
Upal Ghosh, Susan Kane Driscoll, Robert M. Burgess, Michiel T. O. Jonker, Danny Reible, Frank Gobas, Yongju Choi, Sabine E. Apitz, Keith A. Maruya, William R. Gala, Munro Mortimer, Chris Beegan

Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
Exponent, 1 Clock Tower Place, Suite 150, Maynard, MA 01754, USA
U.S. EPA, Office of Research and Development, 27 Tarzwell Drive, Narragansett, RI 02882 USA
Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177 - 3508 TD, Utrecht, The Netherlands
Department of Civil and Environmental Engineering, Texas Tech University, Box 4102, Lubbock TX 79409
School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6, Canada
Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
SEA Environmental Decisions, Ltd. 1 South Cottages, The Ford, Little Hadham, Hertfordshire SG11 2AT, United Kingdom.
Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626 USA
Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA, USA
National Research Centre for Environmental Toxicology, The University of Queensland, Brisbane, Australia
California State Water Board - Div. of Water Quality, CA, USA

ABSTRACT

This manuscript provides practical guidance on the use of passive sampling methods (PSMs) that target the freely dissolved concentration (C_free) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific application include clear delineation of measurement goals for C_free, whether laboratory-based “ex-situ” and/or field-based “in-situ” application is desired, and ultimately which PSM is best suited to fulfill the measurement objectives. Guidelines for proper calibration and validation of PSMs, including use of provisional values for polymer-water partition coefficients, determination of equilibrium status, and confirmation of non-depletive measurement conditions are defined. A hypothetical example is described to illustrate how the measurement of C_free afforded by PSMs reduces uncertainty in assessing narcotic toxicity for sediments contaminated with polycyclic aromatic hydrocarbons. The paper concludes with a discussion of future research that will improve the quality and robustness of C_free measurements using PSMs, providing a sound scientific basis to support risk assessment and contaminated sediment management decisions.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.