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Abstract

Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in
estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also
be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis
varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with
water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in
water column nutrient concentrations. For each site there were three treatments: sediments � water; sediments �
water � Enteromorpha intestinalis �algae�; inert sand � water � algae. Water in units was exchanged weekly
simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus
sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When
initial water column levels of dissolved inorganic nitrogen �DIN� and soluble reactive phosphorus �SRP� were
low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from
sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis
growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intes-
tinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient con-
tent. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source
of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient
supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment
� water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our
data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored
in estuarine sediments.

Introduction

Large blooms of opportunistic green macroalgae such
as Enteromorpha and Ulva spp. occur in estuaries
throughout the world �e.g., Sfriso et al. 1987, 1992;

Schramm and Nienhuis 1996; Raffaelli et al. 1999�
often in response to increased nutrient loads from de-
veloped watersheds �Valiela et al. 1992; Nixon 1995;
Paerl 1999�. While these algae are natural compo-
nents of estuarine systems and play integral roles in
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estuarine processes �Pregnall and Rudy 1985; Kwak
and Zedler 1997; Boyer 2002�, blooms are of
ecological concern because they can reduce the habi-
tat quality of an estuary. They can deplete the water
column and sediments of oxygen �Sfriso et al. 1987,
1992� leading to changes in species composition,
shifts in community structure �Raffaelli et al. 1991;
Ahern et al. 1995; Thiel and Watling 1998�, and loss
of ecosystem function.

Growth of Enteromorpha and Ulva spp. is often
regulated by nutrient availability �Sfriso et al. 1987;
Hernández et al. 1997; Schramm 1999�. These algae
efficiently remove nitrogen �N� from the water
column �Fujita 1985; O’Brien and Wheeler 1987;
Duke et al. 1989a, 1989b�. In estuaries, N levels are
generally higher near the head of the system, where
rivers flow in, and decrease toward the mouth or the
opening to the ocean �Rizzo and Christian 1996;
Hernández et al. 1997; Nedwell et al. 2002�. There-
fore, the availability of water column N to macroal-
gae usually decreases along a spatial gradient within
an estuary.

Estuarine sediments may also be a significant
source of nutrients to macroalgae. The release of ni-
trogen and phosphorus �P� from sediments is well es-
tablished �e.g., Boynton et al. 1980; Nixon 1981;
Clavero et al. 2000; Grenz et al. 2000�. Flux of nu-
trients from sediments is believed to increase avail-
ability of water column nutrients to primary produc-
ers; a number of studies have constructed nutrient
budgets in which N and P fluxing from sediments
may potentially meet a portion of the nutrient
requirement of the system’s primary producers
�Boynton et al. 1980; Blackburn and Henriksen 1983;
Trimmer et al. 1998, 2000�. However, these studies
infer primary producers’ use of nutrients fluxing from
sediments rather than providing direct evidence.

Several field studies provide correlative evidence
that macroalgae take up nutrients fluxing from estua-
rine sediments. Birch et al. �1981� found that
macroalgal tissue nutrient content varied with sedi-
ment nutrient content and inferred that nutrient
exchange between the sediments and the algae
occurred. Thybo-Christesen et al. �1993� showed de-
creases in water column N and P from the sediment
surface toward floating algal mats, indicating uptake
by the macroalgae of nutrients fluxing from the sedi-
ments. These studies indirectly support the hypothe-
sis that macroalgae utilize nutrients fluxing from
sediments.

Several laboratory studies have demonstrated the
ability of algal mats to intercept nutrients fluxing
from sediments. McGlathery et al. �1997� simulated
benthic nutrient flux by using nutrient-enriched sea-
water in the bottom compartment of an incubation
chamber separated from the overlying water by a 0.7
�m filter paper to simulate sediments. Tyler et al.
�2001� measured uptake by Ulva lactuca of urea re-
leased from estuarine sediments; uptake was mea-
sured over a 12 h period and longer-term ecological
effects such as tissue nutrient status and growth were
not assessed. These studies confirm macroalgal
uptake of nutrients fluxing from artificial and estua-
rine sediments, yet there is still a need for study of
the effect of sediment nutrients on the long-term
ecology of macroalgae.

