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Resource managers in the United States and worldwide are tasked with identifying

and mitigating trade-offs between human activities in the deep sea (e.g., fishing,

energy development, and mining) and their impacts on habitat-forming invertebrates,

including deep-sea corals, and sponges (DSCS). Related management decisions require

information about where DSCS occur and in what densities. Species distribution

modeling (SDM) provides a cost-effective means of identifying potential DSCS habitat

over large areas to inform these management decisions and data collection. Here we

describe good practices for DSCS SDM, especially in the context of data collection

and management applications. Managers typically need information regarding DSCS

encounter probabilities, densities, and sizes, defined at sub-regional to basin-wide

scales and validated using subsequent, targeted data collections. To realistically

achieve these goals, analysts should integrate available data sources in SDMs

including fine-scale visual sampling and broad-scale resource surveys (e.g., fisheries

trawl surveys), include environmental predictor variables representing multiple spatial

scales, model residual spatial autocorrelation, and quantify prediction uncertainty.
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When possible, models fitted to presence-absence and density data are preferred over

models fitted only to presence data, which are difficult to validate and can confound

estimated probability of occurrence or density with sampling effort. Ensembles of models

can provide robust predictions, while multi-species models leverage information across

taxa, and facilitate community inference. To facilitate the use of models by managers,

predictions should be expressed in units that are widely understood and validated at

an appropriate spatial scale using a sampling design that provides strong statistical

inference. We present three case studies for the Pacific Ocean that illustrate good

practices with respect to data collection, modeling, and validation; these case studies

demonstrate it is possible to implement our good practices in real-world settings.

Keywords: corals, deep sea, good practices, management, species distribution models, sponges

INTRODUCTION

Deep-sea corals and sponges (DSCS) are among the longest-
living sessile marine organisms and are important biogenic
components of habitat inmanymarine ecosystems (Roberts et al.,
2009; Buhl-Mortensen et al., 2010; Hogg et al., 2010; Rossi et al.,
2017). They are a diverse group of habitat-forming invertebrates
spanning two phyla and exhibiting numerous growth habits;
some species reaching meters in height and others forming
large reefs (Roberts et al., 2009; Maldonado et al., 2017). Like
their tropical counterparts, DSCS create hotspots of diversity
by providing structure and refuge for many invertebrates and
fishes, especially when forming dense aggregations (Stone, 2006,
2014; Buhl-Mortensen et al., 2010; Baillon et al., 2012). DSCS
are suspension feeders, making them important contributors to
carbon and nutrient cycling in the deep ocean (Cathalot et al.,
2015; Maldonado et al., 2017), but are fragile and slow-growing,
making them vulnerable to human impacts like fishing, deep-sea
mining, offshore oil and gas development, etc.

Due to their vulnerability and the many ecosystem functions
they provide, DSCS have received increasing attention
from conservationists and resource managers worldwide.
Internationally, they have been identified as key indicator taxa
for vulnerable marine ecosystems [FAO (Food and Agriculture
Organization of the United Nations), 2009] and ecologically or
biologically significant marine areas [Convention on Biological
Diversity (CBD), 2010]. In the United States (U.S.), several
laws provide the authority to regulate offshore activities (e.g.,
fishing, energy development, and leasing) that might damage
environmentally sensitive seafloor habitats. For example, in
1984 the U.S. established the Oculina Banks Habitat Area of
Particular Concern off Florida, the first area specifically designed
to protect deepwater coral reefs from fishing impacts. Since
2005, deep-sea coral conservation efforts have accelerated
across the U.S. Exclusive Economic Zone (EEZ), with a focus
on protecting seafloor habitats from impacts of fishing gear
(Figure 1; Hourigan et al., 2017). These area-based gear
restrictions included large precautionary closures in deep water
designed to freeze the footprint of bottom trawling (Figure 1),
the type of fishing usually considered the most substantial threat
to DSCS (Clark et al., 2016a; Rooper et al., 2017b). This approach

has prevented the expansion of the most damaging fishing into
deeper waters (Hourigan, 2014), but also means that further
conservation gains will require more targeted information
and management within the footprint of existing fisheries.
The National Oceanic and Atmospheric Administration’s
(NOAA) Deep Sea Coral Research and Technology Program
(DSCRTP; https://deepseacoraldata.noaa.gov/), in partnership
with other NOAA offices, federal agencies, and academic and
stakeholder groups funds and coordinates research and supports
the development of management measures to protect DSCS.

