Genomics in marine monitoring: New opportunities for assessing marine health status


1Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
2AZTI-Tecnalia, Marine Research Division, Pasaia, Spain
3University of Chicago, Argonne National Laboratory, Argonne, IL
4School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK
5Gump South Pacific Research Station, University of California Berkeley, Moorea, French Polynesia
6Biodiversity Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
7Southern California Coastal Water Research Project Authority, Costa Mesa, CA
8European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
9Centre for Ecology and Hydrology, Oxford, UK
10School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
11WorldFish Centre, Jalan Batu Maung, Batu Maung, Penang, Malaysia
12Jacobs University Bremen and Max Planck Institute for Marine Microbiology, Bremen, Germany
13The Australian Museum, Sydney, NSW, Australia
14Centre for Environment Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, UK

ABSTRACT

This viewpoint paper explores the potential of genomics technology to provide accurate, rapid, and cost efficient observations of the marine environment. The use of such approaches in next generation marine monitoring programs will help achieve the goals of marine legislation implemented world-wide. Genomic methods can yield faster results from monitoring, easier and more reliable taxonomic identification, as well as quicker and better assessment of the environmental status of marine waters. A summary of genomic methods that are ready or show high potential for integration into existing monitoring programs is provided (e.g. qPCR, SNP based methods, DNA barcoding, microarrays, metagenetics, metagenomics, transcriptomics). These approaches are mapped to existing indicators and descriptors and a series of case studies is presented to assess the cost and added value of these molecular techniques in comparison with traditional monitoring systems. Finally, guidelines and recommendations are suggested for how such methods can enter marine monitoring programs in a standardized manner.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.