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Field studies were conducted to assess the coastal water
quality impact of stormwater runoff from the Santa Ana
River, which drains a large urban watershed located in
southern California. Stormwater runoff from the river leads
to very poor surf zone water quality, with fecal indicator
bacteria concentrations exceeding California ocean bathing
water standards by up to 500%. However, cross-shore
currents (e.g., rip cells) dilute contaminated surf zone water
with cleaner water from offshore, such that surf zone
contamination is generally confined to <5 km around the
river outlet. Offshore of the surf zone, stormwater runoff
ejected from the mouth of the river spreads out over a very
large area, in some cases exceeding 100 km2 on the
basis of satellite observations. Fecal indicator bacteria
concentrations in these large stormwater plumes generally
do not exceed California ocean bathing water standards,
even in cases where offshore samples test positive for human
pathogenic viruses (human adenoviruses and enteroviruses)
and fecal indicator viruses (F+ coliphage). Multiple
lines of evidence indicate that bacteria and viruses in the
offshore stormwater plumes are either associated with
relatively small particles (<53 µm) or not particle-associated.
Collectively, these results demonstrate that stormwater
runoff from the Santa Ana River negatively impacts coastal
water quality, both in the surf zone and offshore. However,
the extent of this impact, and its human health significance,
is influenced by numerous factors, including prevailing ocean
currents, within-plume processing of particles and
pathogens, and the timing, magnitude, and nature of
runoff discharged from river outlets over the course of a
storm.

Introduction
Oceans adjacent to large urban areas, or “urban oceans”, are
the final repositories of pollutants from a myriad of point
and nonpoint sources of human waste (1). Pollutants are
transported to the urban ocean by surface water runoff
(1-4), discharge of treated sewage through submarine outfalls
(5), wet and dry deposition of airborne pollutants (6), and
submarine discharge of contaminated groundwater (7). Until
recently, effluent from sewage treatment plants was often
the primary source of urban coastal pollution, including
nutrients, pathogens, pesticides, and heavy metals (8).
However, pollutant loading from many sewage treatment
plants has declined over the past several decades because of
improvements in civil infrastructure (e.g., separation of the
storm and sanitary sewer systems to prevent combined sewer
overflows), pollutant source control, and disposal/treatment
technology (9). As a result, surface water runoff, in many
cases, has supplanted sewage treatment plants as the primary
source of pollutant loading to the urban ocean (3, 10).

The focus of this study is the coastal water quality impact
of surface water runoff during storms, or “stormwater runoff”,
from an urban watershed in southern California. The study
was motivated by several considerations. First, beneficial use
designations for the coastal ocean in southern California
apply year-round and, consequently, watershed managers
are legally required to develop stormwater management plans
for reducing wet-weather impairments of the coastal ocean
(11). The impact of stormwater runoff on coastal water quality
is of particular concern in arid regions such as southern
California because, on an annual basis, a large percentage
(>99.9% according to Reeves et al. (2) and >95% according
to Schiff et al. (10)) of the surface water runoff and associated
pollution flows into the ocean during a few storms in the
winter. Second, while recreational use of the coastal ocean
in southern California is lighter in the winter, compared to
the summer, winter ocean recreation is still very common,
particularly among surfers who surf the large waves that often
accompany storm events (R. Wilson, personal communica-
tion). Third, to the extent that particles in stormwater runoff
are associated with pathogens and other contaminants, their
discharge to the ocean during storms may serve as a source
of near-shore pollution that persists long after the storm
season is over (10, 12). Finally, in many urban watersheds
in southern California and elsewhere, the flow of stormwater
runoff is highly regulated by civil infrastructure (e.g., dams)
designed to minimize flood potential and maximize water
reclamation. As will be demonstrated later in this paper, the
regulated nature of stormwater runoff implies that the ocean
discharge of stormwater runoff from urban watersheds can
occur days after the cessation of rain, when the potential for
human exposure to pathogens by marine recreational contact
is significant.

This paper describes how stormwater runoff from several
major rivers in southern California, with particular focus on
the Santa Ana River in Orange County, impacts coastal water
quality, as measured by turbidity, particle size spectra, total
organic carbon, fecal indicator bacteria, fecal indicator
viruses, and human pathogenic viruses. The present study
is unique in the combination of data resources utilized,
including data and information from routine surf zone water
quality and wave field monitoring programs, an automated
in-situ ocean observing sensor, shipboard sampling cruises,
and satellite sensors. Further, this is the first wet weather
study to examine the linkage between water quality in the
surf zone, where routine monitoring samples are collected
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and most human exposure occurs, and water quality offshore
of the surf zone. The work described in this study was carried
out in parallel with a watershed-focused study that examined
the spatial variability of fecal indicators, and the relationship
between suspended particle size and fecal indicators, in storm
runoff from the Santa Ana River watershed (13). Background
information is available elsewhere on coastal water quality
impairment at our Orange County field site (2, 14-18) and
the transport and mixing dynamics of sediment plumes as
they flow into the coastal ocean from river outlets in southern
California (4, 19, 20).

Materials and Methods
Rainfall and River Discharge. Weather information and Next
Generation Radar (NEXRAD) images for planning the field
studies and interpreting rainfall patterns were obtained on-
line from the National Weather Service (http://www.

nwsla.noaa.gov/). Precipitation and stream discharge data
were obtained at two sites, one located where the Santa Ana
River crosses 5th Street in the City of Santa Ana and another
located where the San Gabriel River crosses Spring Street in
the City of Long Beach (black squares in inset, Figure 1).
These data were obtained, respectively, from the U.S. Army
Corps of Engineers and the Los Angeles County Department
of Public Works. Both of these gauge sites are located relatively
close (within 11 km) to the rivers’ respective ocean outlets,
and hence streamflow measured at these sites will likely make
its way to the ocean.

