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Abstract

We apply mathematical modeling to explore different scenarios of invasion of a top predator (carnivorous
zooplankton or planktivorous fish) into an epipelagic plankton ecosystem. We use a ‘minimal’ model of
three nonlinear ordinary differential equations (nutrient–phytoplankton–herbivores) with the top predator
density as a time-dependent parameter. The ecosystem shows different types of response, which can be
described in terms of top-down trophic control. Our investigation indicates that under certain conditions
the plankton ecosystem model demonstrates a surprising kind of response: in a wide range of realistic
ecosystem parameters the invasion of the top predator leads to a prominent increase in the average density
of zooplankton and to a resulting decrease of phytoplankton density. This phenomenon is opposite to the
‘typical’ top–down control when the carnivore pressure decreases zooplankton density which, in turn,
increases phytoplankton biomass. We call the revealed type of top-down control ‘paradoxical’. Examples of
such a response in natural aquatic ecosystems were reported earlier but no clear explanation has been
provided hitherto. In this paper, we analyze possible mechanisms of ‘paradoxical top–down control’ and
show that it can occur in eutrophic epipelagic ecosystems subject to high rate of cross-pycnocline exchange.

Introduction

Understanding the possible consequences of a
biological invasion is an issue of increasing
importance in modern ecology (Drake et al.
1989; Shigesada and Kawasaki 1996; Sakai et al.
2001; Fagan et al. 2002). Invasion of exotic
species can lead to catastrophic changes in the
biomass and biodiversity of the community. An
impressive example of invasion in a marine eco-
system is the invasion of the ctenophore Mnemi-
opsis leidyi into the Black Sea in the late 1980s

(Vinogradov et al. 1989), which resulted in a
drastic decrease of zooplankton biomass and
density and nearly brought several fish species to
extinction. The consequences of invasion can be
especially dramatic when the invasive species
constitutes a new trophic level of the ecosystem
(Yodzis 1989) or when, as a result of invasion,
one of the trophic levels is substituted by new
species (McPeek 1998). In this paper, we
consider different scenarios of invasion of a top
predator (carnivorous zooplankton or planktivo-
rous fish) into a marine plankton community
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when the ‘new’ predator appears to be a more
effective consumer than the original top predator
species.

The response of a plankton community to
invasion of new carnivorous zooplankton or
planktivorous fish species is subject to complex
interactions between the principal trophic levels:
limiting nutrient, phytoplankton as the primary
producer, herbivorous zooplankton grazing phy-
toplankton, and the top predator consuming her-
bivorous zooplankton. The feedback between
different trophic levels includes both positive and
negative correlations. In particular, ‘bottom–up’
and ‘top–down’ types of trophic control have
been described (Leibold et al. 1997; Shurin et al.
2002). An important example of ‘bottom–up’
control is the growth of phytoplankton biomass
resulting from increased nutrient concentration
(Eppley et al. 1979) which, in turn, can lead to
the growth of zooplankton biomass. On the
other hand, the consumer biomass can operate as
the main factor controlling the biomass of its
prey; in this case the negative correlation be-
tween these two trophic levels is called ‘top–
down’ control (e.g., Brett and Goldman 1997;
Worm and Myers 2003). In a more sophisticated
case, an indirect impact of top predators on
plants via herbivores is observed; this type of
relation is called a ‘trophic cascade’. Examples of
trophic cascades have often been observed in
freshwater aquatic ecosystems when introduction
of planktivorous fish to lakes or fish ponds was
negatively correlated with subsequent changes in
zooplankton biomass and positively correlated
with changes in phytoplankton biomass (Vanni
and Layne 1997; Sarvala et al. 1998; Lammens
1999).

At the same time, in contrast to freshwater
plankton communities, in marine ecosystems tro-
phic cascades are usually weak (Shurin et al.
2002). For instance, the comprehensive study of
marine fishery by Micheli (1999) indicated no sig-
nificant correlation between phyto- and zoo-
plankton densities. The absence of prominent
trophic cascades in marine ecosystems is some-
times explained by a complex community struc-
ture, e.g., by the existence of parallel food chains
(Stibor et al. 2004).

A ‘typical’ response of different ecosystems to
an increase in carnivorous predators pressure

consists in a decrease of the biomass of herbi-
vores and an increase in the biomass of plants
(Brett and Goldman 1997; Vanni and Layne
1997; Shurin et al. 2002). However, a more thor-
ough analysis indicates that the situation is not as
simple as it looks at first glance and ecosystems
can exhibit other types of trophic response, too.
An increase in fish trophic pressure sometimes
leads to an increase in zooplankton biomass in
lakes (Leibold et al. 1997). Removal of a top
predator can result in a prominent decrease of the
biomass of herbivores in a terrestrial ecosystem
(Halaj and Wise 2001). Alimov (2000) reported a
counter-intuitive phenomenon in epipelagic eco-
systems that consisted of an increase of herbivo-
rous zooplankton biomass resulting from an
increased pressure of carnivores and fish. Below
we call this type of feedback a ‘paradoxical
top–down control’.

