Assessing coastal benthic macrofauna community condition using best professional judgement – Developing consensus across North America and Europe


IMAR, Institute of Marine Research, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
AZTI–Tecnalia, Marine Research Division, Herrera Kaia Portualdea s/n, Spain
Southern California Coastal Water Research Project, Costa Mesa, CA
Sanitation Districts of Los Angeles County, Ocean Monitoring and Research Group, Carson, CA
Department of Biological Sciences, Old Dominion University, Norfolk, VA
Université de Lille 1 Laboratoire d’Océanologie et de Géosciences, UMR CNRS 8187 LOG, Station Marine de Wimereux, BP 80, France
Royal Belgian Institute of Natural Sciences, Management Unit of the North Sea Mathematical Models, Marine Ecosystem Management Section, Guldelelle 100, Belgium
Department of Biological Sciences, School of Marine Science, Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA
Université Bordeaux 1, UMR 5805, EPOC, Station Marine d’Arcachon, 2 Rue du Pr Jolyet, France
University of Crete, Department of Biology, Marine Ecology Lab, Crete, Greece
Versar, Inc., Columbia, MD
Penn Valley, CA
Dept. of “Ecologia del Territorio”, Section of Ecology, Pavia, Italy
Department of Marine Ecology, University of Gothenburg, Fiskebäckskil, Sweden
Centre d’Estudis Avançats de Blanes, CSIC, Cta. Accés a la Cala Sant Francesc, Girona, Spain
City of San Diego, Marine Biology Laboratory, San Diego, CA

ABSTRACT

Benthic indices are typically developed independently by habitat, making their incorporation into large geographic scale assessments potentially problematic because of scaling inequities. A potential solution is to establish common scaling using expert best professional judgment (BPJ). To test if experts from different geographies agree on condition assessment, sixteen experts from four regions in USA and Europe were provided species-abundance data for twelve sites per region. They ranked samples from best to worst condition and classified samples into four condition (quality) categories. Site rankings were highly correlated among experts, regardless of whether they were assessing samples from their home region. There was also good agreement on condition category, though agreement was better for samples at extremes of the disturbance gradient. The absence of regional bias suggests that expert judgment is a viable means for establishing a uniform scale to calibrate indices consistently across geographic regions.

Due to distribution restrictions, the full-text version of this article is available by request only.

Please contact pubrequest@sccwrp.org to request a copy.