Species distribution modeling (SDM) is a technique for
quantifying species-environment relationships and applying
those relationships to predict and map the abundance or
habitat of species of interest (e.g., Guisan et al., 2017). SDMs
use biological and environmental data as input and produce
distribution maps at spatial scales relevant to management.
The majority of existing DSCS SDMs are “presence-only”
models, often applications of maximum entropy (MaxEnt) and
ecological niche factor analysis (ENFA) (Figure 2; Vierod et al.,
2014; Guinotte et al., 2017). These models make use of the
most commonly available type of biological data for DSCS:
locations of observed occurrences of individual taxa. The maps
produced from presence-only models indicate where suitable
habitat is predicted to be more or less likely. These maps have
been used to guide targeted field surveys in underexplored
areas (Georgian et al., 2014), to inform management decisions
made by regional fisheries management organizations (Vierod
et al., 2014; Georgian et al., 2019) and U.S. regional fishery
management councils (Kinlan et al., 2020), to examine potential
environmental covariates of DSCS habitat (Etnoyer et al., 2018),
and to provide information to the U.S. Bureau of Ocean Energy
Management for its environmental compliance and leasing
decisions (Bauer et al., 2016). However, presence-only models
have limitations (e.g., lack of data on sampling effort) that reduce
their usefulness for effective management of DSCS. Alternative
SDM techniques exist that can overcome these limitations and
have been applied to DSCS (Figure 2), but these techniques
generally require additional types of biological data (e.g., absence
or density data).

To bettermanage human activities impactingDSCS,managers
and analysts would benefit from an improved understanding
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FIGURE 1 | Restrictions on bottom-trawling, usually considered the most substantial threat to deep-sea coral and sponge habitat, in the U.S. exclusive economic

zone (EEZ) as of January 2020. Protections are illustrated by year of implementation and grouped as taking effect before 1996 (the year essential fish habitat was

introduced; red polygons), or between 1996–2000 (dark blue), 2001–2005 (yellow), 2006–2010 (green), 2011–2015 (light blue), or 2016–2019 (purple). The Pacific

Region map legend includes 2020 because the Pacific Fishery Management Council approved trawl restrictions in 2018 that were enacted on 1 January 2020. Note

the different geographic scales used for each region. The New England and Gulf of Mexico Fishery Management Councils approved additional protections in 2018

that were yet to be enacted by the time of publication, so are not shown here.

of current data limitations, preferred SDM approaches, and
future data needs. In this paper, we describe good practices
for the data and methods needed to inform SDMs of DSCS
distributions for management purposes. We also present three
case studies from the Pacific Ocean, including two from
U.S. waters, that highlight some of the challenges associated
with these data and methods. Our good practices are not

meant to be a “one size fits all” solution. Individual scientific
and management needs, data availability, intended application,
funding availability, and field logistical constraints may require
individualized approaches to data collection and modeling. Our
interest and objective is to provide “good practices” to help
guide data collection and analysis by the DSCS research and
management community.
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FIGURE 2 | Types of deep-sea coral and sponge species distribution models

in 42 studies (journal articles, government technical reports, and book

chapters) published between 2005 and 2019 (Supplementary Material).

Common model types were maximum entropy (MaxEnt), generalized additive

model (GAM), environmental niche factor analysis (ENFA), boosted regression

tree (BRT), random forest (RF), and generalized linear (mixed) model (GL(M)M).

Note that some studies employed more than one model type, so the total

number of models is greater than the number of studies.

GOOD PRACTICES

Our good practices are first presented for biological and
environmental data included in DSCS SDMs followed by
analytical methods and then management applications. Case
studies that illustrate our good practices (Table 1) are presented
in the next section.

