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MOLECULAR APPROACHES IN FRESHWATER ECOLOGY

Comparison of four species-delimitation methods
applied to a DNA barcode data set of insect larvae
for use in routine bioassessment

Bryan P. White'#, Erik M. Pilgrim®®, Laura M. Boykin®°, Eric D. Stein®”7, and Raphael D. Mazor'®

ISouthern California Coastal Water Research Project, Costa Mesa, California 92626 USA

2US Environmental Protection Agency, Ecological Exposure Research Division, National Exposure Research Laboratory, Cincinnati,
Ohio 45268 USA

3ARC Centre of Excellence, Plant Energy Biology, M316, University of Western Australia, 35 Stirling Highway, Crawley 6009,
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Abstract: Species delimitation (grouping individuals into distinct taxonomic groups) is an essential part of evo-
lutionary, conservation, and molecular ecology. Deoxyribonucleic acid (DNA) barcodes, short fragments of the
cytochrome ¢ oxidase subunit I (COI) gene, are being used in environmental bioassessments to assign speci-
mens to putative species, but no method for delimiting DNA barcodes into species-level entities is universally
accepted. We investigated the effect of delimitation methods on outcomes of bioassessments based on DNA
barcodes. We used 2 tree-construction methods (neighbor joining [NJ], maximum likelihood [ML]) and 4 clas-
ses of species-delimitation criteria (distance-based, bootstrap support, reciprocal monophyly, and coalescent-
based) with a DNA barcode data set consisting of 3 genera and 2202 COI sequences. We compared species de-
limitations for Baetis (Ephemeroptera:Baetidae), Eukiefferiella (Diptera:Chironomidae), and Simulium (Diptera:
Simuliidae) from different streams. We assessed congruence among trees and compared species abundances
and estimated species richness among methods. NJ followed by use of a standard barcoding distance cutoff
(2%) yielded the greatest number of putative species. All other delimitation methods yielded similar, but lower,
richness. Differences in species delimitations produced by various methods might have been caused by con-
founding factors, such as possible parthenogenesis in Baetis and rare haplotypes in abundant species of Baetis
and Simulium. Eukiefferiella presented the fewest discrepancies among delimitations. Each method can be re-
garded as producing a separate line of evidence contributing to the delimitation of separately evolving lineages.
The increased resolution offered by DNA barcoding can yield important insights into the natural history of or-
ganisms, but the power of these observations is limited without the use of multigene and multilocus data sets.
Key words: DNA barcoding, bioassessment, biomonitoring, species delimitation, coalescent theory, cytochrome
oxidase I, COI, benthic macroinvertebrates, GMYC

Deoxyribonucleic acid (DNA) barcoding is a molecular
taxonomic method wherein an ~650-base pair (bp) region
of the cytochrome ¢ oxidase subunit I (COI) mitochondrial
gene is used as a species-level molecular identification
marker in animals (Hebert et al. 2003). DNA barcoding
has the potential to affect the field of bioassessment (also
called biomonitoring) where biological measures, such as
species richness and taxonomic composition, are used to
draw conclusions about the health of an ecological system.
Incorporation of DNA barcode methods into bioassess-
ment programs has been evaluated theoretically (Jones
2008) and empirically (Pilgrim et al. 2011, Sweeney et al.

2011, Stein et al. 2013, 2014). The conclusion is that mo-
lecular methods might improve our view of stream diver-
sity because they provide increased taxonomic resolution.
In most bioassessment programs, estimates of species
richness are obtained via morphological identification.
However, this method can be difficult and time consum-
ing, and morphology cannot be used to differentiate cryp-
tic species (Bickford et al. 2007) or species complexes
(Hajibabaei et al. 2006). The ability to differentiate such
species is important because presently unknown differ-
ences in their tolerance to pollution, reproductive timing,
feeding mechanisms, or other ecological traits may provide
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clues regarding the health of a stream system (Verberk
et al. 2013). Moreover, species-delimitation methods are
relevant to more than the outcomes of routine bioassess-
ment programs. They may have utility in the fields of
criminal wildlife forensics (Dawnay et al. 2007), biodiver-
sity indexing (Janzen et al. 2009), detection of fish-market
replacements (Maralit et al. 2013), ecology (Valentini et al.
2009), and biosecurity (Boykin et al. 2012). In each applica-
tion, routine, repeated sampling of organisms should yield
consistent sets of species designations across different lab-
oratories.