Although ‘paradoxical top–down control’ in
ecosystems is relatively rare, it has been repeat-
edly observed and reported in the ecological liter-
ature. However, no clear explanation of this
phenomenon has been suggested so far and the
mechanisms of ‘paradoxical top–down control’
are still poorly understood (Leibold et al. 1997).
In this paper, we provide a possible explanation
of ‘paradoxical top–down control’ in a marine
epipelagic plankton community based on a con-
ceptual mathematical model of a marine
ecosystem.

The important fact for understanding the
dynamics of marine ecosystems is that, apart
from the complexity of trophic interactions,
marine plankton communities are highly influ-
enced by the physical environment, primarily by
stratification of the water column. A typical mar-
ine pelagic ecosystem is restricted to the upper,
well-illuminated (euphotic) ocean layer separated
from the deeper layers by the pycnocline (the
layer of sharp density gradient) which hinders
the exchange between the layers. The nutrient
flux from the deep layer stimulates phytoplank-
ton growth; at the same time, some part of the
organic matter produced sinks into the deep lay-
er and is lost from the epipelagic food web. In
this paper, we will show that these ‘semi-trans-
parent’ ecosystem boundaries and the complexity
of interactions between the system components
can lead to new features of marine epipelagic
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plankton community which play an important
role in the top–down relations between the tro-
phic levels. As a result, the consequences of top
predator invasion into an epipelagic community
can be completely different from the intuitively
expected pattern.

We describe the plankton community by a con-
ceptual or ‘minimal’ model (cf. Edwards and
Brindley 1996, 1999), consisting of three differen-
tial equations for nutrients, phytoplankton and
herbivores, respectively, with the density of top
predator as a time-dependent parameter control-
ling exploitation of herbivores. Similar approaches
have been used by a number of authors (Evans
and Parslow 1985; Caswell and Neubert 1998; Ed-
wards and Yool 2000). Our numerical simulations
show that, under certain conditions, the response
of a plankton community to top a predator pres-
sure becomes anomalous: in a wide range of sys-
tem parameters the invasion of a top predator
results in a prominent increase in the average zoo-
plankton biomass and in a significant decrease in
the average phytoplankton biomass. This ‘para-
doxical top–down control’ is shown to appear for
the parameters corresponding to eutrophic epipe-
lagic ecosystems characterized by a high rate of
cross-pycnocline exchange.

Model formulation

The functional structure of the model is shown in
Figure 1. The original system, i.e., the system be-
fore invasion, is described in terms of three main

compartments in a spatially homogeneous upper
mixed layer: limiting nutrient, phytoplankton,
and herbivorous zooplankton. The upward arrow
indicates the nutrient influx due to inter-layer
turbulent exchange, the downward arrows indi-
cate the losses of matter due to its washing out
of the system, other arrows indicate the fluxes of
matter between the compartments. The invading
top predator (carnivorous zooplankton or fish) is
shown by the dashed ellipse.

First, we consider the model without a top
predator. This consists of three ordinary differen-
tial equations for three dynamical variables, i.e.,
the densities of limiting nutrient (N), phytoplank-
ton (P) and herbivorous zooplankton (Z) (cf.
Steele and Henderson 1992; Edwards and Brind-
ley 1996, 1999):

dN

dt
¼ d N0 �Nð Þ � r

N

KN þN
PþmPP

þ cmZZþ al
P

KP þ P
Z; ð1Þ

dP

dt
¼ xr

N

KN þN
P�mPP� ðd1 þ dÞP

� l
P

KP þ P
Z; ð2Þ

dZ

dt
¼ gl

P

KP þ P
Z�mZZ: ð3Þ

Limiting nutrient N is transported into the upper
mixed layer from the deeper layer, where its con-
centration N0 is assumed to be constant. The rate

y p g y

N P Z
Top

predator

dd

d1

Deep layer 

Figure 1. Structure of the nutrient–phytoplankton–herbivorous–fish/carnivorous model. The original system consists of three com-

partments: nutrient (N), phytoplankton (P), zooplankton (Z). Invasion of a top predator, carnivorous zooplankton or fish, is rep-

resented by the dashed ellipse. Arrows show flows of matter through the system.
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of mixing between the two layers is described by
the coefficient d. Phytoplankton consumes nutri-
ent at the rate given by rNP/(N+KN). The last
three terms in Equation (1) describe the release
of nutrient due to, respectively, decomposition of
phytoplankton, decomposition of zooplankton
and excretion of zooplankton, which is propor-
tional to the rate of phytoplankton consumption
with the coefficient a.