Data
Biological Data
Because the logistical and technical complexities and expense
of operating at deep depths are limiting factors for collecting
observations of deep-sea biota, DSCS SDMs built at global and
regional scales typically include biological data from a range
of sources (Vierod et al., 2014; Anderson et al., 2016a; Rooper
et al., 2019). Many of the earlier DSCS SDMs relied on presence
data compiled from historical records of DSCS observations,
including from existing databases, museum collections, and
cruise reports (Davies and Guinotte, 2011; Vierod et al.,
2014). More modern biological data available to DSCS SDMs
have been obtained at finer scales from georeferenced videos
or photos collected during seafloor surveys (e.g., manned
submersibles, autonomous underwater vehicles, and remotely
operated vehicles) or from fisheries trawl surveys (Vierod et al.,
2014). Many of these data have been reported only as DSCS
presences, sometimes because of concerns over the ability to
confirm the complete absence of a species in an observation
(Vierod et al., 2014). However, because of the limitations of SDMs

TABLE 1 | Key good practices and illustrative case studies.

Good practice Case study

Data

preferably use presence-absence or density survey data 1,2,3

account for sampling effort when using presence-only data 3

integrate multiple survey data types 1

use ecologically relevant environmental predictor variables at

multiple spatial scales

1,2,3

Analysis

conduct predictor variable/model selection 1,2,3

consider model ensembles 1,3

quantify prediction uncertainty 1,3

assess/address residual spatial autocorrelation 3

Management

communicate with stakeholders frequently and iteratively 1

predict quantities that are interpretable and widely understood 1,2,3

validate predictions ideally through new surveys but also

cross-validation

1,2,3

built with presence-only data (described in Section Analysis), we
recommend that DSCS biological data from fine-scale surveys
be recorded to quantify presence-absence, abundance, biomass,
or density (abundance or biomass per unit area) (Case Studies
1–3) with a measure of effort for each sampling unit (e.g., area
surveyed). From a practical standpoint, resource managers are
most interested in identifying areas of potential high density or
diversity of vulnerable DSCS rather than simply presence. Both
density and size of DSCS are likely ecologically important factors
for habitat use by other species (e.g., Case Study 1 and also
Du Preez and Tunnicliffe, 2011). When the only data available
are presence, analysts should attempt to recover or infer the
distribution of sampling effort and the locations of absences if
feasible by re-analysis of existing data, recognizing that this will
increase the time required for analysis. For example, absence
“observations” along a transect can sometimes be recovered from
existing data recordings, or can be inferred from locations where
other species were recorded as present during the same surveys
(e.g., Case Study 3 and also Isaac et al., 2014).

Future sampling programs should record biological data at the
highest taxonomic resolution possible. Models developed using
data with low taxonomic resolution may mix species with very
different life-histories and environmental requirements, resulting
in overly broad predicted distributions and potentially increased
model uncertainty. Models of functional groups or otherwise
reduced taxonomic resolution may be sufficient to address some
management applications, but in some cases models may be
needed for specific taxa like species of concern (e.g., endangered
species). We recognize that the identification of DSCS species,
especially from images alone, can be difficult and their taxonomy
is an active area of research, so these issues can be challenging to
the development of models with high taxonomic resolution.

Most DSCS distribution modeling currently relies on existing
data collected for other purposes. Given the increasing use of
SDMs for management, future biological data collection should
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be designed to inform improved models including increased
attention to statistically-robust survey design (Williams and
Brown, 2019), along with measures of abundance, density, size,
and survey effort. A centralized DSCS data repository, akin to
the DSCRTP data portal (https://deepseacoraldata.noaa.gov/),
hosting DSCS data collected and analyzed with these suggested
data standards would facilitate SDMs to inform management.