Use of molecular taxonomic methods, such as DNA bar-
coding, to identify unknown organisms or organisms im-
practical to identify to species level on a routine basis has
led to questions related to how to delimit species based
only on a DNA barcode. Rapid decreases in the cost of
high-throughput Sanger sequencing and the advent of
Next Generation Sequencing (NGS; Shendure and Ji 2008)
have led to an exponential increase in the rate at which DNA
barcodes are being uploaded to public databases. Thus far,
1.2 million COI sequences have been released on the Bar-
code of Life Data System (BOLD; Ratnasingham and Hebert
2007; www.barcodinglife.org), as part of the International
Barcode of Life Project (iBOL, http://ibol.org/), and another
1 million remain uploaded but unreleased. This vast amount
of data has created a pressing need for efficient, objective,
and readily reproducible algorithms for species delimitation.
Many proponents of DNA barcoding have suggested the use
of measures of genetic distance to designate species. Inves-
tigators have recommended species limits based on an aver-
age genetic distance of >2% (see below) among individuals
in different putative species (Ball et al. 2005, Zhou et al.
2009) or on a level of interspecific variation that is 10x the
intraspecific variation (Hebert et al. 2004). Application of
coalescent-theoretic methods (Knowles and Carstens 2007,
Rodrigo et al. 2008, Zaldivar-Riverdn et al. 2010, Zhang et al.
2011, Nuiiez et al. 2012, Vuataz et al. 2012), the principal of
genealogical sorting (Cummings et al. 2008), machine learn-
ing methods (Bertolazzi et al. 2009, Weitschek et al. 2013), a
heuristic-search-strategy method (O’Meara 2010), Bayesian
statistical methods (Yang and Rannala 2010, Zhang et al.
2011), and a multimethod ‘tip to root’ approach (Boykin et al.
2012) have been proposed as ways to increase objectivity
and biological relevance of species delimitation. We eval-
uated 4 major classes of species-delimitation criteria (the
criteria by which a ‘haplotype cluster’ is granted a species-
level status): genetic distance-based (DB), bootstrap sup-
port (BSS), reciprocal monophyly (RM), and coalescent-
based (CB). We applied these criteria by constructing
2 types of phylogenetic trees. First, we constructed neigh-
bor joining trees (NJ), which implement a clustering algo-
rithm that always finds the ‘first best’ (balanced minimum
evolution) tree given the data set. Second, we constructed
maximum likelihood trees (ML), which implement an al-
gorithm that heuristically searches a subset of all possible
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trees to find the highest log-likelihood (InL) tree. We fo-
cused on 3 insect genera that are widely encountered in
freshwater bioassessment and whose species are difficult
to identify morphologically: Baetis (Ephemeroptera:Bae-
tidae), Eukiefferiella (Diptera:Chironomidae), and Simu-
lium (Diptera:Simuliidae). Decisions regarding species de-
limitation may affect bioassessment metrics. Therefore,
we addressed the following questions: 1) Do different de-
limitation methods yield different numbers of detectable
species? 2) Are differences among methods in the number
of species detected associated with the number of haplo-
types (i.e., are haplotype-rich species more difficult to de-
limit, or vice versa)? 3) Do estimates of species richness
produced by different delimitation methods differ among
sampling sites?

METHODS

Study site and genera

We obtained a subset (2202) of COI sequences from
Baetis, Eukiefferiella, and Simulium from a bioassess-
ment study of 5 streams in the Los Angeles, California
(USA), area (Stein et al. 2014). Benthic macroinverte-
brate samples were taken from 2 reaches at each stream.
Expert taxonomists identified specimens morphologically
using a standard level of taxonomic effort. These experts
identified 3 distinct species of Baetis (Baetis tricaudatus,
Baetis adonis, and a 3rd unknown, but recognizably dis-
tinct, species Baetis sp. CA), whereas they identified Sim-
ulium and Eukiefferiella species only to genus. We treated
data for each genus separately. The sequences used in
our study are publicly available under the BOLD projects
CFWIA through CFWIJ (see Table S1 for a complete list
of BOLD sample identification codes and GenBank ac-
cessions).