Surf Zone Measurements: NEOCO Data. Time series of
water temperature, conductivity, chlorophyll, and water
depth were obtained from an instrument package deployed
at the end of the Newport Pier, where the local water depth
is between 6.5 and 9 m (blue star in Figure 1). This instrument
package is part of a recently deployed network of coastal

FIGURE 1. Map showing location of field site and sampling sites in the surf zone and offshore. Also shown are the locations of the NEOCO
sensor on the end of the Newport Pier and the rain and stream gauges located on the Santa Ana River and the San Gabriel River.
Abbreviations are Los Angeles River (LAR), San Gabriel River (SGR), Santa Ana River (SAR), Orange County Sanitary District (OCSD), and
University of California, Irvine (UCI).
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sensors in southern California called the Network for
Environmental Observations of the Coastal Ocean (NEOCO).
The NEOCO sensor package contains an SBE-16plus CTD
(Sea-Bird Electronics, Inc., Bellevue, WA) and a Seapoint
Chlorophyll Fluorometer (Seapoint Sensors, Inc.). These
instruments are mounted on a pier piling at a depth of
approximately 1 m (below mean lower low water) and are
programmed to acquire data at a sampling frequency of 0.25
min-1.

Surf Zone Measurements: Fecal Indicator Bacteria and
Breaking Waves. The concentration of fecal indicator bacteria
in the surf zone was measured at 17 stations (black circles
along shoreline in Figure 1) by personnel at the Orange
County Sanitation District (OCSD). The stations are desig-
nated by OCSD according to their distance (in thousands of
feet) north or south of the Santa Ana River outlet (e.g., station
15N is located approximately 15 000 ft, approximately 5 km,
north of the Santa Ana River outlet). Water samples were
collected 5 days per week (not on Friday and Sunday) from
5:30 to 10:00 local time at ankle depth on an incoming wave,
placed on ice in the dark, and returned to the OCSD (Fountain
Valley, CA) where they were analyzed within 6 h of collection
for total coliform (TC), fecal coliform (FC), and enterococci
bacteria (ENT) using standard methods 9221B and 9221E
and EPA method 1600, respectively. Results are reported in
units of colony forming units per 100 mL of sample (CFU/
100 mL). Wave conditions, including both the direction and
height of breaking waves, were recorded by lifeguards at the
Newport Beach pier (near surf zone station 15S, Figure 1)
twice per day, once at 7:00 and again at 14:00 local time.

Offshore Measurements: Satellite Ocean Color Imagery.
The satellite images used in this study were collected by
NASA’s Moderate-Resolution Imaging Spectroradiometer
(MODIS) instruments. These instruments operate onboard
two near-polar sun-synchronous satellite platforms orbiting
at 705 km altitude: Terra (since February 24, 2000) and Aqua
(since June 24, 2002). Terra passes across the equator from
north to south at ∼10:30 local time, while Aqua passes the
equator south to north at ∼13:30 local time. As such, all the
images were acquired within 2 h before or after local noon
or between 18:00 and 22:00 UTC. The MODIS sensors collect
data in 36 spectral bands, from 400 to 14 000 nm. We utilized
bands 1 (250-m spatial resolution, 620-670 nm), 3, and 4
(500-m resolution, 459-479 and 545-565 nm, respectively)
to produce “true color” (i.e., RGB) images, with band 1 used
for the red channel, band 4 for the green channel, and band
3 for the blue channel. Using a MATLAB program, the 500-m
green (band 4) and blue (band 3) monochrome channels
were “sharpened” to 250-m resolution using fine details from
the higher resolution red channel (band 1). Then, the contrast
of each of these monochrome channels was increased to
emphasize maximum details in the coastal ocean region of
interest. Finally, all three monochrome channels (i.e., red,
green, and blue) were combined to form a single true color
image. In all, 16 satellite images from February 23 to March
5 were acquired and processed for this study; four of them
were selected as most illustrative, on the basis of their quality
and observed features. The timing of these satellite acquisi-
tions relative to the storms and sampling periods is indicated
at the top of Figure 2.

Offshore Measurements: Sampling Cruises. The offshore
monitoring grid (red triangles in Figure 1) was sampled during
three separate cruises on February 23, February 28, and March
1, 2004, coinciding with a sequence of storm events in late
February 2004. Table 1 provides a summary of activities
performed during each cruise. A short description of the
offshore sampling and analysis protocols is presented here;
details can be found in the Supporting Information for this
paper. All offshore water samples were analyzed for salinity
and fecal indicator bacteria, specifically, total coliform (TC),

Escherichia coli (EC, a subset of FC), and enterococci bacteria
(ENT), using the defined substrate tests known commercially
as Colilert-18 and Enterolert (IDEXX, Westbrook, ME)
implemented in a 97-well quantitray format; results are
reported in units of most probable number of bacteria per
100 mL of sample (MPN/100 mL). A subset of the offshore
water samples was analyzed for total organic carbon (TOC)
by U.S. EPA Method 415.1, fecal indicator viruses (F+

coliphage) by a two-step enrichment method (U.S. EPA
Method 1601), and human pathogenic viruses (human
adenovirus and human enterovirus) by real-time quantitative
polymerase chain reaction (Q-PCR), nested PCR, and reverse-
transcriptase (RT)-PCR using published protocols (21-25).
Details on the PCR protocols used here can be found in the
Supporting Information for this paper.

Coincident with the collection of the offshore water
samples, temperature, particle size spectra, and light trans-
missivity were measured using an LISST-100 (laser in situ
scattering and transmissometry) analyzer (Sequoia Scientific,
Inc., Bellevue, WA). The LISST-100 estimates the particle
volume per unit fluid volume (∆V) resident in 32 logarithmi-
cally spaced particle diameter bins ranging in size from dp

) 2.5 to 500 µm. At least 10 replicates of the particle size
spectra were collected at each offshore station. Following
the recommendation of Mikkelsen (26), ∆V was taken as the
median of all replicate measurements. The LISST-100 data
are presented in this paper in one of three ways: (1) particle
size spectra represented by plots of ∆V/∆log dp against log
dp, (2) the number of particles per unit fluid volume or total
number concentration (TNC), and (3) the number-averaged
particle size, dh. The last two parameters were computed from
the particle size spectra as follows (26, 27):