Phytoplankton growth is described by the first
term in Equation (2), where KN is the half-satura-
tion nutrient density, r is the maximum growth
rate and x is the efficiency coefficient. Following
Edwards and Brindley (1999), we further assume
x = 1. For the sake of simplicity, we do not con-
sider here the influence of illumination on photo-
synthesis. Phytoplankton biomass decreases due
to natural mortality and respiration described by
mPP, due to the outflow from the system via tur-
bulent exchange between the two layers (dP),
sinking (d1P) and grazing described by the last
term in Equation (2). We assume that zooplank-
ton trophic response is Holling type II (cf. Schef-
fer 1991; Doveri et al. 1993) with maximum
grazing rate l and the half-saturation constant
KP. The efficiency of phytoplankton consumption
by zooplankton is described by coefficient g, see
Equation (3). Zooplankton biomass decreases due
to its natural mortality and respiration processes
described by the term mZZ.

Below we refer to Equations (1–3) as ‘N–P–Z
model’ or ‘N–P–Z system’.

Note that, when considering the N–P–Z model,
we do not necessarily assume that carnivorous
zooplankton or planktivorous fish are absent in
the system. Instead, we assume that the invasive
top predator species is a more effective zooplank-
ton consumer than the species constituting the
top trophic level before invasion. The initial top
predation is taken into account by means of addi-
tional mortality, i.e., included implicitly into the
term mZZ.

Biological invasion of a top predator (carnivo-
rous zooplankton or planktivorous fish) into the
original N–P–Z system is described in our model
in the following way (cf. Edwards and Yool 2000;
Scheffer et al. 2000). We do not consider the pop-
ulation of top predator explicitly; instead, we add
in Equation (3), a term describing top predator
pressure on zooplankton, described by trophic

response of Holling type III (Scheffer 1991) and
also add the corresponding excretion term into
Equation (1). The model looks like this:

dN

dt
¼ d N0 �Nð Þ � r

N

KN þN
PþmPP

þ cmZZþ al
P

KP þ P
Zþ bdðtÞ Z2

Z2 þ K2
Z

ð4Þ

dP

dt
¼ r

N

KN þN
P�mPP� ðd1 þ dÞP

� l
P

KP þ P
Z;

ð5Þ

dZ

dt
¼ gl

P

KP þ P
Z�mZZ� dðtÞ Z2

Z2 þ K2
Z

ð6Þ

where d(t) and KZ are the parameters describing
the top predation, b describes top predator excre-
tion. Following Doveri et al. (1993), we assume
top predator excretion b to be approximately
equal to zooplankton excretion a.

Invasion of a top predator is not an instanta-
neous process; we assume that d=0 for t < 0,
then it gradually increases with time up to a cer-
tain d0. We choose the simplest way to parame-
terize the invasion using the piecewise linear
function:

dðtÞ ¼ d0t=t0; t 2 ½0; t0�; d tð Þ ¼ d0; t > t0 ð7Þ

where t0 can be regarded as the characteristic
time of top predator establishment.

We use realistic values of model parameters ob-
tained from different sources and summarized in
(Edwards and Brindley 1999; see Table 1), with
nitrogen as limiting nutrient (with appropriate
conversion into g carbon m)3 units, g C m)3).
Note that parameters d0 and KZ, describing the
intensity of top predation, are not given in
Table 1, since d0, which is actually the product of
the top predator density and the maximum top
predation rate, can vary over a wide range. Simi-
larly, the half-saturation constant KZ for fish and
zooplankton species varies as much as two orders
of magnitude (Doveri et al. 1993). However, this
is not a drawback of our model; on the contrary,
it makes it possible to describe an invasion of dif-
ferent species with different characteristics.
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Results

In order to understand the consequences of the
invasion of a top predator into a plankton sys-
tem, we begin by considering the basic features
of the N–P–Z system, i.e., the system without
fish/carnivore trophic level.

Using standard analytical approaches (cf. Kuz-
netsov 1995), it is easy to show that the system
(1–3), under some constraints on parameter val-
ues, possesses only one steady state in the first oc-
tant of the phase space (N > 0, P > 0, Z > 0);
this state can be either stable or unstable.

However, for a system of nonlinear differential
equations such as (1–3), analytical methods usu-
ally give only meager information. Numerical
simulations of Equations (1–3) for parameters
that are allowed to vary around the realistic val-
ues given in Table 1 show that this relatively
simple plankton model exhibits complex dynam-
ics, including multiple attractors and chaotic
oscillations.

Extensive numerical study of the N–P–Z sys-
tem was done by examining a few thousand dif-
ferent parameter sets. Among all regimes where
at least one component does not go extinct, we
found two main regimes of the system dynamics,
i.e., periodic oscillations of N–P–Z densities along
a stable limit cycle and relaxation of the densities
to the globally stable steady state, which occurred
altogether in more than 99% of computer experi-
ments. Numerical simulations giving examples of
these regimes are shown in Figure 2a (obtained
for d = 0.05) and b (d = 0.01), respectively,

other parameters are: KN = 0.03; KP = 0.05;
c = 0.5; N0 = 1; mP = 0.075; mZ = 0.1; r = 1;
d1 = 0.05; a = 0.5; g = 0.25; l = 0.8, units are
given in Table 1.