Sequence data and haplotype collapsing

We selected closely related genera as outgroups for
each data set (Table 1). We used a minimum sequence
length requirement of 500 base pairs (bp) to reduce un-
certainty during NJ and phylogenetic analyses. We trans-
lated sequences to amino acids in MEGA (version 5.1;
Tamura et al. 2011) and aligned them in MUSCLE (ver-
sion 3.8.31; Edgar 2004). The final alignment was cor-
rected manually so that sequences lacked gaps and con-
sisted of an uninterrupted open-reading-frame, which led
us to conclude that no insertions, deletions, or pseudo-
genes were present in the data sets. Following alignment,
we used an open-source, custom Perl script developed for
this analysis (dnab_collapse.pl, https://github.com/bpwhite
/bioinformatics-toolbox) to reduce the number of individ-
ual sequences and, thus, the computational requirements
for each analysis. Important information, such as location,
haplotype identification, and taxonomic identification were
preserved. The end result of this process was sequences
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Table 1. Number of species identified in each genus with each
species-delimitation method. ML = maximum likelihood, NJ =
neighbor-joining, CB = coalescent-based, RM = reciprocal
monophyly, BSS = bootstrap support.

Taxon ML+CB ML+RM NJ+BSS NJ+DB
Baetis 3 4 4 5
Eukiefferiella 10 10 10 9
Simulium 8 7 7 10

that were either unique haplotypes or haplotypes that were
present at >2 sites. Each remaining sequence was automat-
ically annotated with the abundance of that haplotype at
each location so that information about the diversity and
abundance of haplotype clusters could be garnered quickly.

Intraspecific-variation method (NJ+DB)

The DB criterion is based on use of an a priori genetic
distance threshold as the cutoff for deciding whether 2 in-
dividuals are members of the same species. This criterion
is predicated on the idea that intraspecific genetic varia-
tion is small relative to interspecific variation. For exam-
ple, if the distance cutoff is 2% (Herbert et al. 2003, Meyer
and Paulay 2005, Rivera and Currie 2009, Sweeney et al.
2011), and the calculated genetic distance between indi-
vidual A and B is 2.5%, then the 2 individuals are assigned
to different species. Variations on this method include use
of average intraspecific distances (Hebert et al. 2004, Zhou
et al. 2009, 2011) or variable thresholds depending on the
taxa (Sweeney et al. 2011). The DB method typically has
been applied to NJ trees computed with the algorithm of
Saitou and Nei (1987) and the Kimura-2-parameter (K2P;
Kimura 1980) measure of genetic distance.

We applied a DB criterion by calculating the nearest-
neighbor distance (smallest interspecific distance) between
haplotype clusters using the Species Delimitation (ver-
sion 1.04; Masters et al. 2011) plugin for Geneious (ver-
sion 5.6.5; Biomatters, http://www.geneious.com/). Two
haplotype clusters that contained a pair of nearest neigh-
bors with >2% K2P distance from each other were consid-
ered different putative species.

Statistical methods (NJ+BSS and ML+RM)

BSS is the proportion of bootstrap replicates in which
particular sequences clustered together when the NJ al-
gorithm is applied (Felsenstein 1985). For example, if a
node achieves 95% bootstrap support, then that node
and all of its children were grouped together in 95% of
the bootstrap replicates. This method has been used in
large-scale DNA barcoding studies by Zhou et al. (2009,
2011), Lakra et al. (2011), and Mecklenburg et al. (2011).

We implemented the NJ+BSS method using 1000 boot-
strap replicates in MEGA. We used K2P distance because
it is considered ‘standard’ in DNA barcode studies (Hebert
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et al. 2003, 2004, Zhou et al. 2009, 2011, Oceguera-Figueroa
et al. 2010, Sweeney et al. 2011). However, Srivathsan and
Meier (2011) and Collins et al. (2012) recently suggested
that K2P is rarely the best nucleotide model for COI-only
data sets. We applied the BSS criterion to the bootstrapped
NJ tree to define putative species based on a bootstrap sup-
port cutoft of 95%.