Results and Discussion
Rainfall and River Discharge. Over the period of study
(February 18 through March 3, 2004), four rain events were
recorded by the rain gauge on the Santa Ana River in the City
of Santa Ana (black curve, top panel, top axis, Figure 2). The
first event accumulated 16.0 mm of rain in the afternoon of
February 21 (RE1 in Figure 2), the second event accumulated
23.4 mm of rain in the afternoon of February 22 (RE2), the
third event accumulated 51.3 mm of rain in the evening of
February 25 (RE3), and the fourth event accumulated 6.8 mm
of rain in the evening of March 1 (RE4). The rain gauge located
on the San Gabriel River in the City of Long Beach did not
record RE2 but recorded a fifth rain event on February 18
(red curve, top panel, top axis, Figure 2). The difference in
rainfall recorded at the Santa Ana River and the San Gabriel
River sites is a consequence of the spatial variability of rainfall
near the coast (see Figures S1 and S2, Supporting Information,
for NEXRAD maps acquired during RE1 and RE2). Records of
stream discharge (in units of m3/s) at the Santa Ana River
and the San Gabriel River sites are also quite different (black
and red curves, top panel, bottom axis, Figure 2). While rainfall
and stream discharge are coupled at the San Gabriel River
site (i.e., stream discharge increases shortly after locally
recorded rain events, compare set of red curves in top panel,
Figure 2), rainfall and stream discharge are frequently
uncoupled at the Santa Ana River site. For example, the Santa
Ana River discharge events DE3 and DE4 do not obviously
correlate with records of local rainfall. Instead, these two
discharge events can be traced to stormwater runoff gener-
ated from inland regions of the Santa Ana River watershed

TNC ) ∑
i)1

32 6∆Vi

πdp,i
3

(1a)

dh ) x3
6
π
∑i)1

32 ∆Vi

TNC
(1b)
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that was released from inland dams after the cessation of
rain (13). For comparison, we have also included in the plot
hourly volume discharge records (unit of m3/s, blue curve,

top panel, Figure 2) of treated sewage discharged from the
Orange County Sanitation District (OCSD) sewage outfall
(courtesy of OCSD).

FIGURE 2. Time series measurements of rainfall, stream discharge at the Santa Ana River and San Gabriel River, and discharge of treated
sewage from the OCSD outfall (top panel); water level, salinity, temperature, and chlorophyll measured at the NEOCO sensor (second and
third panels); the direction and height of breaking waves at the Newport Beach Pier (fourth panel); and the concentration of fecal indicator
bacteria in the surf zone (color contour plots, fifth through seventh panels). Shown at the top of the figure is the timing of the satellite
images (blue lettering) and the offshore sampling cruises (black squares).
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Surf Zone Measurements: NEOCO Data. Water level,
salinity, temperature, and chlorophyll measurements at the
NEOCO sensor, located on the end of the Newport Pier at
the offshore edge of the surf zone, are presented in Figure
2 (second and third panels). The largest rain event (RE3) and
the largest discharge of stormwater runoff from the Santa
Ana River (DE4) occurred during a neap tide when the daily
tide range was small (see quarter moon and water level
measurements in the second panel, Figure 2). The other
rainfall and stream discharge events occurred during periods
of time when the daily tide range was larger, either during
the transition from spring to neap tide (RE1, RE2, DE1, DE2,
DE3) or during the transition from neap to spring tide (RE4,
DE5).

Salinity recorded at the NEOCO sensor is characterized
by a series of low salinity events, relative to ambient ocean
water salinity of 32.5-33.0 ppt (salinity events SE1-SE6, Figure
2). These low salinity events may be caused, at least in part,
by stormwater discharged from the Santa Ana River (e.g., SE6

appears to be related to DE4). However, correlating discharge
and the low salinity events is complicated by the fact that
once river water is discharged to the ocean, its offshore
transport is controlled by a complex set of near-shore currents
(28). These near-shore currents, and their impact on the
spatial distribution of stormwater runoff plumes, are explored
in the next several sections. Temperature and chlorophyll
records at the NEOCO sensor appear to be relatively
unaffected by rainfall or discharge from the Santa Ana River.
Surf zone temperature exhibits a diurnal pattern consistent
with solar heating (i.e., temperatures are higher during the
day and lower at night). Chlorophyll measurements indicate
a bloom event occurred early in the study period (bloom
event 1, BE1), but this bloom event mostly dissipated prior
to the rain and discharge events that occurred later. While
the chlorophyll fluorometer was being maintained during
this period, we cannot rule out the possibility that the
downward trend in the chlorophyll signal is related to
instrument fouling.

Surf Zone Measurements: Wave Data and Along-Shore
Currents. Wave conditions, including the direction and
height of breaking waves, were recorded twice per day by
lifeguards stationed at the Newport Pier (surf zone station
15S, Figure 1). These wave data, which are plotted in the
fourth panel of Figure 2, can be divided into five events,
depending on whether waves approach the beach from the
west (WE1, WE3, and WE5) or from the south to southwest
(WE2 and WE4). Because this particular stretch of shoreline
strikes northwest-southeast (see Figure 1), waves approach-
ing the beach from the west are likely to yield a down-coast
surf zone current (i.e., directed to the southeast). Likewise,
waves approaching the beach from the south are likely to
yield an up-coast surf zone current (i.e., directed to the
northwest) (28, 29).

This expectation is consistent with the salinity signal
measured at the NEOCO sensor, which is located ap-
proximately 5 km down-coast of the Santa Ana River ocean
outlet. The onset of low salinity event SE6 at the NEOCO
sensor coincides very closely in time with the change in wave
conditions from WE2 to WE3 and a likely change in the
direction of the surf zone current from up-coast to down-
coast (Figure 2). Discharge from the Santa Ana River was
particularly high during this period (discharge event DE4

overlaps wave events WE2 and WE3). Hence, the onset of SE6

was probably triggered by a change in the direction of wave-
driven surf zone currents from up-coast during WE2 to down-
coast during WE3 and a consequent down-coast transport of
stormwater runoff entrained in the surf zone from the Santa
Ana River during DE4.