In tropical work from Kaneohe Bay, Hawaii,
Larned and Stimson �1996� substantiated that Dicty-
osphaeria cavernosa utilized sediment-derived N and
increased growth resulted. Of the few studies we have
found to date documenting a long-term effect of sedi-
ments on macroalgal biomass, only one of these is
estuarine: Lavery and McComb �1991� found that es-
tuarine sediments from the Peel-Harvey estuary in
western Australia increased growth of Chaetomorpha
linum over a 3-week period. Sediments, however,
from different depths were homogenized to recon-
struct sediment profiles. Therefore, ecological effects
of nutrients fluxing from undisturbed estuarine sedi-
ments to macroalgae have not been determined.

The importance of sediments as a source of nutri-
ents to macroalgae is critical in understanding nutri-
ent dynamics in estuaries and factors controlling algal
blooms �Valiela et al. 1997�. The role of estuarine
sediments as a source of nutrients to macroalgae may
be particularly important in systems where nutrient
inputs are episodic and availability of nutrients in the
water column fluctuates over short time scales
�Litaker et al. 1987; Day et al. 1995� or where strong
spatial gradients in water column nutrient availability
exist �Rizzo and Christian 1996; Nedwell et al. 2002�.
Furthermore, the potential contribution of nutrients
from sediments to macroalgae may be significant in
poorly-flushed estuaries where water circulation is
much reduced due to physical modifications to the
system �Fong and Zedler 2000�. The installation of
culverts and tidal gates often restrict flow, creating
areas that only experience circulation when tidal am-
plitude reaches a threshold �A. Armitage pers. comm.�
or preventing drainage of some areas �Fong and
Zedler 2000�. In such cases, water column nutrients
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in stagnant, ponded areas may be depleted by algal
uptake much faster than in areas with increased cir-
culation where water column nutrients are continu-
ously supplied. Further work is needed to understand
the ecological significance of sediment nutrient efflux
to macroalgae across a range of water column nutri-
ent concentrations.

Our objective was to determine the relative impor-
tance of the water column and the sediments as
sources of nutrients to macroalgae along a gradient of
resource availability. We hypothesized that sediment
sources will become more important to macroalgae
when water column nutrient levels are low, such as
may happen at the seaward end of a nutrient gradient
within an estuary or in poorly-flushed, ponded areas.
Our experimental study modeled Upper Newport Bay
�UNB�, a large southern California estuary subject to
blooms of Enteromorpha intestinalis and Ulva ex-
pansa �Kamer et al. 2001�. In UNB, water column
nutrient concentrations are consistently high near the

head of the estuary �158-800 �M NO3, 4.3-16.7 �M
total P� relative to down-estuary areas �5-90 �M NO3,
1.8-11.5 �M total P� �Boyle 2002�, while sediment
nutrient concentrations vary throughout the estuary
�0.034-0.166 % dry wt total Kjeldahl nitrogen �TKN�,
0.044-0.072 % dry wt P� with no clear spatial pattern
�Boyle 2002�. UNB also exemplifies estuaries with
altered hydrology due to physical modifications. The
highly developed and modified Lower Bay separates
the natural portion of the estuary �UNB, Figure 1�
from the Pacific Ocean, and the permanently estab-
lished mouth alters the hydrodynamics from those
that would occur with a naturally migrating mouth.
Although the Upper Bay is largely natural, there are
several major berms �just above Middle Site, Figure
1� that reduce circulation and create ponded areas.

Figure 1. Map of Upper Newport Bay estuary, California, US, with 3 sites �Lower, Middle, and Head� from which water and sediments were
collected to construct experimental units.
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Methods

Experimental overview

To test the relative importance of the water column
vs. sediments as a source of nutrients to macroalgae,
we collected sediment cores and water from 3 sites in
UNB along a water column nutrient gradient �Figure
1�. Using sediment and water from each site, we con-
structed three sets of experimental units varying in
complexity: sediment � water; sediment � water �
Enteromorpha intestinalis �algae�; inert sand � water
� algae. The sediment � water cores served to
eliminate algae as a nutrient source/sink, and the in-
ert sand � water � algae cores served to eliminate
sediments as a nutrient source/sink. Quantifying nu-
trients in each component of the experimental system
at the beginning and end of the experiment allowed
us to determine nutrient allocation among these com-
partments under different nutrient supply conditions.

