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ABSTRACT

Several commonly used statistical methods for fingerprint identification in microbial source tracking

(MST) were examined to assess the effectiveness of pattern-matching algorithms to correctly identify

sources. Although numerous statistical methods have been employed for source identification, no

widespread consensus exists as to which is most appropriate. A large-scale comparison of several

MST methods, using identical fecal sources, presented a unique opportunity to assess the utility of

several popular statistical methods. These included discriminant analysis, nearest neighbour analysis,

maximum similarity and average similarity, along with several measures of distance or similarity.

Threshold criteria for excluding uncertain or poorly matched isolates from final analysis were also

examined for their ability to reduce false positives and increase prediction success. Six independent

libraries used in the study were constructed from indicator bacteria isolated from fecal materials of

humans, seagulls, cows and dogs. Three of these libraries were constructed using the rep-PCR

technique and three relied on antibiotic resistance analysis (ARA). Five of the libraries were

constructed using Escherichia coli and one using Enterococcus spp. (ARA). Overall, the outcome of

this study suggests a high degree of variability across statistical methods. Despite large differences in

correct classification rates among the statistical methods, no single statistical approach emerged as

superior. Thresholds failed to consistently increase rates of correct classification and improvement

was often associated with substantial effective sample size reduction. Recommendations are

provided to aid in selecting appropriate analyses for these types of data.

Key words | discriminant analysis, fecal coliform, microbial source tracking, similarity, statistical

analysis, water quality

INTRODUCTION

Many microbial source tracking (MST) methods rely on

libraries of indicator organisms cultivated from known

sources of fecal contamination to identify unknown

sources (see Simpson et al. 2002 and Scott et al. 2002 for a

recent review of these methods). These library-based

methods involve the assembly of a variety of ‘fingerprints’
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from indicator organisms for several known animal

sources (e.g. cow, human and seagull). These fingerprints

are stored as libraries that are used to compare with

fingerprints from these same indicators isolated from

water presumed contaminated with fecal material. In this

way, the source of the unknown indicator bacterium can

be identified, or at least predicted, based on similarity to

members of the known-source libraries.

Library-based MST methods may be based on either

genotypic or phenotypic ‘fingerprints’ of fecal indicator

organisms, frequently E. coli or Enterococcus spp. Anti-

biotic resistance analysis (ARA) is a phenotypic MST

method that uses profiles of resistance to various

antibiotics at different concentrations (Wiggins 1996;

Hagedorn et al. 1999; Harwood et al. 2000; Whitlock et al.

2002; Wiggins et al. 2003). The underlying assumption of

ARA is that differential exposure of humans and animals

to a variety of antibiotics will elicit specific resistance

patterns for associated flora of host intestines. Subse-

quently, the antibiotic resistance patterns of indicators

from unknown sources can be compared with a library of

ARA profiles of indicators from known sources.

Rep-PCR is a genotypic method that uses the poly-

merase chain reaction and primers based on conserved

extragenic repetitive sequences to amplify specific por-

tions of the microbial genome (Versalovic et al. 1991,

1994). Following electrophoresis and staining, a banding

pattern or fingerprint is revealed that can be used for

strain identification. The underlying assumption of this

technology is that organisms having indistinguishable

banding patterns can be regarded as being identical or

nearly identical, and those having similar banding patterns

are regarded as genetically related. As a result, hosts for

the bacteria may be identified by comparing presence/

absence of bands with those from known source finger-

prints (i.e. band-matching). Rep-PCR DNA fingerprinting

of E. coli has been previously used for MST (Dombek et al.

2000; Carson et al. 2003).

Several statistical methods, including discriminant

analysis (DA) (Wiggins 1996; Harwood et al. 2000; Carson

et al. 2001; Whitlock et al. 2002), and maximum or average

similarity (MS and AS) (Dombek et al. 2000; Carson et al.

2003) have been used to classify sources. These statistical

approaches differ with respect to distributional assump-

tions, measures of distance or similarity, and strategies for

prediction. Many approaches, such as DA and AS, take

into account the central tendency and variability of each

source group as a whole. Other methods, such as nearest

neighbour (NN) and MS predict source membership based

on similarity to an individual isolate within each source.

Consequently, rates of correct classification may differ

depending on the method used.