Employing the same logic, low salinity events SE3-SE5,
which occurred during a period when waves were out of theTA
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south to southwest, may have originated from stormwater
discharged by river outlets or embayment located down-
coast of the NEOCO sensor (e.g., the Newport Bay outlet).
Low salinity events SE1 and SE2, which occurred during a
period when waves were out of the west, may have originated
from stormwater discharged by outlets located up-coast of
the NEOCO sensor, although no significant discharge from
the Santa Ana River was recorded during this period of time.

Some of these low salinity events may have originated
from the cross-shore transport of lower salinity water from
offshore, perhaps from surface runoff plumes or submarine
wastewater fields associated with local sewage outfalls (16),
or from the submarine discharge of low salinity groundwater
(7). While the power-plant cooling water intake and outfall
appear to affect local circulation patterns offshore of
Huntington Beach (30), the power-plant effluent consists of
pure ocean water and therefore is very unlikely to be a source
of the low salinity events documented in Figure 2. It is
theoretically possible that the OCSD sewage outfall is a source
of SE1 and SE2, although there is nothing unusual about the
sewage discharge rates observed during these two periods
of time (compare SE1 and SE2 with the blue curve, top panel,
Figure 2).

Surf Zone Measurements: Fecal Indicator Bacteria. The
concentrations of the three fecal indicator bacteria groups
(TC, FC, and ENT) in the surf zone are presented as a set of
color contour plots in Figure 2 (bottom three panels). Fecal
indicator bacteria concentrations were log-transformed to
visualize the temporal and spatial variability associated with
these measurements. For comparison, the California single-
sample standards for the three fecal indicator bacteria (104

for TC, 102.602 for FC, and 102.017 for ENT, all CFU or MPN/100
mL) are indicated by a set of arrows on the scale bar in the
figure. The concentration of fecal indicator bacteria was
frequently elevated around the ocean outlet of the Santa Ana
River (near surf zone station 0), particularly during and after
rain events when stormwater was discharging from the river.
For example, during stormwater discharge events (DE3 and
DE4), water quality around the Santa Ana River outlet was
very poor (see water quality events TC2, FC2, and ENT2 in
Figure 2). During this period of time, fecal indicator bacteria
concentrations around the Santa Ana River outlet frequently
exceeded one or more state standards, in some cases by as
much as 300-500% (depending on the fecal indicator group).

The spatial distribution of fecal indicator bacteria in the
surf zone around the Santa Ana River outlet appears to be
controlled by local wave conditions, in a manner consistent
with the earlier discussion of wave-driven surf zone currents.
When waves approach the beach from the west and down-
coast currents are likely to prevail, the concentration of fecal
indicator bacteria in the surf zone is higher on the down-
coast side of the ocean outlet (compare WE1 with TC1, FC1,
ENT1 and WE3 with TC3, FC3, ENT3). Likewise, when waves
approach the beach from the south and up-coast currents
are likely to prevail, the concentration of fecal indicator
bacteria in the surf zone is higher on the up-coast side of the
ocean outlet (compare WE2 with TC2, FC2, ENT2). The
exception is a short period of time when relatively small waves
(wave height < 0.5 m) approach the beach from the southwest
and the concentration of fecal indicator bacteria is higher on
the down-coast side of the river (compare WE4 with TC4, FC4,
ENT4). This exception can be rationalized by noting that waves
out of the southwest break with their crests parallel to the
beach, and hence the direction of long-shore transport in
the surf zone is likely to be unpredictable under these
conditions. The apparent time delay between change in wave
direction (e.g., from WE1 to WE2) and change in the spatial
distribution of fecal indicator bacteria around the Santa Ana
River outlet (e.g., from TC1 to TC2) is, at least in part, a
sampling artifact. Wave height and direction were recorded

twice per day while fecal indicator bacteria concentrations
in the surf zone were sampled at most once per day (the gray
dots in the color contour plots indicate the timing of surf
samples at each station).

Stormwater runoff discharged from the Santa Ana River
appears to severely impact water quality in the surf zone
over a fairly limited stretch of the beach (<5 km either side
of the river between surf zone stations 15N and 15S). This
spatial confinement of stormwater plumes in the surf zone,
which is particularly evident for FC and ENT, could be the
result of physical transport processes (e.g., dilution by rip
cell mediated exchange of water between the surf zone and
offshore) or nonconservative processes (e.g., the removal of
fecal indicator bacteria from the surf zone by die-off or
sedimentation) (28, 29). An analysis of historical fecal
indicator bacteria measurements at Huntington Beach
concluded that the length of surf zone impacted by point
sources of fecal indicator bacteria, such as the Santa Ana
River, is influenced more by rip cell dilution and less by
nonconservative processes such as die-off (31). The decay
length scale reported here of 5 km is very close to the length
scale predicted by rip cell dilution alone (2-4 km, assuming
a rip cell spacing of 0.5 km) (31). Hence, die-off probably
plays a secondary role, compared to dilution, in limiting the
distance over which water quality is impaired in the surf
zone by stormwater runoff from the Santa Ana River.

