SCCW RP #0734

A two-component mass balance model for calibration of solid-phase microextraction fibers for pyrethroids in seawater

Wenjian Lao, Keith A. Maruya and David Tsukada

ABSTRACT

Determination of the analyte-specific distribution coefficient between the aqueous and sorbing phases is required for estimation of the aqueous-phase concentration of the analyte of interest using polymeric materials. Poly(dimethylsiloxane)- coated solid-phase microextration (PDMS-SPME) fiber-water partition coefficient (K_f) values for eight common-use pyrethroids were determined using a two-compartment mass balance model and parameters determined in experimental seawater microcosms. Mass balance, epimerization, and aqueous-phase degradation (i.e., hydrolysis) were characterized using gas chromatography-negative chemical ionization mass spectrometry to facilitate K_f estimation. Of the eight pyrethroids, only bifenthrin exhibited increasing sorption on the SPME fiber over the entire time-series exposure, indicating that its K_f value could be estimated through a stable-compound model. The remaining pyrethroids were found to be unstable (half-life of <22 days), underscoring the importance of accounting for degradation in estimating K_{f} . The two-compartment model explained the experimental time-series data for bifenthrin ($R^2 > 0.98$) and the remaining unstable pyrethroids ($R^2 > 0.7$), leading to estimated values of log K_{f} between 5.7 and 6.4, after correcting for residual dissolved organic carbon (DOC) in the experimental seawater. These K_f values can be used to determine freely dissolved pyrethroid concentrations in the pg/L range using PDMS-SPME in fresh or seawater matrices under equilibrium conditions in laboratory or field applications.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact <u>pubrequest@sccwrp.org</u> to request a copy.