Using rapid indicators for Enterococcus to assess the risk of illness after exposure to urban runoff contaminated marine water

John M. Colford Jr.a, Kenneth C. Schiffb, John F. Griffithb, Vince Yaua, Benjamin F. Arnolda, Catherine C. Wrighta, Joshua S. Grubera, Timothy J. Wadec, Susan Burnsd, Jacqueline Hayesd, Charles McGeee, Mark Goldf, Yiping Caob, Rachel T. Nobleg, Richard Hauglandh and Stephen B. Weisbergb

aUniversity of California Berkeley, School of Public Health, Berkeley, CA
bSouthern California Coastal Water Research Project, Costa Mesa, CA
cUnited States Environmental Protection Agency, National Environmental Health Effects Research Laboratory, Chapel Hill, NC
dUniversity of California Berkeley, Survey Research Center, Berkeley, CA
eOrange County Sanitation District, Fountain Valley, CA
fHeal the Bay, Santa Monica, CA
gUniversity of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC
hUnited States Environmental Protection Agency, National Exposure Research Laboratory, Cincinnati, OH

\textbf{ABSTRACT}

Traditional fecal indicator bacteria (FIB) measurement is too slow (>18 h) for timely swimmer warnings. Assess relationship of rapid indicator methods (qPCR) to illness at a marine beach impacted by urban runoff. We measured baseline and two-week health in 9525 individuals visiting Doheny Beach 2007-2008. Illness rates were compared (swimmers vs. non-swimmers). FIB measured by traditional (Enterococcus spp. by EPA Method 1600 or EnterolertTM, fecal coliforms, total coliforms) and three rapid qPCR assays for Enterococcus spp. (Taqman®, Scorpion-1, Scorpion-2) were compared to health. Primary bacterial source was a creek flowing untreated into ocean; the creek did not reach the ocean when a sand berm formed. This provided a natural experiment for examining FIB-health relationships under varying conditions. We observed significant increases in diarrhea (OR 1.90, 95% CI 1.29 - 2.80 for swallowing water) and other outcomes in swimmers compared to non-swimmers. Exposure (body immersion, head immersion, swallowed water) was associated with increasing risk of gastrointestinal illness (GI). Daily GI incidence patterns were different: swimmers (2-day peak) and non-swimmers (no peak). With berm-open, we observed associations between GI and traditional and rapid methods for Enterococcus; fewer associations occurred when berm status was not considered.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.