Fecal indicator bacteria events also occur in the surf zone
at the northern (events TC6, TC7, ENT6, ENT7) and southern
(events TC5, FC5, and ENT5) edges of our study area. Possible
sources of these fecal indicator bacteria events include
stormwater discharged from the Huntington Harbor and
Newport Bay Harbor located at the extreme northern (5 km
up-coast of station 39N) and southern (stations 27S and 29S)
ends of the study site and, possibly, from river outlets located
outside of the study area (e.g., the Los Angeles River and San
Gabriel River, see inset in Figure 1). Boehm and co-workers
(32, 33) suggested that the OCSD sewage outfall might be a
source of fecal indicator bacteria in the surf zone at
Huntington Beach, particularly during dry weather summer
periods. However, compared to the Santa Ana River, the
sewage outfall probably had a negligible impact on surf zone
water quality at Huntington Beach and Newport Beach during
the storm events sampled in this study. This conclusion is
based on the following evidence. First, during our study
period, sewage effluent discharged by OCSD was chlorinated
and the fecal indicator bacteria concentrations in the final
effluent (mean of 6000, 400, and 100 MPN/100 mL for TC,
EC, and ENT, n ) 17, C. McGee, personal communication)
were significantly below the concentration of fecal indicator
bacteria measured in stormwater runoff from the Santa Ana
River (mean 17000, 5000, and 8000 MPN/100 mL for TC, EC,
and ENT, n ) 30, Surbeck et al. (13)). Second, the peak
discharge rate from the OCSD outfall (ca. 13 m3/s) is much
smaller than the peak discharge rate of stormwater runoff
from the Santa Ana River (ca. 300 m3/s) (compare blue and
black curves, second panel, Figure 2). Third, the sewage
effluent is discharged 6 km offshore of the surf zone through
a 1-km-long diffuser located at the end of OCSD’s submarine
outfall at a water depth of approximately 60 m (hatched region
of the outfall pipe in Figure 1). By contrast, stormwater runoff
from the Santa Ana River is discharged into the ocean directly
at the surf line.

Offshore Measurements: Satellite Ocean Color Imagery.
The spatio-temporal distributions of offshore stormwater
runoff plumes sampled during this study are revealed by
MODIS true color satellite imagery of a 100-km stretch of the
coastline centered around our field site (Figure 3). The
monitoring grid sampled during the offshore cruises is
depicted on the satellite images by yellow dots. The timing
of the satellite passes, relative to rain events, discharge events,
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wave events, surf zone water quality events, and offshore
sampling cruises, is indicated at the top of Figure 2.

Generally speaking, in this collection of true color imagery
the stormwater runoff plumes appear to be characterized by
a band of turbid water turquoise to brown in appearance
that is observed along the entire imaged region, although
both cross-shelf and along-shore gradients in the color
signature are evident. Following the rain events on February
21-22 (total of 39.4 mm, see RE1 and RE2 in Figure 2), a
MODIS Aqua imagery from February 23 demonstrates the
cross-shelf extent of the runoff plume to be variable, ranging
from under 1 km in some places to more than 10 km offshore
of the Los Angeles River and San Gabriel River (Figure 3A).
At our study site, which is centrally located within this broad
region, a distinct and apparently heavily particulate-laden
runoff plume was observed in the vicinity of the Santa Ana
River outlet and nearby station 2201 (see Figure 1 for
numerical designation of offshore sampling sites). The Santa
Ana River plume extended offshore past station 2203, with
an apparent turn down-coast (i.e., southeast), continuing
past stations 2104 and 2024. During this time, breaking waves
were out of the south and the transport direction of fecal
indicator bacteria in the surf zone was directed up-coast,
opposite the apparent transport direction of stormwater
plumes offshore of the surf zone (compare timing of satellite
image 1 with WE2 and fecal indicator bacteria events TC2,
FC2, and ENT2, Figure 2). It also appears that a portion of the
Los Angeles River and the San Gabriel River stormwater
plumes may have advected south and comingled with the
Santa Ana River stormwater plume. Further south, offshore
particulate loadings off the Newport Bay outlet (station 2001)
do not appear to be as large as those off the Santa Ana River
outlet.

A MODIS image on February 27 revealed two distinct
plumes of considerable size and offshore extent (Figure 3B).

This satellite acquisition preceded by 1 day the sampling
cruise on February 28 (described in the next section), followed
the large precipitation event on February 25-26 (total of
51.3 mm, see RE3 in Figure 2), and followed the large discharge
event from the Santa Ana River (DE4, in Figure 2). The plume
to the northwest in this image appears to be associated with
the Los Angeles River or the San Gabriel River outlets, with
an approximate areal extent of 450 km2. The plume to the
southeast appears to be distinct from the former plume and
likely originated from the Santa Ana River outlet, with an
approximate areal extent of 100 km2 (the presumptive Los
Angeles River, San Gabriel River, and Santa Ana River plumes
are delineated by red lines in Figure 3B). The February 27
Santa Ana River stormwater plume is considerably larger in
size than the one observed on February 23 (compare Figure
3A and 3B), consistent with the very large volume of water
discharged from the Santa Ana River just prior to this satellite
acquisition (approximately 4 × 107 m3, see DE4 in Figure 2).
Further, the Los Angeles River, San Gabriel River, and Santa
Ana River runoff plumes on February 27 differed from those
on February 23 in that they penetrated farther offshore (30
km compared to 10 km) and thus potentially transported more
sediments into the deep waters of the San Pedro Channel.

The jetlike appearance of the presumptive Los Angeles
River, San Gabriel River, and Santa Ana River stormwater
runoff plumes in Figure 3B has been observed elsewhere in
the Southern California Bight, for example, off the Santa Clara
River discharge (4, 29), and is potentially the result of inertia-
driven flow. At the time of this second satellite acquisition,
breaking waves out of the west, and along-shore transport
in the surf zone and offshore of the surf zone, appear to be
directed down-coast (compare timing of satellite image 2
with WE3 and fecal indicator events TC3, FC3, and ENT3).

Subsequent MODIS true color imagery on February 28
(Figure 3C) and February 29 (Figure 3D) indicates that both

FIGURE 3. MODIS Terra and Aqua true color satellite imagery of stormwater runoff plumes along the San Pedro Channel, California, with
nominal spatial resolution of 250 m. Yellow dots indicate location of field sampling stations offshore of Huntington and Newport Beach;
black arrows denote the Los Angeles River (LAR) outlet, San Gabriel River (SGR) outlet, Santa Ana River/Talbert Marsh (SAR/TM) outlet,
and Newport Bay outlet. (A) MODIS-Aqua, February 23, 2004, at 21:00 UTC (13:00 local time), (B) MODIS-Aqua, February 27, 2004, at 20:35
UTC (12:35 local time), (C) MODIS-Aqua, February 28, 2004, at 21:20 UTC (13:20 local time), (D) MODIS-Terra, February 29, 2004, at 18:50
UTC (10:50 local time).
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the Los Angeles River/San Gabriel River and the Santa Ana
River runoff plumes had significantly decreased in size,
consistent with reduced flow out of the respective rivers
(compare stream discharge curves with timing of satellite
images 2 and 3, Figure 2). However, particulate matter
appeared to remain high in the general vicinity of the Santa
Ana River outlet. Whereas this zone of elevated particulate
matter extended south to at least station 2021 on February
27-28, by February 29 it had receded somewhat and was
fairly localized around station 2201. Unfortunately, no satellite
imagery was available the following day (March 1) to
complement the third sampling cruise, given persistent
regional cloud cover that day.