RM is a statistical approach based on the principal that
individuals from different species will separate consistently
into distinct monophyletic clades with >95% statistical sup-
port. RM can be applied to either maximum parsimony
(MP) or ML trees, but a more rigorous test of monophyly
(not done here) requires that the observed branching pat-
tern be tested against a random branching pattern (Ro-
senberg 2007).

We implemented the ML+RM method by first identi-
fying the optimal nucleotide model for each data set with
jModelTest (version 0.1.1; Posada 2008). Following nucle-
otide model selection, we constructed ML phylogenetic
trees using a Bayesian phylogenetic program, BEAST (ver-
sion 1.7.4; Drummond et al. 2012) with a coalescent-tree
prior and 3 different molecular clock models: strict, relaxed
lognormal, and relaxed exponential. Each clock model be-
gan with a normally distributed clock rate with a mean of
0.02 substitutions/million y (s/my) (Brown et al. 1979) and
a standard deviation of 0.005 s/my. We ran a Monte Carlo
Markov Chain (MCMC) simulation for 10 million steps
and sampled trees from the MCMC at 1000-step intervals.
We checked parameter values for effective sample sizes
(ESS) >200 and convergence by plotting marginal probabil-
ities in Tracer (version 1.5; Drummond et al. 2012). We
discarded the first 20% of trees sampled as burn-ins. We
loaded the remaining 8001 trees into TreeAnnotator (ver-
sion 1.7.4; Drummond et al. 2012) for construction of the
maximum clade credibility (MCC) tree and calculation of
posterior probabilities and node ages. After trees were an-
notated, we used a Bayes factor (BF) analysis to test whether
the data were clock-like (Drummond and Rambaut 2007).
In this analysis, the marginal likelihoods of each tree are es-
timated using the harmonic mean, and the possible im-
provement of one model over another is assessed by divid-
ing their marginal likelihoods when those models differ by
only 1 parameter (in this case, the clock model). The ratio
of this division is the BF. An improvement of one model
over another is considered significant if BF > 2. Following
selection of the best tree clock model, the MCC was anno-
tated in FigTree (version 1.4; http://tree.bio.ed.ac.uk/soft
ware/figtree/).

Modeling method (ML+CB)

CB is a modeling approach derived from population
genetics and is based on the principal that individuals
that possess different species-level coalescent points (hypo-
thetical ancestors of haplotypes, alleles, or species from
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which point all current members of a population were de-
scended) are members of different species. Here we con-
sider the COI gene tree to be analogous to the species tree,
but in many cases, gene trees do not match species trees
(Liu and Pear] 2007). Analysis of multiple genes typically is
required to obtain an accurate species coalescent point.

A custom R script was created (dnab_coalesce.r, also
available from: https://github.com/bpwhite/bioinformatics
-toolbox) to run the CB species-delimitation analysis. This
script makes use of the splits package (http://r-forge.r
-project.org/projects/splits/), and imports the resultant
MCKC trees for each data set into the General Mixed Yule
Coalescent (GMYC) function (gmyc). The gmyc function
finds the ML threshold for the transition threshold from
a Yule process (interspecific branching rates) to a coales-
cent process (intraspecific branching rates) (Pons et al.
2006, Fontaneto et al. 2007, Knowles and Carstens 2007,
Monaghan et al. 2009, Nuilez et al. 2012, Vuataz et al.
2012). A likelihood ratio test is automatically performed
to compare the coalescent model to a Yule model of evolu-
tion, and if the ratio results in a p-value <0.05, the coales-
cent model is accepted over the Yule model and the
putative species entities can be considered statistically sig-
nificant. We ran the GMYC model test for a single ML
threshold and multiple ML thresholds, wherein the thresh-
old was allowed to vary across lineages. We compared the
results of the 2 models with a y* goodness-of-fit test (also
available in the splits package under the function com-
pare). The multiple threshold test was considered an im-
provement over the single threshold test if the data fit that
model significantly better (p < 0.05). After model selection,
the dnab_coalesce.r script outputs the resultant species
delimitation using the spec.list function into a comma-
separated-value (CSV) format for import into other pro-
grams.