To reduce error inherent in these statistical methods,

some have suggested that uncertain or poorly matched

isolates should be removed from classification. This is

especially relevant when false positives are a concern,

such as when response to the presence of specific sources

of fecal contamination results in costly management

action. Some have argued that imposed thresholds

decrease noise and may eliminate false positives resulting

from statistical or measurement error (Wiggins, personal

communication, 2003). Others have suggested that

threshold values should be based on an average rate of

misclassification of sources estimated from known library

isolates (Whitlock et al. 2002) or effects of inter-gel vari-

ability on similarity between identical control isolates

(Wheeler et al. 2002; Sadowsky, personal communication,

2003). Others advocate exact matching, removing any

isolates whose fingerprints were not represented in the

library (Samadpour, personal communication, 2003).

While statistical methods for classification and

threshold criteria to reduce error have been used exten-

sively with these library-based methods, there is no wide-

spread consensus on when each of these methods or

criteria is appropriate. Further, little attention has been

given to the consequences associated with applying these

various statistical approaches to microbial data. In this

study we consider several statistical approaches for iden-

tifying source membership using these (binary) data

resulting from rep-PCR and ARA fingerprints. Statistical

methods were selected based on their popularity and

availability in standard software packages. Following a

brief review of each method, we assess the ability of each

statistical technique to successfully identify sources of

fecal contamination from blind test samples. Further, we

investigate the use of threshold criteria to reduce rates of

false positive classifications within several of the statistical

methods.
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METHODS

Six libraries of indicator bacteria were used to assess

the utility of various statistical approaches. Three of the

libraries (A1, A2 and A3) were constructed using anti-

biotic resistance analysis and three were constructed using

rep-PCR (R1, R2 and R3). In this study, only BOXA1R

primer was used to generate fingerprints from E. coli

isolates. Neither the three ARA libraries nor the three

rep-PCR libraries were congruent in any way other than

having a roughly similar library size, aliquots of the same

starting fecal materials and the same sources of blind

samples. Library samples consisted of swab fecal samples

of human, dog, cow and seagull. Blind test samples con-

sisted of pure (100%) sources of human, cow and seagull,

composited from the same fecal samples used to create the

library samples. None of the test samples contained pure

dog sources. Around 60 isolates per known source sample

were used to create libraries and approximately 50 isolates

per unknown source sample were used for testing the rates

of correct classification by the method. All libraries were

constructed using E. coli except one (AR2) that used

Enterococcus spp. For a more detailed description of the

study design see Griffith et al. (2003).

Seven statistical analyses were performed on each of

the six libraries. These included DA (pooled and non-

pooled estimates of covariance), NN (Mahalanobis and

Euclidean distances), MS (Jaccard), AS (Jaccard) and ID

Bootstrap maximum similarity (Jaccard). For three of the

statistical methods (DA, MS and ID Bootstrap), threshold

criteria for excluding isolates from source identification

were applied and resulting changes in percentage correct

classification (%CC) were determined for each blind test

sample. Threshold criteria for DA and ID Bootstrap were

based on estimates of posterior probabilities, or the prob-

ability of correct classification. Threshold criteria for ID

Bootstrap were based on likelihood of correct classifi-

cation relative to chance. Threshold criteria for MS were

based on a quality quotient. These criteria, along with the

corresponding statistical methods, are described in more

detail in the following section.

Both DA and NN analyses were performed using PROC

DISCRIM in SAS (Cary, North Carolina) while MS, AS

and ID Bootstrap were performed using the identification

function in BioNumerics (Applied Maths, Sint-Martens-

Latem, Belgium). These software packages were chosen for

their versatility, usefulness and popularity among the micro-

bial source tracking community. BioNumerics is a software

package predominantly chosen by those using rep-PCR,

while the choice of SAS is more common among those using

ARA. All rep-PCR patterns were processed in BioNumerics

prior to statistical analyses.

The predictive abilities of the various statistical

methods for each of the library methods were assessed by

calculating the percentage of correctly classified isolates

(%CC) from each of the three blind test samples (human,

cow and seagull). Trade-offs for applying the different

threshold criteria for removing uncertain isolates were

examined by calculating both the change in %CC and the

proportion of the sample (i.e. percentage of isolates) elimi-

nated from final analyses. Ties, or those isolates that were

predicted by the statistical algorithm to belong to more

than one source, were excluded from final analyses.

STATISTICAL ANALYSES

Discriminant analysis

Discriminant analysis (DA) is a commonly used technique

for classifying unknown samples into predefined groups

and is especially popular among microbiologists using

ARA. In DA, a classification rule is developed from a

calibration dataset where group membership among the

samples is known (the library). In SAS’s PROC DISCRIM

the rule is based on estimated posterior probabilities, or

the probability that an isolate belongs to a specific group.