Offshore Measurements: In-Situ Turbidity and Number-
Averaged Particle Size. In-situ turbidity measurements
collected during the three offshore cruises are presented as
a series of color contour plots in Figure 4. During the February
23 cruise, a region of high turbidity, as evidenced by low
transmissivity and high TNC, is evident offshore of, and to
the south of, the Santa Ana River outlet (left-hand column
of panels, Figure 4). The number-averaged particle size is
depressed in this same region, as well as in the region offshore
of the Newport Bay outlet. During subsequent cruises, the
ocean became progressively less turbid closer to shore
(although not necessarily offshore), as evidenced by increas-
ing transmissivity and decreasing TNC, and the number-
averaged particle size progressively increased (second and
third columns, Figure 4). These results suggest that, offshore
of the surf zone, particle size was steadily increasing and

particle concentrations were steadily decreasing following
the rain and stream discharge events that ended on, or before,
the evening of February 27. The above turbidity patterns are
generally consistent with the plume signatures and gradients
observed in the true color satellite imagery (Figure 3),
although some differences exist which could result from the
offset timing (up to several hours) between the acquisition
of the satellite images and the field measurements. As a
technical aside, the number-averaged particle size (dh, see eq
1b) and the median particle size (d50) follow similar trends
(i.e., they both rise and fall together), although the magnitude
of d50 was approximately 16-fold larger (Figure S3, Supporting
Information). For the results presented here, dh was chosen
because it emphasizes changes in the small end of particle
size spectra.

Offshore Measurements: Fecal Indicator Bacteria. Water
quality test results from the three offshore cruises are
presented as a set of color contour plots in Figure 5. During
the February 23 cruise, the concentration of fecal indicator
bacteria exceeded the California single-sample standards for
TC, ENT, and EC in several samples collected just offshore,
and to the south, of the Santa Ana River and Newport Bay
outlets (left-hand column of panels in Figure 5). Nevertheless,
the highest concentrations measured offshore of the surf
zone are generally lower, in many cases by several orders of
magnitude, compared to the highest concentrations mea-
sured in the surf zone (compare concentration scales for EC,
FC, and ENT in Figures 2 and 5). The difference in offshore
and surf zone fecal indicator bacteria concentrations is even

FIGURE 4. Particle measurements collected during the three sampling cruises. The bottom row of panels indicates the sampling track.
TNC is an abbreviation for total particle number concentration. TNC and number-averaged particle size were calculated from measured
particle size spectra using eq 1a, b.
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more pronounced during the later cruise dates. For example,
none of the samples collected during the February 28 and
March 1 cruises exceeded state standards for fecal indicator
bacteria, yet several of the samples collected from the surf
zone during the same time period exceeded single-sample
standards for one or more fecal indicator bacteria groups
(compare concentrations measured during the second cruise
date with TC3, FC3, and ENT3 and concentrations measured
during the third cruise date with TC4, FC4, and ENT4, Figures
2 and 5).

Offshore Measurements: F+ Coliphage and Human
Viruses. Offshore samples tested positive for F+ coliphage (n
) 8, see Table 1), with the exception of a single sample
collected on the February 28 cruise from offshore of the
Newport Pier (blue, green, and red plus symbols, bottom
panels, Figure 5). Human adenoviruses and enteroviruses
were detected by real time Q-PCR, nested PCR, and RT-PCR
in a sample collected from station 2201 located directly
offshore of the Santa Ana River outlet during the February
28 cruise (red plus, middle bottom panel, Figure 5). The
concentration of human adenoviruses in this sample is
estimated to be 9.5 × 103 genomes per liter of water, which
is approximately equivalent to 10 plaque forming units per
liter of water, according to a laboratory study comparing
Q-PCR results with plaque assay (35). Human enteroviruses
were also detected in a sample collected directly offshore of
the Santa Ana River outlet (station 2201) on the February 23
cruise (green plus, bottom left panel, Figure 5). While
relatively few samples were tested for human viruses

(n ) 8), these results demonstrate that human viruses are
present in surface water offshore of the Santa Ana River outlet
following storm events, even when the fecal indicator bacteria
concentrations are below state standards (e.g., station 2201
during the February 28 cruise, Figure 5). These results are
consistent with previous observations that human pathogenic
viruses and fecal indicator viruses persist longer than fecal
indicator bacteria in ocean water (36). Direct PCR measure-
ment of pathogenic viruses in highly turbid water is chal-
lenging because of PCR inhibition (35).

Offshore Measurements: Relationship between Fecal
Indicator Bacteria, Turbidity, and Number-Averaged Par-
ticle Size. Turbidity has been suggested as a possible proxy
for water quality (37, 38). However, on the basis of our offshore
data, turbidity per se appears to be an inconsistent proxy for
the concentration of fecal indicator bacteria. For example,
during the February 23 cruise, there is good coherence
between turbidity and TC, EC, and ENT concentrations off
the Santa Ana River outlet and Newport Pier (compare
transmissivity and TNC with fecal indicator bacteria results,
left-hand column of panels, Figures 4 and 5). However,
turbidity is low off of the Newport Bay outlet where the
bacteria concentrations are particularly high. In addition,
there are no consistently robust relationships between
shipboard measurements of fecal indicator bacteria and
shipboard measurements of TOC, temperature, or salinity
(see Figure S4, Supporting Information). The number-
averaged particle size, on the other hand, comes close to
matching the along-shore spatial pattern of fecal indicator

