Multi-laboratory evaluations of the performance of *Catellicoccus marimammalium* PCR assays developed to target gull fecal sources

Christopher D. Sinigalliano1, Jared S. Ervin2,3, Laurie C. Van De Werhorst2,3, Brian D. Badgley4,18, Elisenda Balleste5, Jakob Barkowiak1,6, Alexandria B. Boehm7, Muruleedhara Byappanahalli8, Kelly D. Goodwin1, Mieke Gourmelon9, John Griffith10, Patricia A. Holden2,3, Jenny Jay11, Blythe Layton10, Cheonghoon Lee12, Jiyoung Lee12,13, Wim G. Meijer5, Rachel Noble14, Meredith Raith10, Hodon Ryu15, Michael J. Sadowsky4, Alexander Schriewer16, Dan Wang7, David Wanless1,6, Richard Whitman7, Stefan Wuertz16,17, Jorge W. Santo Domingo15

1National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
2Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, USA
3Earth Research Institute, University of California, Santa Barbara, CA, USA
4BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
5Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
6Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, USA
7Environmental and Water Studies, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
8U.S. Geological Survey Great Lakes Science Center, Lake Michigan Ecological Research Station, Porter, IN, USA
9Laboratoire de Microbiologie, MIC/LNR, De partement Ressources Biologiques et Environnement, Unite’Environnement, Microbiologie et Phycotoxines, Ifremer, ZI Pointe du diable, Plouzane’, France
10Southern California Coastal Water Research Project, Costa Mesa, CA, USA
11Department of Civil and Environmental Engineering, University of California Los Angeles, Los Angeles, CA, USA
12Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, USA
13Department of Food Science & Technology, Ohio State University, Columbus, OH, USA
14Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
15U.S Environmental Protection Agency, Microbial Contaminants Control Branch, National Risk Management Research Laboratory, Cincinnati, OH, USA
16Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, USA
17Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
18Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA, USA

ABSTRACT

Here we report results from a multi-laboratory (n = 11) evaluation of four different PCR methods targeting the 16S rRNA gene of *Catellicoccus marimammalium* originally developed to detect gull fecal contamination in coastal environments. The methods included a conventional end-point PCR method, a SYBR ® Green qPCR method, and two TaqMan ® qPCR methods. Different techniques for data normalization and analysis were tested. Data analysis methods had a pronounced impact on assay sensitivity and specificity calculations. Across-laboratory standardization of metrics including the lower limit of quantification (LLOQ), target detected but not quantifiable (DNQ), and target not detected (ND) significantly improved results compared to results submitted by individual laboratories prior to definition standardization. The unit of measure used for data normalization also had a pronounced effect on measured assay performance. Data normalization to DNA mass improved quantitative method performance as compared to enterococcus normalization. The MST methods tested here were originally designed for gulls but were found in this study to also detect feces from other birds, particularly feces composited from pigeons. Sequencing efforts showed that some pigeon feces from California contained sequences similar to *C. marimammalium* found in gull feces. These data suggest that the prevalence,
geographic scope, and ecology of *C. marimammalium* in host birds other than gulls require further investigation. This study represents an important first step in the multi-laboratory assessment of these methods and highlights the need to broaden and standardize additional evaluations, including environmentally relevant target concentrations in ambient waters from diverse geographic regions.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.