The isolate is classified into the source group yielding the

highest estimated posterior probability among all source

categories. Given a normal distribution and assuming

equal covariances among groups, classification using pos-

terior probabilities is equivalent to placing the observation

into its closest group. By default, distances to groups are

defined by Mahalanobis distance, which takes into

account both distance of each observation to the mean

and the variability within the group. The ‘pool = yes’

option in PROC DISCRIM estimates a single covariance

structure for all groups while the ‘pool = no’ option allows
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for estimation of covariances separately for each group

(for more detailed description see SAS/STAT User’s

Guide, Vol. 1. Chapter 20).

In SAS’s PROC DISCRIM a ‘threshold’ option is

available for excluding observations from classification in

discriminant analyses based on a minimum threshold for

posterior probabilities. If an isolate’s posterior probability

for its predicted group falls below the threshold value, the

isolate is classified into an ‘other’ category and excluded

from classification into one of the known groups.

Maximum similarity

Maximum similarity (MS) is another commonly used stat-

istical algorithm that is particularly popular among those

using rep-PCR. In MS, observations are classified into the

group to which its closest or most similar known member

belongs. BioNumerics offers several alternative measures

of similarity, including Jaccard, Dice and simple matching.

We chose to use the Jaccard similarity coefficient for our

analyses because Jaccard targets only those bands that

are present in at least one of the pairs being compared,

ignoring potentially large numbers of missing bands that

may dilute or mask differences. The Jaccard similarity

coefficient is given by:

NAB

NA�NB�NAB
(1)

where NAB is the number of shared bands, NA is the total

number of bands in pattern A, and NB is the total number

of bands in pattern B.

BioNumerics also offers a quality quotient (QQ)

option that qualifies the relative uncertainty of correct

classification for each isolate and may be used for elimi-

nating potential false positives. The QF is the ratio of the

average distance between the unknown and the library

source members and the average internal distance where:

QQ = DUN/DLU (2)

DUN�

∑
i�1

n

(1�si)

n
(3)

and DLU�

2∑
i�1

n�1

∑
j�i�1

n

(1�si,j)

n(n�1)
, (4)

n is the number of entries in the library unit and s is the

similarity. If QQ#1, it can be inferred that the unknown

fits into the library source as well as or better than other

members of that source group; whereas if QQ@1, a poor fit

is indicated. Qualitative scores or ‘grades’, each represent-

ing a numerical range of the QQ for each isolate, may be

exported to a data file along with similarity and scores and

predicted source classifications. The numerical range of

these grades is as follows: 0–0.5 = A, 0.51–1.0 = B, 1.01–

1.5 = C, 1.51–2 = D and >2 = E. Recently a script file has

been made available to BioNumerics users that allows

numerical values to be exported as well; however, the

program was not available at the time of this study.

Average similarity

Average similarity (AS), a common alternative to MS, is

available in BioNumerics, and is also very popular among

microbiologists using rep-PCR. Rather than classifying

unknown isolates into source groups based on proximity

to a single known isolate, AS classifies an unknown isolate

into the source category yielding the largest average

similarity to all library isolates within that source.

Nearest neighbour

Nearest neighbour (NN) is a nonparametric alternative to

DA and is available in SAS using PROC DISCRIM. Source

assignment is based on nonparametric estimates of pos-

terior probabilities based on k-nearest neighbours. With

the k = 1 option, as was specified in this study, NN assigns

source membership based on proximity to closest known

individual. Therefore, NN is analogous to MS, where NN

defines proximity using Mahalanobis or Euclidean

distances, rather than Jaccard, Dice or simple matching

similarity measures.

ID Bootstrap

ID Bootstrap is a script file designed to improve correct

classification rates and has only recently been made
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available to BioNumerics users (see www.applied-

maths.com/bn/bn.htm). The script applies a bootstrap

algorithm to a matrix of similarity values in order to

estimate the likelihood of obtaining an observed similarity

score relative to chance. A similarity matrix is first calcu-

lated for all known samples, each of which is assigned to a

particular group, and then each unknown is compared

with each group of known samples, providing an average

(or maximum) similarity for each unknown to each group.

Each unknown is tentatively identified as belonging to the

group with which it has the highest average (or maximum)

similarity. The distribution of similarities between group

non-members and group members is then approximated

by resampling, with replacement, group members and

non-members. Each bootstrap iteration involves the

random selection of 30 or more group members and a

single non-member. The proportion of bootstrap iterations

in which the unknown is more similar to the re-sampled

group than the known non-member approximates the

likelihood that the unknown belongs to the group relative

to chance. In this study, the script was applied to MS

and 1,000 iterations were specified. Thresholds for ID

bootstrap were based on estimated relative likelihoods of

correct identification.