FIGURE 5. Fecal indicator bacteria concentrations measured during the three sampling cruises. The bottom row of panels indicates the
sampling track (blue arrows) and the detection of F+ coliphage and human viruses. SAR/TM is an abbreviation for the outlet of the Santa
Ana River and Talbert Marsh.
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bacteria measured during the February 23 cruise. Specifically,
elevated fecal indicator bacteria concentration appears to
correlate with depressed number-averaged particle size
(compare fecal indicator bacteria and number-averaged
particle size results for the February 23 cruise, left-hand
column of panels, Figures 4 and 5). When all of the fecal
indicator bacteria data collected during the three cruises are
aggregated and plotted against number-averaged particle
size, an inverse relationship between these two parameters
emerges; specifically, samples with elevated fecal indicator
bacteria concentrations also exhibit small number-averaged
particle size (Figure 6A). Moreover, the concentration of fecal
indicator bacteria in water samples collected during the first
two cruises is the same, within error, before and after filtration

through a 53-µm sieve (Figure 6B), implying that fecal
indicator bacteria are either adsorbed to particles smaller
than 53 µm or are not particle-associated. TOC also appears
to pass through the 53-µm sieve (Figure 6B) as do human
viruses and fecal indicator viruses (data not shown). The
co-occurrence of small particles and indicators of fecal
pollution (fecal indicator bacteria, fecal indicator viruses,
and human pathogenic viruses) does not necessarily imply
that the latter are adsorbed to the former. The inverse
relationship evident in Figure 6A, for example, may reflect
a temporal evolution of stormwater plumes as they age, from
a predominance of small particles and high concentrations
of fecal indicators initially, to larger particles and lower
concentrations of fecal indicators later.

FIGURE 6. (A) Cross plots of log-transformed fecal indicator bacteria concentrations measured in samples collected during the three
offshore cruises, against the corresponding number-averaged particle size. (B) Cross plots of log-transformed fecal indicator bacteria
concentrations and TOC concentrations measured in samples collected during the three offshore cruises, before and after filtration through
a 53-µm sieve. The one-to-one line corresponds to the case where the concentrations are the same before and after filtration.
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Offshore Measurements: Particle Size Spectra. Particle
size spectra acquired during the three cruises are presented
in Figure 7. Each plot displays the normalized particle volume
(vertical axis) detected in 32 logarithmically spaced particle
diameter bins ranging in size from 2.5 to 500 µm (horizontal
axis). The particle size spectrum measured at a particular
offshore location and time appear to be related to the specific
stormwater plume the particles are associated with and,
possibly, the elapsed time stormwater has spent in the ocean.
Stormwater flowing out of the Santa Ana River during the
February 23 cruise, for example, is characterized by two
modes at the small end of the size spectrum, one in the <5
µm bin and another in the 10-50 µm bins (set of red curves,
Figure 7). These modes are present in stormwater runoff
sampled at several locations in the Santa Ana River watershed
(13), in samples collected at the ocean outlet of the Santa
Ana River (panel labeled “SAR Outlet” at top of Figure 7), and
in samples collected just offshore (red curve at station 2201,
Figure 7) and down-coast (red curve at station 2101, Figure
7) of the Santa Ana River outlet. Particles discharged from
the Santa Ana River appear to dilute and merge into a
background turbidity characterized by a single broad mode
in the 50-300 µm size range (evident in the red curves at
most stations, Figure 7).

Referring to Figure 3A and the earlier discussion of this
satellite image, the 50-300 µm mode observed on February
23 may be characteristic of a large runoff plume originating
from one or more up-coast sources of stormwater runoff,

most likely the Los Angeles River or the San Gabriel River.
Several factors can lead to artifacts in the particle size spectra
estimated from the light-scattering instrument deployed in
this study (39). However, in our case this caveat is mitigated
somewhat by the observation that particle volume fractions
calculated from the particle size spectra are strongly cor-
related (Spearman’s rank correlation Sp ) 0.90, p ) 0.02)
with independent measurements of total suspended solids
(data not shown).

During the second and third cruises, the particle size
spectra progressively coarsen with the result that, by March
1, virtually all of the particle volume is associated with the
largest size bin (>500 µm, green curves in Figure 7). The
observed temporal evolution in particle size spectra, from
high turbidity and multiple modes at the lower end of the
particle size spectrum to low turbidity and a single mode at
the large end of the particle size spectrum, may reflect
decreasing particle supply (i.e., reduced stormwater discharge
from major river outlets) coupled with within-plume co-
agulation of particles into larger size classes and, ultimately,
removal of the largest particles by gravitational sedimenta-
tion. Coagulation time scales estimated from these particle
size spectra measurements are short (minutes to hours or
longer) compared to time scales associated with the genera-
tion and offshore transport of stormwater plumes (hours to
days), and hence coagulation cannot be ruled out as an
important mechanism at our field site (see Supporting
Information for details on the time scale calculations).

FIGURE 7. Particle size spectra measured during the three offshore cruises; numbers at the top of each panel denote the station number
where the particle size spectra were measured (see Figure 1). The vertical axis in each plot represents the particle volume resident in
logarithmically spaced particle diameter bins; the horizontal axis represents the diameter of the particles (in µm). These plots are arranged
so that the stations progress from onshore to offshore (top to bottom) and up-coast to down-coast (left to right). The single plot labeled
“SAR Outlet” corresponds to a particle size spectrum measured in stormwater runoff flowing out of the Santa Ana River outlet, just upstream
of where it flows over the beach and into the ocean.
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Whether coagulation, in fact, plays a role in the fate and
transport of particles and particle-associated contaminants
in stormwater plumes will likely depend on the coagulation
efficiency (i.e., the fraction of particle-particle collisions that
result in sticking events) and shear rates present at a given
location and time (40, 41). Alternatively, the observed
temporal coarsening of particles in the offshore may reflect
changes in the particle size spectra of the stormwater runoff
before it enters the ocean, from a predominance of smaller
particles during the peak of the hydrograph, to a predomi-
nance of coarser particles during the falling limb of the
hydrograph. Further studies are needed to determine whether
observed coarsening of the offshore particle size spectra is
caused by within-plume coagulation or by temporal evolution
of the particle size spectra in stormwater runoff before it
enters the ocean.