Collection of sediment and water

The site nearest the head of the estuary �Head, Figure
1� was at the mouth of San Diego Creek, a large
freshwater and nutrient source to UNB. This site had
the lowest salinity, the greatest water column DIN,
mostly in the form of NO3, the lowest TKN �all forms
of dissolved N except NO3 and NO2� and soluble re-
active phosphorus �SRP�, and was intermediate in
terms of sediment P, sand, and silt content �deter-
mined according to Bouyoucos 1962� �Table 1�. The
second site �Middle� was mid-way between the head
and the seaward end of the estuary and had interme-
diate salinity and water column DIN, the highest ini-
tial sediment P, the least sand, and the highest silt
content �Table 1�. The third site �Lower� was just
above the transition zone between the natural estua-
rine habitat of UNB and the highly modified and de-
veloped Lower Bay situated at the lower boundary of
the estuarine system �Kamer et al. 2001�. This site
had the highest salinity, the lowest water column
DIN, TKN and SRP concentrations similar to the
Middle site, and it had the sandiest sediments, the
least silt content, and the lowest sediment P �Table 1�.
All three sites had similar clay content and there was
a non-significant trend toward greatest sediment N at
the Middle site �Table 1�.

At each site we took 10 individual sediment cores
to a depth of 8 cm from exposed intertidal mudflats.
The top 2–8 mm of each core was oxic, and below Ta
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this, the cores were anoxic. Cores were taken in a row
parallel to the water line using polycarbonate tubes of
7.3 cm internal diameter � 20 cm length. We used
the edge of the vegetation as an elevational guide to
ensure sampling of similar elevation among sites.
Bottoms of the cores were capped and sealed in the
field; tops were left open. Care was taken not to dis-
turb the vertical stratification of the cores. Water was
collected at each site from 0.5–1 m depth using a bat-
tery operated pump.

Experimental units

In the laboratory, unfiltered water from the corre-
sponding site was added to each polycarbonate tube
containing an estuarine sediment core to construct the
sediment � water portion of the experimental units.
Enough water was added so that 300 ml overlaid each
sediment core. The bottom 8 cm of each tube was
wrapped with duct tape to block light from entering
the sediments through the sides of the tube. To com-
plete the experimental units, we added Enteromorpha
intestinalis �collected from a single site in Mugu La-
goon, Ventura County, CA, 10 d prior to the initiation
of the experiment� to 5 tubes from each site contain-
ing estuarine sediments. E. intestinalis was placed in
nylon mesh bags and spun in a salad spinner for one
min to remove excess water. Algae were weighed and
5.0 � 0.1 g sub-samples were added to experimental
units designated as “� algae” treatments. Initial tis-
sue N was 1.19 � 0.02 % dry wt �n � 5, mean �

SE� and initial tissue P was 0.11 � 0.00 % dry wt
�n � 5�.

To separate the contribution of nutrients to
macroalgae from the estuarine sediment and the con-
tribution from the water column, we constructed 5 in-
ert sand � water � algae experimental units per site.
These were identical to the sediment � water � al-
gae units with the exception of an 8 cm deep layer of
sand in the bottom of each instead of estuarine sedi-
ment. The sand was prepared by heating in a muffle
furnace to 400 °C for 10 h to remove any organic
material, then washing the cooled sand in dilute acid
�3% HCl in de-ionized water�. The sand was then
rinsed of acid and dried to a constant weight at 60 °C
in a forced air oven. Initial N of the sand was below
the detection limit of 0.05 % dry wt, and P was be-
low the detection limit of 0.01 % dry wt �Table 1�.
The sand simulated the physical presence of the es-
tuarine sediments, yet had no measurable nutrients to
contribute to the macroalgae. This treatment allowed

us to compare the response of the algae with
sediments and water to the response of algae with
nutrient-free sand and water, thereby determining the
effects of the sediments on algae.