RESULTS

The ability of each MST method to correctly predict

source membership relied heavily on which statistical

analysis was used (Table 1). Depending on the choice of

statistical method, %CC could be quite high; at other

times, %CC fell well below chance. In the half of the cases

where blind test samples were classified, %CC changed by

more than 40 percentage points as a result of varying the

statistical approach. In one case %CC increased from 0%

to 90% by switching the statistical analysis from average

similarity to maximum similarity. Even simply changing

the measure of distance often resulted in substantial

changes in the proportion of correctly identified iso-

lates. For example, in NN, changing from Euclidean to

Mahalanobis distance increased the percentage of cor-

rectly identified human isolates for researcher A1 from

29% to 75%.

The consistently high %CC for human and seagull

across the various statistical methods for researcher A2

was due primarily to the fact that variability of fingerprints

was low within each of these unknown samples. In fact, all

isolates analysed in the human blind sample for this

researcher had exactly the same antibiotic fingerprint (so

that only 100% or 0% were possible for %CC) and only a

handful of fingerprints were found among the blind seagull

isolates.

Despite the large differences in correct classification

rates among the statistical methods, no single statistical

approach emerged as superior across any of the MST

methods or sources. Improvements in correct classifi-

cation rates for one source as a result of applying an

alternative statistical analysis were often followed by a

decrease in correct classification rates for another source.

For example, for researcher R2, switching statistical analy-

sis from DA (non-pooled) to NN (Mahalanobis) resulted

in a 60 percentage point increase in %CC for human and a

decreased %CC for cow and seagull by approximately 40

percentage points.

In the majority of the cases, the ‘right’ choice of

statistical method improved substantially the researcher’s

ability to identify unknown sources of fecal contami-

nation. However, in some cases, none of the statistical

methods was particularly satisfying. In many cases, %CC

fell below 60%, regardless of which statistical method was

applied. In one case (A1), the maximum %CC for human

was less than 4% regardless of the statistical approach

(less than expected by chance alone).

Attempting to reduce false positives by applying vari-

ous threshold criteria to exclude uncertain isolates from

classifications did not always result in improved %CC (see

Tables 2–4). Using thresholds based on estimated DA

posterior probabilities between 80% and 95% resulted in

changes in %CC for individual samples anywhere from

− 16 to + 33 percentage points depending on the library

and source (Table 2). Thresholds based on QQ scores

between B and D (there were no As) resulted in changes

in %CC for individual samples between − 49 to + 44

percentage points (Table 3). For ID Bootstrap, relative

likelihood thresholds between 80% and 95% resulted in

changes in %CC of between − 35 and + 35 percentage

points (Table 4). For one researcher (A3), estimated
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Table 1 | Percentage correct classification for seven statistical methods

Source StatMethod

RepPCR ARA

R1 R2 R3 A1 A2 A3

Human DAP 50 66 27 2 100 9

DANP 35 20 12 0 100 25

NNM 43 80 33 2 100 33

NNE 57 74 51 0 100 13

Max. sim 65 74 22 3 100 13

Ave. sim 74 66 12 0 100 17

ID Boot max 65 74 22 3 100 13

Cow DAP 30 16 71 25 51 51

DANP 39 58 39 70 59 33

NNM 17 20 27 75 27 38

NNE 31 16 24 29 41 35

Max. sim 53 18 47 29 90 37

Ave. sim. 59 0 53 4 0 60

ID Boot max 53 18 47 29 90 39

Gull DAP 53 8 34 41 93 57

DANP 21 42 23 44 93 25

NNM 47 0 28 33 93 47

NNE 62 8 38 33 98 52

Max. sim 67 5 29 36 98 65

Ave. sim. 33 0 0 67 100 57

ID Boot max 67 5 29 35 98 65

Bold=method with highest percentage correct classification.

DAP=Discriminant analyses, pooled covariance.

DANP=Discriminant analyses, non-pooled covariance.

NNM=Nearest neighbour, Mahalanobis distance.

NNE=Nearest neighbour, Euclidean distance.

R1, R2 and R3=rep-PCR.