Species richness and abundance calculations

We assigned 4 putative species identifications (one for
each method) to each individual sequence and used a %
goodness-of-fit test to assess whether species richness
was affected by the method used. We assessed the effects
of species-delimitation methods on stream species rich-
ness by summing the number of putative species en-
countered in each stream for each method. We assessed
where shifts in the abundance of species might occur by
summing the number of individuals given a particular
species identification for each method.

RESULTS

Data reduction of the 3 data sets decreased the num-
bers of sequences from 951 to 201 for Baetis, 906 to 389
for Simulium, and 345 to 32 for Eukiefferiella. The num-
ber of putative species did not differ among delimitation
methods for any genus (x’*rapie 2 = 1.327, p > 0.05).
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Intraspecific variation method (NJ+DB)

The NJ+DB method delimited more putative Baetis
species than all other methods (Table 1) because it split
Baetis 1 into 2 species (1 and 2) (Fig. 1A, B). The NJ+DB
method delimited fewer putative Eukiefferiella species
than all other methods (Table 1) because it lumped Eu-
kiefferiella 5 and 6 into 1 species. The genetic distance
between Eukiefferiella 5 and 6 was 1.9%, thus species 6
missed the cutoft by 0.1% (Fig. 2A, B). The NJ+DB method
delimited more putative Simulium species than all other
methods (Table 1) because it split Simulium 1 into 2 spe-
cies (1 and 2) and Simulium 9 into 2 species (9 and 10)
(Fig. 3A, B).

Statistical methods (NJ+BSS and ML+RM)

Both statistics-based methods resulted in identical spe-
cies delimitations in all 3 genera, but the use of ML tree
construction methods increased support values for many
nodes over the bootstrap support values (Figs 1-3).

Modeling method (ML+CB)

Each data set had a different nucleotide model.
Hasegawa-Kishino-Yano + gamma [HKY+G] was selected
for Baetis, general time reversible + gamma (GTR+G) was
selected for Simulium, and general time reversible + in-
variant + gamma (GTR+I+G) was selected for Eukieffe-
riella (Table 2). The lognormal and exponential relaxed
clock models were not significant improvements over the
strict clock model for any genus (BF < 2 in all cases), so
the strict clock model was used for both Baetis and Euki-
efferiella. In the case of Simulium, negative branch lengths
in the strict clock tree made the application of the GMYC
model impossible. We used the lognormal clock tree in-
stead because it had only a slightly faster mean rate than
the strict clock tree (strict: 0.199 vs lognormal: 0.244). The
Simuliumm MCMC may have been undersampled because
the ESS for the likelihood parameter was <200, whereas the
coalescent parameter was >200 (Table 2). For all 3 genera,
the GMYC model was selected over the null model of evo-
lution (Table 2), and the multiple ML threshold model
was not a significant improvement over the single thresh-
old model (Table 2). The ML+CB method produced the
same number of species as the ML+RM and NJ+BSS
methods, but the designations of those species were dif-
ferent, for example, Baetis 3 was not split into Baetis 3
and 4 (Fig. 1A, B), whereas it was in the other 3 meth-
ods. Moreover, Simulium 8 and 9 were identified by the
ML+CB method, but Simulium 10 was not (Fig. 3A, B).

Shifts in species abundance and richness

The only difference in species abundances among de-
limitation methods was for Baetis 1 and 2. The NJ+DB
method yielded 2 species consisting of 364 and 429 indi-
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A

Species # - Morphological Identification
1 - Baetis adonis
2 - Baetis tricaudatus
3 - Baetis tricaudatus
4 - Baetis adonis
5 - Baetis sp. CA

B. P. White et al.

ek )

T T
10 5
Time (mya)