Data Synthesis. Results presented in this paper are
represented schematically in Figure 8, including potential
offshore transport mechanisms (panel A) and the resulting
distribution of particles, bacteria, and viruses (panel B). As
stormwater is discharged from the river outlet and flows over
the beach, a fraction is entrained in the surf zone and the

rest is ejected offshore in a momentum jet. Measurements
of fecal indicator bacteria in the surf zone suggest that, once
entrained, contaminants are transported parallel to shore
by wave-driven currents, in a direction (i.e., up- or down-
coast) controlled by the approaching wave field. When waves
strike the beach so that a component of wave momentum
is directed up-coast (the scenario pictured in Figure 8), fecal
indicator bacteria in the surf zone are carried up-coast of the
river outlet. Conversely, when waves strike the beach so that
a component of wave momentum is directed down-coast,
fecal indicator bacteria in the surf zone are carried down-
coast of the river outlet. The buildup of water in the surf zone
from breaking waves drives a cross-shore circulation cell,
which can transport material between the surf zone and
offshore of the surf zone. At our field site, this cross-shore
circulation appears to limit the length of beach severely
polluted with fecal indicator bacteria to <5 km around the
river outlet, by diluting contaminated surf zone water with
cleaner water from offshore. While the transport processes
described here are based on measurements of fecal indicator
bacteria in the surf zone, it is likely that other contaminants
in stormwater runoff, in particular, human viruses and toxic

FIGURE 8. (A) Transport mechanisms that can affect the offshore distribution of contaminants discharged from river outlets. (B) Schematic
representation of the spatial distribution of particles (black circles of varying size), fecal indicator bacteria (red symbols), and F+ coliphage
and human pathogenic viruses (green symbols). Abbreviations are SAR (Santa Ana River), SGR (San Gabriel River), and LAR (Los Angeles
River).
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contaminants associated with suspended particles (13, 42),
will behave similarly.

Further offshore, stormwater runoff plumes are common
and readily detected through a variety of geophysical
parameters (e.g., salinity, transmissivity, surface color). A
clear linkage between these parameters and fecal indicator
bacteria could not be established here. However, fecal
indicator bacteria did appear to be associated with the
smallest particle sizes, on the basis of both fractionation
studies (Figure 6B) and the inverse relationship observed
between fecal indicator bacteria concentrations and number-
averaged particle size (Figure 6A). Particle size spectra in the
offshore plumes coarsen with time post-release, and fecal
indicator bacteria concentrations steadily drop (see the
schematic representation of particle size in the various
offshore plumes, Figure 8B). These results have several
implications. First, they suggest that high concentrations of
fecal indicator bacteria in the surf zone at our field site are
probably not brought into the study area by coastal currents
from distal sources (e.g., the Los Angeles river or the San
Gabriel river). Second, cross-shore transport of water between
the surf zone and offshore of the surf zone, for example, by
rip cell currents, is likely to improve surf zone water quality
by diluting dirty river effluent entrained in the surf zone with
relatively clean ocean water from offshore.

While the concentrations of fecal indicator bacteria in
the offshore plumes are generally below surf zone water
quality standards, particularly during the latter two cruises,
fecal indicator viruses (F+ coliphage) were detected in nearly
all offshore samples tested, and human adenoviruses and
enteroviruses were detected in several offshore samples,
including two collected offshore of the Santa Ana River outlet
(station 2201 on February 23 and 28, see Figure 5). It is likely
that the virus results presented here represent a conservative
estimate of viral prevalence, because a limited numbers of
samples were tested (n ) 8). In addition, the presence of PCR
inhibitors in stormwater reduces the efficiency of PCR
detection of human pathogenic viruses, as mentioned earlier.
At present, there are no water quality standards for fecal
indicator viruses and human pathogenic viruses, largely
because epidemiological data are not available to link adverse
human health outcomes (e.g., gastrointestinal disease) to
recreational ocean exposure to these organisms. However,
the offshore detection of human pathogenic viruses begs
several questions: First, do these viruses constitute a human
health risk, either by contaminating the surf zone directly
(see arrow with question mark, indicting the possible transfer
of contaminants from offshore into the surf zone, Figure 8B)
or by sequestering in offshore sediments? Second, given the
fact that the Santa Ana River has separate storm and sanitary
sewer systems, what is the source of human fecal pathogens
in the wet weather water runoff? Many studies have shown
that human fecal pathogens are associated with storm runoff
from urban areas located throughout the United States
(25, 43-45), so the association between stormwater runoff
and human fecal pathogens observed here is certainly not
unique. Possible sources of human pathogens in stormwater
runoff from urban areas include leaking sewer pipes, illicit
sewage connections to the stormwater sewer system, home-
less populations, and so forth.

Taken together, the results presented in this paper
demonstrate that stormwater runoff from the Santa Ana River
is a significant source of near-shore pollution, including
turbidity, fecal indicator bacteria, fecal indicator viruses, and
human pathogenic viruses. However, relationships between
variables (e.g., between turbidity and fecal indicator bacteria
and between fecal indicator bacteria and human viruses)
vary from site to site (at the same time) and from time to
time (at the same site) suggesting that the sources, fate, and
transport processes are contaminant specific. The apparent

exception is the inverse relationship observed between fecal
indicator bacteria and number-averaged particle size, al-
though further studies are needed to determine if this result
is generalizable to other storm seasons and coastal sites and,
if so, to determine the underlying mechanism at work. The
relationship between water quality parameters (e.g., fecal
indicator bacteria), turbidity, and other field proxies, such
as number-averaged particle size, salinity, and colored
dissolved organic matter, are the focus of ongoing and future
regional studies, including as part of a coastal water
quality observing program within the Bight ’03 Project
(http://www.sccwrp.org/regional/03bight/bight03_fact_
sheet.html), as well as other investigations being carried out
as part of the Southern California Coastal Ocean Observing
System (SCCOOS).
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