A1, A2 and A3=ARA.
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Table 2 | Effect of imposing threshold value for posterior probabilities (discriminant analyses, pooled covariance)

Researcher %Thresh

Human Cow Gull

%CC %Remain %CC %Remain %CC %Remain

R1 None 50 100 30 100 53 100

80 48 78 42 70 53 68

90 48 78 45 57 53 57

95 69 54 46 52 29 32

R2 None 66 100 16 100 8 100

80 73 88 0 80 6 68

90 81 62 0 74 7 56

95 81 62 0 74 10 42

R3 None 27 100 71 100 34 100

80 26 78 78 73 36 77

90 28 59 84 61 31 68

95 26 55 85 51 24 62

A1 None 2 100 25 100 41 100

80 0 98 25 98 49 80

90 0 98 26 95 50 78

95 0 85 32 73 51 76

A2 None 100 100 51 100 93 100

80 100 100 67 29 93 100

90 — 0 60 24 93 61

95 — 0 56 22 93 61

A3 None 9 100 51 100 57 100

80 0 49 54 44 85 49

90 0 36 62 38 88 32

95 0 26 61 33 90 19

Bold=same or increased as a result of threshold.

Bold italic=decreased as a result of threshold.
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relative likelihood from ID Bootstrap were below 80% for

all isolates.

Where increases in %CC occurred as a result of

applying a threshold for classification, large proportions

of isolates were often eliminated from final analyses.

Increases in %CC above 10% as a consequence of

applying a posterior probability threshold in DA

often resulted in the elimination of more than half

of the sample. Similarly, for exclusion of isolates

based on QQs, increases in %CC above 10% were

typically accompanied by removal of 60–75% of the

sample isolates. For ID Bootstrap thresholds, %CC

above 10% resulted in the removal of 60–95% of the

sample.

Table 3 | Effect of imposing cut-off based on quality quotient (maximum similarity≥QQ)

Researcher QQ

Human Cow Gull

%CC %Remain %CC %Remain %CC %Remain

R1 None 65 100 53 100 67 100

B 16 15 46 55 94 37

R2 None 74 100 18 100 5 100

C 74 100 18 100 5 97

B 38 16 0 52 4 59

R3 None 22 100 47 100 29 100

B 40 31 56 34 27 74

A1 None 3 100 29 100 36 100

D 0 98 29 100 36 100

C 0 98 29 100 34 98

B 0 86 73 27 77 29

A2 None 100 100 90 100 98 100

C 100 100 88 85 98 100

B 100 100 83 30 98 100

A3 None 13 100 37 100 65 100

D 16 81 38 98 65 100

C 21 45 29 76 67 69

B 17 19 0 7 100 38

Bold=same or increased as a result of threshold.

Bold italic=decreased as a result of threshold.
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Table 4 | Effect of imposing threshold value for estimated relative likelihood (ID Bootstrap, maximum similarity)

Researcher %Thresh

Human Cow Gull

%CC %Remain %CC %Remain %CC %Remain

R1 None 65 100 53 100 67 100

80 86 55 61 61 81 37

90 91 28 30 20 90 23

95 100 20 25 8 100 12

R2 None 74 100 18 100 5 100

80 40 30 17 96 7 61

90 56 18 17 94 5 43

95 100 4 18 88 8 27

R3 None 22 100 47 100 29 100

80 43 29 46 60 25 69

90 25 16 53 32 25 46

95 20 10 43 15 20 14

A1 None 3 100 29 100 35 100

80 0 81 0 39 22 20

90 0 81 0 9 22 20

95 0 59 — 0 0 9

A2 None 100 100 90 100 98 100

80 100 100 92 60 98 100

90 100 100 100 20 98 100

95 100 53 100 5 98 98

A3 None 13 100 39 100 65 100

80 — 0 — 0 — 0

90 — 0 — 0 — 0

95 — 0 — 0 — 0

Bold=same or increased as a result of threshold.

Bold italic=decreased as a result of threshold.

—=relative likelihood for classification of all isolates fell below threshold.
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Consequences for both %CC and percentage exclu-

sion of sample isolates resulting from applying threshold

criteria were not constant across sources. In fact,

increases in %CC for one source were often accompanied

by decreases in %CC for another source. For researcher

R2 using rep-PCR, applying a threshold of 95% for esti-

mated posterior probability for DA increased %CC for

human from 66% to 81% and for gull from 8% to 10%, yet

decreased %CC for cow from 16% to 0%. For this same

researcher, applying a 95% threshold eliminated 38% of

the human isolates, 58% of the seagull isolates and 36%

of the cow isolates. Similar trade-offs occurred when

applying other threshold criteria.