Figure 1. A.—Maximum likelihood, strict clock tree of 201 Baetis cytochrome c oxidase subunit I (COI) sequences computed using
BEAST with a coalescent tree prior and the Hasegawa-Kishino-Yano + gamma (HKY+G) nucleotide model. Species entities were
delimited using the gmyc function of the splits package 1.0-14. B.—Neighbor-joining tree computed using MEGA 5.05 and the Kimura
2-parameter distance nucleotide model. Putative species are numbered in order of appearance on the tree and highlighted in shaded
grey boxes. Putative species that undergo splitting are indicated by dashed boxes. A = ML+CB, B = ML+RM, C = NJ+BSS, D = NJ+DB,
* = 0.80-0.94 node support, ** = 0.95-0.99 node support, *** = 1.00 node support.

viduals, whereas the other methods yielded 1 species with
793 individuals. Minor differences in species abundances
among methods were present in all 3 genera, but these
differences were limited mostly to the presence or absence
of a few rare haplotypes. Species richness differed consis-
tently among methods and sites (Fig. 4). When estimates
differed among methods, the NJ+DB method typically
produced higher species richness than the other methods.
In all cases the RM and BSS method produced identical
abundance and richness estimates.

DISCUSSION

Four species-delimitation methods applied to a data
set of 2202 COI sequences from 3 genera of insect larvae
from southern California yielded similar estimates of
species richness. Where standard morphological identifi-
cation effort yielded 5 distinct taxa (Baetis adonis, Baetis
tricaudatus, Baetis sp. CA, Simulium, and Eukiefferiella),
DNA barcodes yielded 19 to 25 putative species, a 4x in-

crease in resolution over the standard level of identifi-
cation. The differences among species delimitations, al-
though not statistically significant, tended to be associated
with abundant and diverse taxa. This result suggests that
the uncertainty associated with species delimitations de-
rived from DNA barcoding does not arise from the algo-
rithm used, but is a byproduct of the inherent limitations
of COI as a species-level phylogenetic marker. Differences
among delimitation methods are not likely to result in large
changes in bioassessment metric scores based on taxon rich-
ness.

The absence of noticeable differences in species abun-
dances under different delimitation methods (except Bae-
tis 1 and 2) suggests that richness metrics that take
abundances into account might be unaffected by different
delimitation methods, whereas presence—absence-type rich-
ness metrics may be more directly influenced by even sub-
tle shifts in species designations (e.g., Simulium 2 and 10
exist only under the NJ+DB method and have extremely
low abundances [1 and 2 individuals, respectively]). How-
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Figure 2. A.—Maximum likelihood, strict clock tree of 32 Eukiefferiella cytochrome ¢ oxidase subunit I (COI) sequences
computed with the GTR+I+G nucleotide model. B.—Neighbor-joining tree. See Fig. 1A, B for details of species delimitation, tree

construction, and figure conventions.

ever, even those small differences may not be large enough
to significantly affect bioassessment metrics beyond the
greater taxonomic resolution already provided by DNA bar-
coding.

Species delimitations that differed among methods
tended to be associated with high-abundance species with
many different COI haplotypes, a potentially important
trend warranting further examination. For example, pu-
tative species that experienced splits under the NJ+DB
method (Baetis 1-2, 3-4, and Simulium 1-2, 9-10) were
usually very abundant (>30 individuals encountered). Large
populations tend to be less prone to chance events like ge-
netic drift that eliminate rare haplotypes (given enough
time), and it seems plausible that very abundant species
will maintain more rare haplotypes in their gene pools than
will less abundant species. This idea received support
from Bergsten et al. (2012), who concluded that the uncer-
tainty of species identifications for Agabini diving beetles
increased significantly when sampled over increasing geo-
graphic distances. They found that a sample size of 70 in-
dividuals was necessary to capture 95% of intraspecific
diversity. We observed a pattern in Baetis sp. 1 and 2,
which made up 83% of Baetis encountered (793 individ-

