SCCWRP #805

Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays

¹Beate I. Escher, ^{2,3}Mayumi Allinson, ⁴Rolf Altenburger, ⁵Peter A. Bain,⁶Patrick Balaguer, ⁴Wibke Busch, ⁷Jordan Crago, ⁸Nancy D. Denslow, ⁹Elke Dopp, ¹⁰Klara Hilscherova, ¹¹Andrew R. Humpage, ⁵Anu Kumar, ⁶Marina Grimaldi, ⁸B. Sumith Jayasinghe, ¹⁰Barbora Jarosova, ¹²Ai Jia, ¹³Sergei Makarov, ¹⁴Keith A. Maruya, ¹³Alex Medvedev,¹⁴Alvina C. Mehinto, ¹⁵Jamie E. Mendez,¹Anita Poulsen, ¹⁶Erik Prochazka, ⁹Jessica Richard, ¹⁷Andrea Schifferli, ⁷Daniel Schlenk, ⁴Stefan Scholz,³Fujio Shiraishi,¹²Shane Snyder, ¹⁸Guanyong Su, ¹Janet Y.M.Tang,¹⁹Bart van der Burg,¹⁹Sander C. van der Linden,¹⁷Inge Werner,¹⁵Sandy D. Westerheide, ²⁰Chris K.C.Wong, ²¹Min Yang, ²⁰Bonnie H.Y. Yeung,¹⁸Xiaowei Zhang, and ¹⁶Frederic D.L. Leusch

¹The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Australia ²Centre for Aquatic Pollution Identification and Management (CAPIM), School of Chemistry, The University of Melbourne, Parkville, Australia

³National Institutef or Environmental Studies, Tsukuba Japan,

⁴UFZ-Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany ⁵CSIRO Land and Water, Glen Osmond, Australia

⁶Cancer Research Institute Montpellier, CRLC Val, d'Aurelle, Parc Euromédecine, Montpellier, France ⁷Aquatic Ecotoxicology, Department of Environmental Sciences, University of California, Riverside, Riverside, California, United States

⁸University of Florida, Department of Physiological Sciences, Gainesville, Florida, United States

⁹IWW Water Centre, Department of Toxicology, Mülheim/ Ruhr, Germany

¹⁰Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic ¹¹Australian Water Quality Centre, Adelaide, Australia

¹²University of Arizona, Tucson, Arizona, United States

¹³ATTAGENE, Research Triangle Park, North Carolina, United States

¹⁴Southern California Coastal Water Research Project Authority (SCCWRP), Costa Mesa, California, United States ¹⁵Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida, United States

¹⁶Smart Water Research Centre, Griffith University Gold Coast Campus, Southport, ,Australia

¹⁷Swiss Centre for Applied Ecotoxicology, Eawag-EPFL, Dübendorf, Switzerland

¹⁸State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, PRChina

¹⁹BioDetection Systems, Amsterdam, The Netherlands

²⁰Department of Biology, Croucher Institute for Environmental Sciences, Ho Sin Hang Campus, Hong Kong Baptist University, Kowloon, Hong Kong

²¹State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PRChina

ABSTRACT

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive

modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/ activated carbon filtration),stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related toxenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact <u>pubrequest@sccwrp.org</u> to request a copy.