Experimental units were placed outdoors in a tem-
perature controlled water bath �20 � 2 °C� and a
layer of window screening was used to reduce inci-
dent light �2200-2500 �moles m–2 s–2 at mid-day� by
~30% to simulate coastal levels �1405-1956 �moles
m–2 s–2, Arnold and Murray 1980�. Treatments were
arranged in a randomized matrix. There were three
treatments �sediments � water; sediments � water �
algae; inert sand � water � algae� for each of the
three sites �Head, Middle, Lower� with 5-fold repli-
cation for a total of 45 experimental units. The ex-
periment ran for three weeks. During this time,
salinity was monitored with a hand-held refractome-
ter and de-ionized water was added to compensate for
evaporation.

Measured responses

At the end of each week, we sampled the water in
each experimental unit for nutrients. Algae were re-
moved from the units and, with a 60 cc syringe, we
removed all of the water from each unit, except for a
thin layer �2–5 mm� overlying the core. Care was
taken to ensure that the core surface was not visibly
disturbed. A sub-sample of the water removed from
each unit was filtered through glass fiber filters
�Whatman GF/C�, frozen, and analyzed for
NO3 � NO2 �referred to as NO3�, NH4, TKN, and
SRP. Water levels in two units, each in different treat-
ments, indicated that water was leaking out and these
units were excluded from analyses. NO3 was reduced
to NO2 via cadmium reduction and measured spec-
trophotometrically after diazotation �Switala 1999;
Wendt 1999�. NH4 was heated with solutions of sali-
cylate and hypochlorite and determined spectropho-
tometrically �Switala 1999; Wendt 1999�. TKN was
determined by the wet oxidation of nitrogen using
sulfuric acid and digestion catalyst. The procedure
converts organic nitrogen to NH4, which is subse-
quently determined �Carlson 1978�. SRP was deter-
mined spectrophotometrically following reaction with
ammonium molybdate and antimony potassium under
acidic conditions �APHA 1998�. These automated
methods have detection limits of 3.57 �M for N and
1.61 �M for P.

At the end of weeks 1 and 2, we refilled each unit
with 300 ml of water from each site that was collected
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at the beginning of the experiment. The water was
stored in the dark at 6 °C and triplicate samples of
water from each site were analyzed weekly for nutri-
ent concentrations. Overall concentrations of NO3,
NH4, and SRP in the collected and stored water did
not vary week to week �p � 0.05, ANOVA�. TKN in-
creased �p � 0.002� over the course of the experiment
from 34.92 � 4.52 initially to 48.41 � 8.40 �M at
the end of week 1 and 67.46 � 2.94 �M at the end
of week 2. Water was added such that it did not dis-
turb the sediment surface. The weekly exchange of
water in all units simulated low turnover in poorly-
flushed estuaries characteristic of southern California
�Zedler 1982; Zedler 1996; Fong and Zedler 2000�.
Algae were replaced in the appropriate units, and the
units were re-randomized in the water bath.

At the end of the experiment, growth of Entero-
morpha intestinalis was determined by wet weighing
the algae and calculating the % change from initial
wet weight. Samples were individually rinsed briefly
in freshwater to remove external salts, dried in a
forced air oven at 60 °C to a constant weight, and re-
weighed. Samples were ground with mortar and
pestle and analyzed for tissue N and P. N was deter-
mined using an induction furnace and a thermal con-
ductivity detector �Dumas 1981�. P was determined
by atomic absorption spectrometry �AAS� and induc-
tively coupled plasma atomic emission spectrometry
�ICP-AES� following a nitric acid/hydrogen peroxide
microwave digestion �Meyer and Keliher 1992�. N
and P content of algae are reported as total mass
unit–1, which is calculated by multiplying the nutrient
concentration of a sample �% dry weight� as a pro-
portion by the dry weight of that sample:

mg N or P unit–1 � �% tissue N or P/100� * dry wt
�g� * 1000 mg/g
Each sediment or sand core was removed from its

unit at the end of the experiment and homogenized.
One-third of the amount of each homogenized core
was randomly selected and dried in a forced air oven
at 60 °C to a constant weight, ground with mortar and
pestle and analyzed for N and P. N was determined
by use of a dynamic flash combustion system coupled
with a gas chromatographic separation system and a
thermal conductivity system �Dumas 1981�. P was
determined by AAS and ICP-AES following a nitric
acid/hydrogen peroxide microwave digestion �Meyer
and Keliher 1992�. Final sediment N and P are
reported as % change from initials.