Unfortunately, the large number of parameters
in the system does mean that it is not possible to
study its global bifurcation structure in the whole
parameter space. Instead, we choose two control-
ling parameters of clear ecological meaning, N0

and d, and study in detail the bifurcation struc-
ture of the N0–d plane, keeping the other parame-
ters fixed. The choice of N0 and d is justified by
the widely accepted fact that the dynamics of
plankton systems is to a large extent governed by
environmental conditions, in particular by the
availability of nutrients. In our model, the avail-
ability of nutrients apparently depends on their
concentration N0 in the deeper layer and the
intensity of inter-layer exchange d, thus high val-
ues and low values of N0, d correspond to eutro-
phic and oligotrophic marine ecosystems,
respectively.

This prediction is confirmed by the results of
our computer experiments. Figure 2c represents
two-parametric bifurcation portrait in the N0–d
plane; other parameters are the same as in
Figures 2a and b. Here domain 1 corresponds to
oscillatory dynamics and domain 2 corresponds
to the globally stable steady state. In domain 3
below curve S, there is no attractor situated in
the interior of the first octant so that zooplankton
cannot survive, the globally stable steady state
appears/disappears when crossing curve S via
transcritical bifurcation. (Stability exchange takes

y , p g

Table 1. System parameters and ranges of their values for N–P–Z model.

Parameter Symbol Parameter range

Cross-pycnocline exchange rate d 0.008–0.13 day)1

Half-saturation constant for N uptake KN 0.02–0.15 g C m)3

Half-saturation constant for Z grazing KP 0.02–0.10 g C m)3

Regeneration of N from decomposition of Z c 0.5–0.9

N concentration in the deep layer N0 0.1–2.0 g C m)3

P respiration rate mP 0.05–0.15 day)1

Z respiration rate mZ 0.065–0.15 day)1

Maximum P growth rate r 0.2–1.5 day)1

P sinking rate d1 0.032–0.08 day)1

Z excretion coefficient a 0.5–0.9

Z growth efficiency g 0.2–0.5

Maximum Z growth rate l 0.6–1.4 day)1
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Figure 2. Dynamics of the N–P–Z system before introduction of top predator: (a) species density vs. time in the regime of stable

periodical oscillations observed for N0 = 1 and d = 0.05, other parameters are: KN = 0.03, KP = 0.05, c = 0.5, mP = 0.075,

mZ = 0.1, r = 1, d1 = 0.05, a = 0.5, g = 0.25 and l = 0.8, units are given in Table 1; (b) species density vs. time in the regime

of relaxation to a stable stationary state observed for N0 = 1 and d = 0.01, other parameters the same as above; (c) Map in N0–d

plane, parameters are the same as above. Domain 1 corresponds to periodic oscillations, domain 2 corresponds to a globally stable

steady state, in domain 3 zooplankton goes extinct.
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place between the trivial state (with Z = 0) and
the nontrivial state, for which Z < 0 in domain 3
and Z > 0 in domains 1 and 2.) The transition
from stationary stable state to oscillatory dynam-
ics occurs across curve D via supercritical Hopf
bifurcation, i.e., via the birth of a stable limit cy-
cle. The cycle then grows in amplitude as d and
N0 increase.

Domain 1 thus corresponds to eutrophic eco-
systems with large oscillations of species densities
(prominent plankton blooms in the ocean are
typical of eutrophic regions, Flynn et al. 1997;
Lucas et al. 1999) and domains 2 and 3 corre-
spond to oligotrophic ecosystems with stable
dynamics where, for parameters from domain 3,
the system productivity is too low to support
zooplankton existence. Transition from domain 2
to domain 1 is followed by destabilization of the
system dynamics and the appearance of large-
amplitude oscillations. This phenomenon (called
the ‘paradox of enrichment’) is typical of differ-
ent aquatic systems and was studied theoretically
(Rosenzweig 1971; Gilpin 1972) and observed
experimentally (Luckinbill 1974).

Note that, although the diagram shown in Fig-
ure 2c is obtained for a particular parameter set
(see Figures 2a and b), it remains qualitatively
the same for most of the numerical experiments,
as long as the parameter values stay within the
ranges given in Table 1. In other words, the size
of those domains (in the subspace of the other
parameters: KN, KP, c, mP, mZ, r, d1, a, g, l),
which correspond to N0–d diagrams with more
complex behavior is extremely small.

Impact of top predator on system stability
and complexity

Our numerical simulations show that invasion of
a top predator significantly affects the system
dynamics.