DISCUSSION

The results of this study demonstrate that the statistical

method used to predict host source membership can sig-

nificantly affect the ability of library-based methods to

correctly identify sources of fecal contamination. While

no one statistical method consistently performed better

than another across all MST methods and sources, some

statistical approaches were better suited than others for

identifying certain patterns in the data and for assigning

source membership based on those patterns. Choice of

similarity or distance measure defined fingerprint distri-

bution within each library and these distributions, in

turn, affected the ability of the statistical algorithm to

differentiate between sources. Clustering of sources,

multimodality, overlap and variability of fingerprints

within sources had substantial effects on which statistical

tool performed best.

The major challenges for each of the statistical

methods were lack of library representativeness (no

apparent match of unknown) and lack of significant host

specificity (overlap between groups and lack of discrimi-

natory characters). Although not addressed in this study,

the issue of representativeness is one of the most import-

ant issues for library-based MST methods and has recently

been addressed with respect to ARA of Enterococcus spp.

(Wiggins et al. 2003). Representativeness is the link

between sampling and the successful use of statistical

methods. Even in this particular study where fingerprints

from the unknown isolates should be more similar to those

of the library isolates because the same sources of fecal

material were used in both the test and library samples,

factors such as differential survival (Gordon 2002) or

cultivability of indicators (Bissonnette et al. 1975; Lleo

et al. 2001; Boualam et al. 2002) may have affected the

representativeness of the various libraries. While libraries

were constructed directly from fecal material (primary

habitat for indicators), indicators from the blind samples

were isolated from water (secondary habitat). Gordon

et al. (2002) suggested that a significant change in popu-

lation structure can take place between these two habitats

for E. coli. In this study, many of the patterns observed

in the blind test samples were distinct from those

represented in the library.

Because most of the statistical strategies investigated

in this study relied upon either central tendency or similar

patterns within the same source, host specificity and simi-

larity of patterns within a source are key to the success of

these statistical methods. For the datasets observed in this

study there was quite a bit of overlap between various

sources (lack of host specificity). Such overlap has been

documented by others. For example, McLellan et al.

(2003) noted that rep-PCR banding patterns for seagulls

overlapped with those obtained from sewage samples.

Gordon (2001) has suggested that E. coli lack sufficient

host specificity to be useful in MST methods.

While various threshold criteria have been proposed

for decreasing false positive errors and thus improving

%CC, our investigation showed that such actions do not

always produce favourable results. One explanation for

the decrease in %CC as a result of applying a particular

threshold criteria is the presence of ‘subtypes’ of bacteria

within a given host source group. In many of the libraries

in this study, we saw clustering of fingerprints into

multiple subgroups within the same source and these

clusters were often interspersed among multiple clusters

within other sources. These subgroups often belonged to

the same individual within a given source. As a result test

samples often contained isolates that were more similar to

another source group or subgroup than the one to which

they truly belonged. Applying a threshold value then

discarded those isolates that were more poorly matched
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yet correctly classified while keeping those more similar to

the true source yet incorrectly classified.

RECOMMENDATIONS

Given that choice of statistical method is important and

that no statistical method emerged as superior to all

others, how do we choose among the various statistical

approaches available? In order to choose the approach

likely to yield the highest %CC, we recommend a careful

examination of the library, including visualizing the data,

calculating estimates of predictive success and assessing

library representativeness. Repeating this process across

the various statistical methods provides the researcher

with a measure of potential success and a comparative

basis from which to select the most appropriate statistical

method. Finally, we recommend options for managing

classification ties and fingerprint patterns resulting in

all-zeros, which may distort or bias %CC.

Visualizing the data

Visualizing fingerprint patterns in the library prior to

classifying unknown samples identifies the degree of

overlap among fingerprints from different sources, which

in turn affects the potential of the statistical method. Many

software packages (including SAS and BioNumerics) offer

several alternatives for graphical representations of the

data. Some of the most popular include canonical dis-

criminant analysis and cluster analyses. When using these

visual tools, it is important to note that both are dependent

on the choice of distance or similarity measure. Canonical

discriminant analyses use Mahalanobis distances while

cluster analyses may use alternative measures such as

Jaccard, Dice and simple matching. Visual display should

reflect the distances employed by the particular statistical

algorithm under investigation.

In addition to clustering trees and canonical plots

where appropriate, we recommend multidimensional

scaling (MDS) for visualizing distances between isolates

for various measures of distance. MDS produces a ‘map’ in

two (or more) dimensions such that the distance between

isolates best approximates the relative distances between

isolates, allowing one to visualize proximity of isolates

both within and among source groups. Therefore, MDS

plots often allow one to see which measure of distance or

similarity is likely to produce the most separation (or

clustering).