Data analysis

All data were tested for normality and homogeneity
of variance. Non-normal sediment P values were
transformed by adding a constant and taking the
square root of the sum. Among treatment differences
in Enteromorpha intestinalis growth and tissue N and
P total mass unit–1 were analyzed using 2-factor
ANOVA �site � core material, where core material
was either estuarine sediment or inert sand�. Among
treatment differences in final sediment N and P con-
tent were analyzed using 2-factor ANOVA �site � al-
gae, where algae was either present or absent�. Final
sand N and P values were not analyzed statistically
as they were all below the detection limits of 0.05 %
dry wt and 0.01 % dry wt respectively.

NO3 and NH4 values of water removed from each
experimental unit at the end of each week were often
below the detection limit of 3.57 �M. SRP values
from the end of weeks 1 and 2 were often below the
detection limit of 1.61 �M. Statistical analyses of the
remaining values were not conducted due to low
sample size. Differences in water column SRP at the
end of the third week were analyzed using 2-factor
ANOVA �site � treatment, where treatment was ei-
ther estuarine sediment only, estuarine sediment �
algae, or inert sand � algae�. TKN data from the end
of each week was analyzed using 2-factor repeated
measures ANOVA �site � treatment � time�. Unless
otherwise stated, no significant interactions occurred
between factors in ANOVA.

Results

Enteromorpha intestinalis grew faster when incu-
bated with estuarine sediments than with sand �Fig-
ure 2�. This effect appeared to be strongest in Middle
and Lower site treatments, where water column DIN
levels were lower than in treatments from the Head,
which did not differ for sediment versus sand. Growth
in these latter units was low, possibly due to low sa-
linity conditions. E. intestinalis grew most �41%� in
units containing estuarine sediments from the Middle
site where initial sediment nutrients were highest. Al-
gal biomass grew only 12-16% in 3 weeks when in-
cubated with sand. The significant interaction be-
tween the site and core material was probably due to
differences between �sediment units from different
sites and a lack of differences among �sand units
from different sites.
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Enteromorpha intestinalis tissue N and P content
�total mass unit–1� at the end of the experiment was
higher in �sediment units compared to �sand �Fig-
ure 3, A and B�. For N, this effect was apparent in
Lower and Middle site treatments but not in
treatments from the Head. Overall, tissue N was
greatest in treatments from the Head and decreased
with distance down-estuary, tracking water column
patterns. The effect of estuarine sediment on algal tis-
sue P was evident in treatments from all three sites.
When sediments were present, tissue P was greatest
in units from the Middle site.

Water column N supplies were greatly reduced in
all units each week of the experiment �Table 2�. At
the end of the first week, the NO3 remaining in the
sediment � water treatments from the Head was
~91% less than the initial values from this site. Water
column TKN was significantly affected by time
�p � 0.001� but not by site �p � 0.172� or treatment
�p�0.922�. The range of mean TKN for all treatments
at the end of each week �Table 3� encompassed the
initial grand mean of all sites of 34.92 � 4.52 �M.

Phosphorus availability in the water column was
low in many units during the first two weeks of the
experiment �Table 4�. SRP was below detection limit
in all units from the Head and many algae-containing
units from the Middle and Lower sites during this
time. It was higher in sediment-only units from the
latter two sites. Water column P availability was
greater during the final week of the experiment;
where comparisons are possible, values were gener-

ally higher in the third week and far less samples were
below detection limit. SRP at the end of the third
week was significantly affected by site �p � 0.011�
but not treatment �p � 0.512�. SRP in units from the
Head appear to be the lowest �Table 4�.

Final sediment N �% change from initial� was
highly variable �Figure 4A�. There were no significant
differences among sites but there was a trend of in-
creased N over the course of the experiment in units
from the Lower and Middle sites. Sediment P
increased in units from the Lower site but decreased
in units from the Middle site during the experiment
�Figure 4B�. In units from the Head, sediment P
tended to increase when algae were not present but
not when algae were present.