First, introduction of a top predator into the
N–P–Z system remarkably increases the system’s
complexity. For the sake of simplicity, in this
subsection we do not consider the transient stage
and assume that the top predator has already in-
vaded into the plankton community and attained
its carrying capacity so that d(t) = d0.

Figure 3 shows N0–d diagram obtained for
KZ = 0.03 and d0 = 0.004. Here Figure 3a

shows the whole bifurcation portrait and Fig-
ure 3b gives more details of the part of the plane
inside the thick-curve rectangle. Instead of single
curve D (cf. Figure 2c), we now have a family of
curves and a complicated structure where differ-
ent domains correspond to different system prop-
erties. For ecological reasons, in order to classify
different types of system dynamics below, we fo-
cus on attracting manifolds only, such as stable
steady states, stable limit cycles and strange
attractors, paying no attention to unstable equi-
libria and unstable limit cycles. For the parame-
ters from domain 3, there is no attractor inside
the first octant so that zooplankton cannot sur-
vive. In domains 2 and 2* (the meaning of the
asterisks will be explained below), the only attrac-
tor is a single, globally stable stationary state.
Domain 4 is characterized by the coexistence of
two stable stationary states. Domains 1 and 1*

correspond to oscillatory dynamics, either peri-
odic or chaotic, with a single attractor. In do-
mains 5 and 5*, a stable stationary state coexists
with either a stable limit cycle or with a chaotic
attractor so that the system dynamics depends on
initial conditions.

The nature of the bifurcation curves is as fol-
lows. The meaning of curve S and its position in
the N0–d diagram are the same as in the original
N–P–Z system (cf. Figure 2c). The birth/disap-
pearance of the steady states occurs when cross-
ing the curves l1 and l2 (a ‘fold bifurcation’, cf.
Kuznetsov 1995). N is the Hopf bifurcation
curve. The two branches of the curves l3 show
the boundaries of the region where chaotic and
periodic oscillations alternate, the first period-
doubling bifurcation occurs when crossing l3.
However, inside the small domain bounded by
curves l4 (see Figure 3b), oscillations disappear
due to a homoclinic bifurcation when a single
steady state becomes a global attractor; this do-
main is qualitatively similar to domain 2 on the
left of l1 and thus bears the same number.

The meaning of the asterisks is as follows. Sym-
bol 1* means that the oscillations in the system be-
come complex (after the first period-doubling
bifurcation); in this domain chaotic oscillations
alternate with windows of periodicity. In contrast,
in domain 1 oscillations are purely periodical. Do-
main 5* has a similar meaning but complex oscilla-
tions coexist with a stable steady state. Notation

y y 0i pp y, y g p p y
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2* (see Figure 3a) corresponds to the situation
when the lower stable stationary state disappears
abruptly (when crossing l2) and the upper station-
ary state becomes a global attractor in the system.

To clarify the bifurcation diagrams and the
meaning of different domains, it is convenient to
consider one-dimensional cross-sections of the
N0–d plane for N0 = constant. Figures 4a and b
show such cross-sections (cf. the dotted horizontal

lines in Figure 3) obtained for N0 = 0.7 and
N0 = 0.44, respectively, where the solid curves
show stationary zooplankton density and the da-
shed curves show maximum and minimum values
of oscillating zooplankton density vs d. The num-
bers in circles correspond to the domain numbers
in the N0–d plane. Coexistence of multiple attrac-
tors is readily seen in domains 4, 5 and 5*. The
composite curve consisting of the upper part of
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Figure 3. Map in N0–d plane corresponding to the plankton system after the top predator invasion (KZ = 0.03, d0 = 0.004, other

parameters are the same as in Figure 2c) shown (a) as a whole and (b) in more detail for the part of the plane inside the bold rect-

angle. The meaning of the curves and domains is given in the text.
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curve N (above point A) and the bottom part of
curve l2 (below point A) separates the domain,
where the system dynamics can only be oscilla-
tory, either periodical or chaotic, from the domain
where stable steady dynamics is possible. From
below, the ‘stability domain’ is bounded by curve
S.

An apparent increase in system complexity is
not the only impact of the top predator. The
invasion of top predator also results in stabiliza-
tion of the plankton community dynamics: prom-
inent oscillations of the species density observed
in the N–P–Z system before invasion (d = 0) ei-
ther become much smaller in amplitude or disap-
pear entirely after the invasion (d = d0 > 0).

Figure 5 shows the N0–d diagram obtained
numerically for KZ = 0.03 and different values of
the top predation intensity: d0 = 0 (curve D),

d01 = 0.001, d02 = 0.002, d03 = 0.003,
d04 = 0.004, d05 = 0.005 and d06 = 0.0055. Other
parameters are the same as in Figure 2c. For each
d, the corresponding curve separates the stability
domain (below the curve), i.e., where at least one
stable steady state exists, from the domain (above
the curve), where the system dynamics is oscilla-
tory. Apparently, the higher the intensity of top
predation, the larger is the stability domain. From
the left side, the stability domain is always bounded
by curve S.