uals), of increased diversity with increased intraspecific
sampling effort, a result that further supports the hypothe-
sis of Bergsten et al. (2012). In our data set, Baetis 1 and
2 had an average intraspecific K2P distance of 1.6% and
a maximum pairwise K2P distance of 5.1% when lumped
together according to the NJ+BS, ML+RM, and ML+CB
criteria. The less frequently encountered Baetis species
(3, 4, and 5), which made up only 17% of Baetis encoun-
tered (158 individuals), did not exhibit intraspecific pair-
wise distances >1%. These differences in sampling effort
reflect natural abundances of these species and not targeted
sampling effort toward one species or another. In contrast,
we also found many individuals in Baetis 1 and 2 that were
separated by great geographic distances but shared iden-
tical haplotypes. For example, 8 individuals found in Co-
nejo Creek had haplotypes identical to 50 individuals in
Big Tujunga Wash. The 2 streams are separated by a geo-
graphic distance of 64 km and an elevation difference of
335 m (see Stein et al. 2014 for stream descriptions). We
did not see more than 1 or 2 instances of shared haplo-
types over great distances in Simulium or Eukiefferiella.
The multimodal pattern of genetic variation within
the Baetis 1 and 2 complex consists of a mixture of low
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Figure 3. A.—Maximum likelihood, lognormal clock tree of 389 Simulium cytochrome c oxidase subunit I (COI) sequences
computed with the GTR+G nucleotide model. B.—Neighbor-joining tree. See Fig. 1A, B for details of species delimitation, tree

construction, and figure conventions.

and high diversity over broad distances. Such a pattern
might be explained if these species were parthenogenetic.
Many mayfly species exhibit parthenogenesis (Bergman
and Hilsenhoff 1978, McCafferty and Morihara 1979, Funk
et al. 2006, 2008), and Funk et al. (2010) suggested that
most, if not all, mayflies may be facultatively parthenoge-
netic. Females may reproduce parthenogenetically, but
offspring can be either male or female and can readily re-
vert to sexual reproduction. Vanoverbeke and De Meester
(1997) found no relationship between geographic distance
and genetic distance in parthenogenetically reproducing
populations of cladoceran branchiopods (Daphnia magna),
a result similar to our finding of shared haplotypes over
large distances (64 km). However, we cannot rule out the
possibility that this pattern is a by-product of normal meta-

zoan mitochondrial inheritance and that shared haplotypes
are a consequence of evolutionarily recent dispersal events.

The increased taxonomic resolution offered by DNA
barcoding could be used to understand better the life histo-
ries of the seemingly cryptic Baetis observed in our study,
which might in turn help researchers use traits-based ap-
proaches to ecology and improve future bioassessment
tools (Verberk et al. 2013). In the case of Baetis spp. in
southern California, the addition of nuclear loci to DNA
barcode data sets might help researchers distinguish be-
tween normal and parthenogenetic modes of inheritance
(Buckley et al. 2008). When systematists undertake taxo-
nomic revisions of morphologically cryptic species in light
of molecular data (e.g., in the Atyaephyra genus of fresh-
water shrimp; Christodoulou et al. 2012), specific life-
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Figure 4. Differences in species richness observed at
different southern California stream reaches.

history traits, such as parthenogenesis, could be included
in descriptions, transferred to traits databases, and associ-
ated with DNA barcodes.

Coalescent models take into account the natural birth
and death processes of populations, avoid the use of a
priori distance cutoffs (e.g., the 2% cutoff), and provide a
statistical framework for testing species delimitations. Fur-
thermore, the GMYC model provides estimates of the
times of transitions from inter- to intraspecies branching
patterns and effectively links the fields of population genet-
ics and phylogenetics. However, multiple genes from both
nuclear and mitochondrial DNA are required to obtain a
robust estimate of the species coalescence (Heled and
Drummond 2010, Fujita et al. 2012). If we regard a species
as any separately evolving metapopulation of lineages (de
Queiroz 2007), the ML+CB method stands beside distance
and monophyly-based methods as a separate and unique
line of evidence in the diagnosis of distinct lineages. Thus,
combining the results of several species-delimitation meth-
ods might allow researchers to draw confident conclusions
when diagnosing a lineage (as in Boykin et al. 2012).

Differentiating between cases of rare, divergent haplo-
types within a species and cryptic species is one of the
greatest challenges for users of DNA barcodes as species-
level markers. This challenge probably will be overcome
only by using multigene and multilocus reference librar-
ies. A combination of mitochondrial genes (e.g., COI,
CYTB, and 16S) and nuclear genes (e.g., 18S, 28S, ITS1,
and ITS2) would allow robust estimates of species coa-
lescence and improved phylogenetic resolution. Use of
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