Figure 2. Enteromorpha intestinalis biomass �as % change from
initial� grown with either inert sand or estuarine sediment from 3
sites in Upper Newport Bay. Bars represent � 1 SE. Two-factor
ANOVA summary statistics: site: p � 0.003; core material:
p � 0.001; interaction: p � 0.001.

Figure 3. Mass of nitrogen �A� and phosphorus �B� in Enteromor-
pha intestinalis tissue grown with either inert sand or estuarine
sediment from 3 sites in Upper Newport Bay. Bars represent � 1
SE. Two-factor ANOVA summary statistics for nitrogen: site:
p � 0.001; core material: p � 0.001; and for phosphorus: site:
p � 0.001; core material: p � 0.001; interaction: p � 0.006.
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Discussion

The importance of the water column versus sediments
as sources of nutrients to support growth of Entero-
morpha intestinalis varied with the magnitude of the
different sources in this experiment. Estuarine sedi-
ments were more important for the growth of E. in-
testinalis when water column N was low compared
with when it was high. This was evident in the dif-
ferences in algal growth between estuarine sediment
and inert sand treatments. Furthermore, the magni-
tude of the effect of estuarine sediments on macroal-
gal growth appeared to be related to the nutrient
content of the sediments. Overall, growth was great-
est when algae were incubated with sediments from
the Middle site, which had the highest initial sediment
N and P content.

Sediments can be an important nutrient source to
macroalgae when water column nutrients are low,
which occurs when large amounts of algae deplete the
water column of nutrients. Often there is a poor cor-
relation between macroalgal biomass and water col-
umn nutrient concentrations �Fong et al. 1998� and
water column nutrients in natural systems are often
periodically depleted to the low levels obtained in our
experiment. Fong and Zedler �2000� found NO3 and
PO4 values as low as 0.82 and 0.75 �M, respectively,
in Famosa Slough, CA, a poorly flushed estuary, dur-
ing a large macroalgal bloom. In UNB, NO3 concen-

trations in poorly-flushed tidal creeks were as little as
one-tenth of those in the deeper, well-circulated main
channel, and several macroalgal spp. were more
abundant in the creeks �Boyle 2002�.

When water column N was high, such as in units
from the Head, estuarine sediments did not signifi-
cantly influence Enteromorpha intestinalis growth.
However, overall E. intestinalis growth in these units
was low. Salinity in Head waters was 8–10 psu. Pro-
longed exposure to salinity � 25 psu can signifi-
cantly reduce the growth of E. intestinalis �Kamer
and Fong 2000�. Therefore, the lack of the effect of
sediments on E. intestinalis growth may have had less
to do with high water column N meeting the algae’s
nutrient demand than the inhibition of growth due to
low salinity. Nutrients from watersheds, however, are
usually transported to estuaries via freshwater; high
nutrient levels often correlate with low salinity �Va-
liela et al. 1992�. As such, estuarine sediments may
not have significant effects on macroalgal growth
when salinity is the limiting factor. Sediments may
only affect macroalgal growth when salinity or other
factors do not inhibit growth.

The influence of water column and sediment nutri-
ents on algal tissue nutrients also varied with the
magnitude of the sources. Enteromorpha intestinalis
tissue N was lowest where water column N was low,
such as in units from the Middle and Lower sites, but
this effect was mitigated by the contribution of N
from estuarine sediments. When water column N was
high, the presence of estuarine sediments did not af-
fect tissue N compared with algae grown over inert
sand. Low salinity conditions did not appear to im-
pair the ability of algae to remove N from the water
column. E. intestinalis tissue N levels were greatest
overall in units from the Head of the estuary, prob-
ably due to the greater supply of N available in the
water column. Algae in these units must have derived

Table 2. Inorganic nitrogen concentrations ��M� at the end of each week of the experiment. If all samples within a treatment were � 3.57
�M, the notation “BDL” �Below Detection Limit� is used. In samples with values below and above the detection limit, only the latter values
are given. Sample size is noted.