Trophic response and paradoxical
top-down control

The results described above show that invasion of
a top predator can result in qualitative changes in
plankton dynamics. From an ecological point of

(a)

(b)
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Figure 4. Bifurcation diagram of the system after invasion corresponding to the cross-section of N0–d plane made for (a) N0 = 0.7

and (b) N0 = 0.44 (cf. the dotted horizontal lines in Figure 3a). Solid lines show stationary zooplankton density corresponding to

stable steady states, the dashed lines show maximum and minimum of oscillating zooplankton density. Numbers in circles corre-

spond to the domain numbers in Figure 3.
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view, an important question is how the values of
average plankton densities change when the top
predation becomes more prominent. This issue is
directly related to the problem of top–down tro-
phic control.

In our extensive numerical study of system (4–
6), we found two different types of the plankton
system response to the invasion of a top preda-
tor; one of them can be considered as typical
while the other looks rather paradoxical. Here
the word ‘typical’ means that this type of re-
sponse is frequently observed in nature, is well
understood, and thus considered as a usual or
typical top–down control (e.g., see Brett and
Goldman 1997; Worm and Myers 2003).

Figure 6 gives two examples of the typical re-
sponse of a plankton system to increasing inten-
sity of top predation obtained for (a and b)
KZ = 0.03 and (c and d) KZ = 0.003. Other
parameters are the same as in Figure 2b and cor-
respond to a well-balanced oligotrophic aquatic
ecosystem with stable dynamics. We calculate the
stationary densities of phyto- and zooplankton
for different values of the top predation intensity

d0. The invasion is described by Equation (7)
with establishment time t0 = 365 days. The ini-
tial conditions correspond to the stationary den-
sities of the original N–P–Z system (cf.
Figure 2b). As may be intuitively expected, an in-
crease in d0 leads to a decrease in Z and to an
increase in P. For different values of the half-sat-
uration constant KZ, the changes can be either
gradual (see Figures 6a and b), or abrupt
(discontinuous, see Figures 6c and d). A similar
phenomenon of an abrupt drop in zooplankton
density in response to top predation has been
observed earlier in a simple two-component mod-
el (Scheffer et al. 2000) and reported for real
aquatic ecosystems (McQueen and Post 1988).

However, the situation becomes essentially dif-
ferent when parameter values correspond to
eutrophic ecosystem. Figure 7 shows phyto- and
zooplankton densities vs. increasing top preda-
tion d0 (parameters are the same as in Figure 2a,
KZ = 0.1). Note that the value of KZ is also
important for the realization of this ‘new’ sce-
nario, because it should be relatively high; this is-
sue is discussed in detail later. Since in this case
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Figure 5. Map in N0–d plane obtained for KZ = 0.03 (other parameters are the same as in Figure 2c) and different values of the

top predation intensity, d0 = d01 = 0.001, d0 = d02 = 0.002, d0 = d03 = 0.003, d0 = d04 = 0.004, d0 = d05 = 0.005 and

d0 = d05 = 0.0055. Curve D corresponds to d0 = 0. The ‘stability domain’ corresponding to existence of at least one stable steady

state bounded by curve S and by curves d0i. Apparently, the stability domain grows in size with top predation intensity.
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the original N–P–Z system and the system (4–6)
for small values of d0 exhibit oscillations, we de-
scribe the system dynamics in terms of densities
of P and Z averaged over 5 years starting from
the moment when the top predation reaches its
maximum value d0. The initial densities are the
same for all d0 and belong to the limit cycle in
the original N–P–Z system. For the values of d0
within the range 0.01–0.013, the averaged density
of phytoplankton <P> decreases and the aver-
aged density <Z> increases while the top pre-
dation grows (Figures 7a and b). Note that,
when d0 becomes sufficiently large, the system
response becomes ‘typical’ again, i.e., <P>
increases and <Z> decreases.

From the ecological point of view, a sub-
stantial (more than double, cf. Figure 7b) in-
crease in the averaged zooplankton density
resulted from increasing top predation is surpris-
ing. The type of trophic response when the grow-
ing pressure of predator on its prey leads to an
increase in the prey density is counterintuitive,
which is why we call this type of top–down con-
trol ‘paradoxical’.

Figures 7c and d show the corresponding
bifurcation diagram, i.e., minima and maxima of
the oscillating plankton density (dashed lines)
and stationary plankton density (solid lines) vs.
top predation intensity d0. It can readily be seen
that an increase in d0 leads to a decrease in the
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oscillation amplitude, first gradually and then
abruptly through the transition from a big limit
cycle to a small one, cf. vertical dotted line. Fur-
ther increase in d0 turns oscillating dynamics to a
stable equilibrium.

