifications on which AMBI is based are derived using local expertise. Twenty- three US benthic experts developed EG scores for each of three regions in the United States, as well as for the US as a whole. Index performance was then compared using: (1) EG scores specific to a region, (2) national EG scores, (3) national EG scores supplemented with standard international EG scores for taxa that the US experts were not able to make assignments, and (4) standard international EG scores. Performance of each scheme was evaluated by diagnosis of condition at predefined good/bad sites, concordance with existing local benthic indices, and independence from natural environmental gradients. The AMBI performed best when using the national EG assignments augmented with standard international EG values. The AMBI using this hybrid EG scheme performed well in differentiating apriori good and bad sites (>80% correct classification rate) and AMBI scores were both concordant and correlated (rs = 0.4-0.7) with those of existing local indices. Nearly all of the results suggest that assigning the EG values in the framework of local biogeographic conditions produced a better-performing version of AMBI. The improved index performance, however, was tempered with

apparent biases in score distribution. The AMBI, regardless of EG scheme, tended to compress ratings away from the extremes and toward the moderate condition and there was a bias with salinity, where high quality sites received increasingly poorer condition scores with decreasing salinity.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.