MDS plots can also point to whether a statistical tool

based on averaging or one based on proximity to single-

tons is most appropriate. In general, where source pat-

terns are clustered about a central location, with limited

overlap, the statistical methods based on averages, such as

DA or AS tend to perform well. For sources where finger-

prints are patchy and clustered around several locations,

NN or MS techniques are often a better alternative. For

example, the MDS plot for A2 using Jaccard distance

shows that, for cow, there are multiple subgroups within

the known cow data and these overlap with other known

sources (Figure 1). Therefore, maximum similarity was

more appropriate than average similarity (%CC for

MS = 90% and %CC for AS = 0%). Of course the useful-

ness of MDS plots depends on how representative and

complete the library is.

Estimating predictive success

Another tool to aid the choice of statistical analyses is to

compare estimates of predicted success across each of the

statistical methods. Among the readily available methods

for estimating %CC, we recommend the jackknife. Assum-

ing simple random sampling of the population, jackknifing

provides unbiased estimates of correct classification and is

readily available in both BioNumerics and SAS. In SAS,

jackknife estimates are obtained using the cross validate

option in PROC DISCRIM and is preferred over the resub-

stitution estimates (the default in PROC DISCRIM). In

PROC DISCRIM one can also obtain jackknife estimates

for percentage correct classifications based on thresholds.

Although not reported in this study, jackknife esti-

mates were calculated using the standard software across

each of the statistical methods for each library. For nearly

all libraries, jackknife estimates of %CC were higher than

those observed. Inflation may be due, in part, to library

construction. In this study libraries depended on sub-

sampling of isolates from individuals or groups of
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individuals within sources rather than on simple random

sampling usually required for these standard jackknife

procedures. Wiggins et al. (2003) suggest an alternative

jackknife analysis to hold out entire feces instead of

individual isolates that may be more appropriate for sub-

sampling designs. Where estimation of predicted success

differed substantially from that observed, test fingerprints

were underrepresented in the library.

Assessing library representativeness

Because statistical algorithms used to identify sources rely

on similarity to known patterns, it is crucial that libraries

sufficiently represent the population of fingerprints within

each source. We recommend a thorough investigation of

library representativeness prior to classifying unknown

sources of fecal contamination. Wiggins et al. (2003) offer

several methods for assessing library representativeness.

One method compares jackknife estimates of average

rates of correct classification within each source to those

estimated by the resubstitution method. Recall that the

resubstitution method uses all isolates both to build the

library and to predict source membership, thereby estimat-

ing how well the library can predict itself. A representative

library, then, would provide jackknife estimates of average

rates of correct classification comparable to those

obtained by resubstitution. A second method for assessing

library representatives, also suggested by Wiggins et al., is

the ‘hold out’ method, where a portion of the known

samples is used to make up the library (i.e. a calibration

dataset) and the remaining portion is used to estimate

average rates of correct classifications (i.e. a validation

dataset). Again average rates of correct classification are

compared with those estimated via resubstitution.

Figure 1 | Example MDS plot.
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Another potential statistic that may help to test for

representativeness is the bootstrap analyses applied to the

hold out method. By resampling with replacement the

distribution against which the test is performed, we can get

a better idea of how variable the rates of correct classifi-

cation are within each source category. This is especially

important when one is using maximum similarity to iden-

tify unknowns, since a single outlier can drastically affect

the result. The magnitude of variability found in repeated

simulations would inversely relate to the representative-

ness of the library. Further, large variabilities in %CC may

indicate multiple clustering within each source population

or provide evidence of sampling bias.

Managing classification ties

Ties occur when the classification rule inherent in the

statistical method assigns a given fingerprint to more than

one source group. Different software packages have differ-

ent ways of handling ties and these mechanisms are often

unknown or overlooked. In SAS’s PROC DISCRIM, for

example, the default places ties into an ‘other’ category,

allowing the researcher to decide on the appropriate

action. Because SAS calculates %CC based on the entire

sample (including ties), excluding these data from the final

analyses requires the researcher to adjust reported rates

of classification (i.e. the denominator). In contrast,

BioNumerics’ default systematically assigns ties according

to the order in which the source groups are listed in the

library. Identifications involving numerous ties are likely

to result in severe bias. In this study we found a

30-percentage point increase in %CC for one researcher

simply by removing the ties prior to applying MS in

BioNumerics. Finally, BioNumerics’ jackknife procedure

for predicting %CC by default assigns ties to their own

known source group, resulting in inflated estimates of

predicted success. However, in the more recent version of

BioNumerics (version 3.0) there is an option designed

to reduce bias towards a single source by spreading

ties equally among the source groups through random

assignment.