The changes in the average phyto- and zoo-
plankton densities in response to the top predator
pressure can be more sophisticated than that
shown in Figures 6 and 7, when we change slight-
ly the model parameters. In particular, Figure 8a
and b show <P> and <Z> vs. increasing d0
obtained for KZ = 0.01, d = 0.03 and N0 = 0.9,
other parameters the same as in Figure 2b. The
corresponding bifurcation diagram is shown in
Figure 8c and d. Solid lines show stable station-
ary states, dashed lines show maximum and mini-
mum values of the oscillating densities. Due to

the complex bifurcation structure of the system
(cf. Figures 3 and 4), a small change in the top
predation intensity d0 can lead to large, abrupt
changes in the phyto- and zooplankton densities
in the ‘post-invasion’ community. Note that we
only show stable steady states and stable limit cy-
cles, and not saddle points, so the fact that the
left-hand side of the thick curves in Figure 8c and
d terminates in nowhere actually means that the
corresponding equilibrium states disappear in
saddle-node bifurcations.

The results of our numerical simulations show
that the increase of <Z> in response to top
predation intensity becomes more prominent if
we diminish the maximum phytoplankton growth
rate r. Since, for different values of r, the initial
(i.e., for d = 0) values of average zooplankton
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density can be significantly different, it is conve-
nient to use a scaled magnitude of the trophic re-
sponse given by

n ¼ <Z >

<Z0 >
; ð8Þ

where <Z0> is the average zooplankton density
in the original N–P–Z system. As in the previous
computer experiments, averaging is done over
5 years.

Figure 9 shows the scaled magnitude of re-
sponse n vs. d0 calculated for different values of
the maximum phytoplankton growth rate:
r1 = 0.3, r2 = 0.4, r3 = 0.6, r4 = 0.8, r5 = 1.0,
r6 = 1.2, r7 = 1.4, other parameters are the same
as in Figure 2b. Thus, the magnitude of the para-
doxical response is the larger the smaller r is. For

small values of the maximum phytoplankton
growth rate, an increase in the average zooplank-
ton density caused by invasion of a top predator
can be as large as five-fold!

Extensive numerical simulations performed
for parameters varied around their realistic val-
ues have demonstrated the robustness of the
phenomenon. The ‘paradoxical top–down con-
trol’ is observed inside a rather broad domain
in the parameter space, provided that the val-
ues of N0 and/or d are sufficiently high, which
always corresponds to eutrophic ecosystems
with large initial oscillations for d0 = 0. For
low values of N0 and d, which corresponds to
oligotrophic ecosystems, the trophic response of
a plankton system to invasion of a top preda-
tor is always typical. Based on our numerical
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results (only a small part of them is shown
above), we also conclude that, for both ecosys-
tem types, the paradoxical response cannot be
observed in case the top predator pressure is
sufficiently high.

Another relevant question is whether it may be
possible to reveal the dependence of the response
type on the origin of the invading species, i.e., to
distinguish between carnivorous zooplankton and
fish. In order to address this issue, we analyzed
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r6 = 1.2, r7 = 1.4. Here KZ = 0.1, other parameters are the same as in Figure 2b.
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the impact of the top predator half-saturation
constant KZ on the plankton system dynamics.
This parameter characterizes the top predator
feeding ability and, according to Doveri et al.
(1993), its value is significantly higher for plank-
tivorous fish than for carnivorous zooplankton.
Figure 10 shows the scaled magnitude of
response n calculated for different values of KZ

and d0, other parameters are the same as in
Figure 2a. The diagram shows that the ‘paradox-
ical top–down control’ becomes possible when
the magnitude of KZ is sufficiently high, which
corresponds to planktivorous fish as a top preda-
tor. For small values of KZ, corresponding to
carnivorous zooplankton as a top predator, inva-
sion of a top predator results in the typical top–
down control, i.e., in a decrease in zooplankton
density and an increase in phytoplankton den-
sity. Thus, it means that the availability of nutri-
ents is not the only constraint for the
‘paradoxical top–down control’ to operate and it
also can be species-specific.

Concluding remarks

In this paper, we have considered possible conse-
quences of biological invasion in an epipelagic
ecosystem when the invading species, e.g., carniv-
orous zooplankton or planktivorous fish, either
constitutes a new, upper trophic level or appears
to be a more effective zooplankton consumer
than native species. A few important results have
been obtained. First, we conclude that the intro-
duction of top predator substantially increases
the complexity of given plankton system (cf. Fig-
ures 2c and 3). Second, we show that an increase
in the top predation intensity can result in system
stabilization, i.e., in suppression of large-ampli-
tude oscillations of population densities. This re-
sult is in a good agreement with conclusions
drawn earlier based on other plankton models
(Steele and Henderson 1992; Scheffer et al. 2000;
Morozov 2003). Finally, we show that different
types of top–down control in the community ap-
pear to be possible as a result of top predator
invasion. In particular, we have shown that,
along with the usual type of control when zoo-
plankton density decreases as a response to
increasing top predation, there can also exist an-

other, a ‘paradoxical’ top–down control when an
increase in top predation leads to a significant in-
crease in average zooplankton density.