Site Week 1 Week 2 Week 3

NO3 NH4 NO3 NH4 NO3 NH4

Head 37.29 � 12.54 �n � 5�
Sediment only

BDL BDL BDL 5.00 �n � 1� 5.71 �n � 1�

Middle BDL BDL BDL BDL BDL BDL

Lower BDL BDL BDL 5.71 �n�1� BDL BDL

Table 3. Total Kjeldahl nitrogen �TKN� concentrations ��M� at the
end of each week of the experiment. Grand means �n � 43� are
presented as neither site nor treatment effect was significant. Val-
ues presented are means � 1 SE.

Week TKN

1 40.03 � 1.54
2 26.08 � 1.38
3 30.23 � 1.38
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most, if not all, of their N from the water column as
tissue N content was the same for treatments with and
without estuarine sediments.

Enteromorpha intestinalis tissue P content was
greatly enhanced by the presence of estuarine
sediments in units from all three sites. Additionally,
tissue P was influenced by the magnitude of sediment
P availability; algae with the highest tissue P concen-
tration came from units containing sediments from
the Middle site, which had the highest initial sediment
P value. Similarly, Birch et al. �1981� found that Cla-
dophora albida tissue P was tightly linked to
sediment P content.

The depletion of water column nutrients in units
without macroalgae may be explained by several dif-
ferent processes. Since dissolved nutrients, particu-
larly ammonia, are not known to readily volatilize
�Ryther et al. 1981; Lotze and Schramm 2000; Run-
cie et al. 2003�, we assume the nutrients wereTa
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Figure 4. Sediment nitrogen �A� and phosphorus �B� �as % change
from initial� from 3 sites in Upper Newport Bay incubated in the
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� 1 SE. Two-factor ANOVA summary statistics for nitrogen: site:
p � 0.073; algae: p � 0.353; and for phosphorus: site: p � 0.001;
algae: p � 0.186.
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sequestered in another compartment of the experi-
mental units. Nutrients may have been taken up by
phytoplankton, microphytobenthos, or bacteria,
though we did not find visible evidence of significant
production by any of these groups in our units. Alter-
natively, the estuarine sediments in the sediment �
water units, which contained no macroalgae, may
have been a sink for water column nutrients, particu-
larly NO3. While NH4 is often released from estua-
rine sediments, significant flux of NO3 into sediments
can occur �Boynton et al. 1980; Nowicki and Nixon
1985; Cowan and Boynton 1996; Trimmer et al. 1998,
2000; Magalhães et al. 2002� via diffusive processes
when water column NO3 concentrations greatly
exceed porewater NO3 concentrations �K. Kamer, un-
publ. data�.

There were no strong indications of loss of N and
P from the sediments reflecting the observed increases
in Enteromorpha intestinalis growth and tissue N and
P. Because N and P generally flux from the top layers
of sediment �Lavery and McComb 1991; Clavero et
al. 2000; Svensson et al. 2000; Trimmer et al. 2000�,
analyzing only the top layers of the cores may have
provided better resolution of changes over time. Al-
ternatively, the mass of nutrients contained within the
sediments may have been much greater than the mass
of N and P in the algae. While it was possible to de-
tect changes in algal nutrient concentration, concen-
tration changes that may have occurred in sediments
might not have been detectable.

Our data provide direct experimental evidence that
macroalgae can utilize nutrients stored in estuarine
sediments, confirming the long-standing hypothesis
that sediments can supply nutrients to primary
producers. While many studies have measured and
calculated nutrients fluxes from estuarine sediments
�e.g., Boynton et al. 1980; Nowicki and Nixon 1985;
Cowan and Boynton 1996�, only a few studies have
investigated whether macroalgae are able to use these
sediment-derived nutrients. Lavery and McComb
�1991�, Thybo-Christesen et al. �1993�, McGlathery
et al. �1997�, and Tyler et al. �2001� provided
evidence that macroalgal mats can intercept nutrient
flux from sediments. Our study advances the under-
standing of sediment-macroalgal nutrient dynamics
by demonstrating that these nutrients are of ecologi-
cal significance to the algae by enhancing growth
rates and tissue nutrient content. Therefore, it may be
important to incorporate nutrient loads from estuarine
sediments as well as watersheds into assessments of
sources of nutrients to primary producers.
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