Several options exist for handling ties. Selecting

which option to use will depend on available auxiliary

information and penalties associated with false positive or

false negative errors. One option is to exclude ties from

final analyses. This option should be selected when posi-

tive identification of known sources may result in costly

penalties relative to consequences of false negatives. For

example, beaches can be incorrectly listed as unsafe

for swimmers, resulting in severe penalties for sewage

dischargers and lost revenue to surrounding business

communities, though risk of illness may be low.

A second option for handling ties is to systematically

assign ties to a likely source group based on auxiliary

information, prior belief or consequences of false identifi-

cation. PROC DISCRIM has an option for specifying prior

probabilities that will bias assignment of ties towards a

particular source. For example, previous research may

support a distribution of sources within the target area

that favours one source over another. By specifying prior

probabilities for source classification, one can weigh

source assignment towards one particular source more

than another. When reliable and current auxiliary data

exist, we recommend using this option regardless. In

addition to using prior information, systematic assignment

of ties could be achieved visually through dendograms.

This procedure is particularly useful for those sources

containing multiple clusters or subtypes of fingerprint.

Finally, ties can be assigned to a particular source group

based on expert knowledge and/or familiarity with the

study area. Samples obtained downstream from a dairy

farm, for instance, are more likely to belong to cow source

group than seagull.

Managing all-zero patterns

In many cases, fingerprint profiles may yield all-zero pat-

terns. In rep-PCR, all-zero patterns are usually attributed

to measurement or laboratory error and are eliminated

from further analyses. In ARA, however, all-zero patterns

may result from bacteria that are not resistant to any of the

antibiotics at the concentrations tested, and thus may

contain useful discriminating characteristics. The all-zero

patterns present a problem when using similarity measures

which target only the number of ‘ones’ that match in the

binary datasets, ignoring all ‘zeros’ (e.g. Jaccard and Dice).
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For example, the Jaccard similarity applied to two isolates

whose fingerprints contain all zeros will have a similarity

score of ‘0’, yet they are identical. In fact, an all-zero

isolate will have zero similarity with all isolates regardless

of their pattern. We recommend several alternatives for

matching all-zero patterns in ARA data. One alternative is

to use exact matching if there is at least one other all-zero

value in the library. If there is more than one source in the

library that contains an all-zero pattern then one could

apply those strategies previously mentioned for managing

ties, including using auxiliary information and visualiz-

ation. Alternatively, one could explore other similarity

measures that take into account zeros (e.g. Euclidean

distance or simple matching). For the ARA datasets here

we chose to report %CC after removing all-zero finger-

prints prior to applying MS and AS to Jaccard similarity

scores as there was little difference in %CC with all-zeros

included.

CONCLUSION

This study demonstrated that choice of statistical method

dramatically influenced the ability of the MST method to

correctly predict source membership. Successful pre-

dictions relied heavily on which statistical analysis was

used. Because no single statistical method emerged as

superior across all libraries, we recommend several tools

to assist in choosing between available methods, including

visual aids, jackknife estimates and library assessments.

Recognizing that the default procedures for ties of various

software may bias group assignment and estimates of

predicted success, we offered several alternatives for

dealing with ties. In addition, we suggested techniques

for managing fingerprints containing all-zero patterns.

Failure of some statistics was attributed to lack of host

specificity and library representativeness.

While eliminating isolates based on thresholds can

reduce false positives and therefore increase rates of

correct classification, results of this study indicate that

caution should be exercised in their application. First,

correct classification rates did not always improve with

threshold. Second, improvement in %CC for one source

was often accompanied by a decline in %CC for another.

Finally, since thresholds do not eliminate all sources

evenly, thresholds may bias estimates of relative propor-

tions of sources of fecal contamination. Therefore, the

choice of whether or not to use a threshold should depend

on penalties resulting from false positives and the goals of

the study.

Future research is needed to improve statistical tech-

niques for discriminating between sources based on

antibiotic resistance or banding patterns. In particular,

the measure of similarity is crucial to effectively discrimi-

nate between source groups. Additional similarity

measures should be evaluated for appropriateness along

with the exploration of novel measures of genetic simi-

larity. Finally, statistical procedures for classification

may be improved with the removal of nuisance variables

(e.g. bands or antibiotics) that do not contain infor-

mation useful for discriminating between sources.

Regardless of which statistical methods are used, testing

the correct classification of isolates that are not in the

library (proficiencies or blind samples) ultimately deter-

mines the utility of any microbial source tracking

method. This process should be incorporated into the

development of each new library, and should take into

consideration factors such as proficiency sample size and

pseudoreplication.
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