Although the paradoxical top–down control
has been observed in both terrestrial and aquatic
ecosystems (Leibold et al. 1997; Alimov 2000;
Halaj and Wise 2001), it has been studied much
less than the typical top–down control (cf. Ab-
rams and Vos 2003). The anomalous trophic
response is usually attributed to certain unknown
indirect pathways. On the contrary, in our study
we have shown that the paradoxical top–down
control is possible in exactly the same population
system, provided that the influx of nutrients into
the system is sufficiently high.

A better understanding of the mechanisms
underlying the paradoxical top–down control can
be achieved from a comparison between the tem-
poral variations of plankton densities in the
systems with and without top predator. A signifi-
cant increase in zooplankton density in response
to an increase in top predation is observed for
parameter values corresponding to eutrophic eco-
systems. In a real sea or ocean, these ecosystems
are not balanced and the species densities exhibit
large amplitude oscillations resulting from a com-
bined effect of seasonal variations of physical
environment (Longhurst 1995) and the biological
interaction of species (Truscott and Brindley
1994). Phytoplankton density can be very low
during relatively long time intervals (cf. Fig-
ure 2a); during these periods zooplankton starves
and its density diminishes substantially. At the
end of these intervals of food shortage, when
phytoplankton density increases, it takes a certain
time for zooplankton to recover. As a result, the
average zooplankton density is low.

Introduction of a top predator can balance the
system. The top predator pressure does not allow
zooplankton to gain high biomass during the
periods of phytoplankton abundance and thus
prevents phytoplankton from being overex-
ploited. The intervals of low phytoplankton den-
sity become shorter and, on a longer time-scale,
zooplankton also benefits from this stabilization:
the maximum value of oscillating zooplankton
density decreases but its density averaged over
sufficiently long time (covering several population
cycles) appears to be greater than it was before
the top predator invasion. In terms of our model,
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this signifies that the shape of the orbits in the
phase space and the speed along the orbits chan-
ges so that the trajectories spend less time at low
values of Z while d0 is increasing.

A similar mechanism of trophic regulation by
top predator in plankton communities was ob-
served in natural epipelagic ecosystems. Hargrave
et al. (1985) reported that the high predatory pres-
sure by fish larvae on herbivorous zooplankton in
summer prevented phytoplankton from being
over-consumed and resulted in pronounced
phytoplankton bloom in autumn; as a result, the
zooplankton biomass also increased substantially
during the bloom.

Another feature predicted by our model is
that, for a relatively wide range of model param-
eters corresponding to the paradoxical top–down
control, the increase of zooplankton density in
response to increase in top predation was fol-
lowed by abrupt collapse of zooplankton abun-
dance (see Figures 8b and c). A qualitatively
similar phenomenon was reported by Alimov
(2000) for a natural marine ecosystem.

Other examples qualitatively similar to the
‘paradoxical’ response to top predation can be
found in harvesting theory and fishery manage-
ment. In particular, Abrams (2002) reported that
a population under exploitation sometimes in-
creases its size when harvesting increases. Matsu-
da and Abrams (2004) showed that the
abundance of exploited fish population can be-
come greater than in the absence of fishing and
pointed at the initial overexploitation of the
zooplankton as a possible explanation.

One of the reasons why the ‘paradoxical top–
down control’ is relatively rarely observed in
natural ecosystems is the fact that the observa-
tions on population dynamics are usually made
on a short-time scale (Leibold et al. 1997). Our
results, however, indicate that short-term obser-
vations may be misleading and the ‘true’ ecosys-
tem response given by time-average species
densities can only be revealed via sufficiently
long time series. Moreover, our results show
that the time necessary to reveal important
changes in ecosystem properties can be much
longer than the duration of the event causing
them; in that sense our results are in agreement
with the concept of ‘extinction debt’ (Tilman
et al. 1994).

Our study leaves a few open problems. In this
paper, we have studied the types of top–down
trophic control in a plankton community using a
conceptual three-component plankton model.
Further progress can be made by taking into
account other ecologically meaningful factors
that we neglected here for the sake of simplicity.
Such factors include seasonal variations in envi-
ronmental conditions (Evans and Parslow 1985;
Doveri et al. 1993), multi-species composition of
each trophic level (Leibold et al. 1997), spatial
heterogeneity (patchiness) of plankton distribu-
tion (James et al. 2003; Martin 2003), etc. An
extension of the model in order to include any of
these factors is likely to lead to a better under-
standing of biological invasion consequences and
mechanisms of top–down control and will
become a focus of our future work.
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