Environmental Data
We focus on SDMs that integrate DSCS biological data with
environmental data as covariates. Informative covariates often
include measures of depth, seafloor terrain (e.g., slope, aspect,
curvature, bathymetric position, ruggedness), and substrate
properties (e.g., sediment composition), usually derived from
remotely sensed acoustic bathymetry and backscatter data or
geological samples (Wilson et al., 2007; Brown et al., 2011;
Vierod et al., 2014; Rooper et al., 2016; Guinotte et al., 2017).
Oceanographic properties (e.g., water temperature, chemistry,
and current speed and direction) derived from field samples,
remotely sensed data, and ocean models can also be informative
covariates (Davies and Guinotte, 2011).

It is important to consider whether environmental covariates
are available at spatial scales and resolutions that are relevant to
management needs and to the ecological patterns and processes
of interest (Davies and Guinotte, 2011). Mismatches in spatial
scale and resolution between environmental covariates and
management needs risk a loss of information necessary for
effective management. Mismatches in spatial scale and resolution
between environmental covariates and important ecological
processes risk the failure to detect important relationships and
can compromise the accuracy of predicted species distributions.
The relevant ecological spatial scale may vary by DSCS species or
functional group, so we suggest analysts consider environmental
covariates at multiple spatial scales, but first use a hypothesis-
driven approach to decide which scales may be most appropriate
to include.

Spatial resolution and accuracy are important considerations
in determining which bathymetry data to use in DSCS
SDMs. Earlier DSCS SDMs built at global and basin scales
typically included depth and seafloor terrain covariates derived
from coarse bathymetry data from satellite altimetry or
from compilations of hydrographic data. However, at coarse
resolution these covariates may not resolve fine-scale seafloor
features that provide habitat for DSCS. We suggest that DSCS
SDMs include depth and seafloor terrain covariates derived
from multibeam acoustic bathymetry data (that are collected
at International Hydrographic Organization standards when
possible), followed by regional (e.g., Zimmermann et al., 2013)
and basin-scale [e.g., GEBCO (General Bathymetric Chart of
the Oceans) Compilation Group, 2019] bathymetry compilations
with rigorous data assembly methods, followed by bathymetric
models and opportunistic measurements (e.g., Olex software1;
Jakobsson et al., 2012). We suggest researchers evaluate whether
the spatial resolution of the bathymetry data and consequently
derived seafloor terrainmetrics will capture habitat processes that

1http://www.olex.no/

are ecologically important to DSCS. Certain terrain metrics, such
as ruggednessmeasures, should not be derived from compilations
of bathymetry data sets of varied quality and resolution.

High resolution multibeam acoustic seafloor scattering
strength (backscatter) can be applied directly as a covariate or to
derive measures of angular response, and seafloor properties such
as hardness, ruggedness, and substrate composition (e.g., Brown
et al., 2011). Backscatter data have been applied to distinguish
(Weber et al., 2013) and model (Pirtle et al., 2015) the spatial
extent of trawlable and untrawlable seafloor types where DSCS
occur and in DSCS SDMs (Dolan et al., 2008; Buhl-Mortensen
et al., 2012; Rowden et al., 2017). Backscatter is a relativemeasure,
and compilations of backscatter from multiple surveys should
generally only be used in SDMs when the acoustic surveys have
collected backscatter using frequencies that do not differ by
more than one octave (Hughes Clarke, 2015), and when the
surveys have been relatively calibrated across years, platforms,
and sensors (Lurton and Lamarche, 2015).

Oceanographic data include biological, chemical, and
physical oceanographic properties, such as surface chlorophyll
concentration, oxygen and aragonite saturation, temperature,
salinity, current speed and direction, and turbidity.
Oceanographic data collected during surveys or modeled
based on survey data [e.g., Regional Ocean Modeling Systems
(ROMS); (Hermann et al., 2016; Fiechter et al., 2018)] are
generally of much coarser resolution than seafloor mapping data
(km vs. m) and sometimes require interpolation to the spatial
extent of management areas (e.g., Brown et al., 2011). These
oceanographic covariates have been useful to model and predict
DSCS distribution and habitat (Georgian et al., 2014, 2019;
Rooper et al., 2014, 2017a; Bargain et al., 2018).

We suggest that analysts fit multiple SDMs with different
environmental covariates at multiple scales to identify the best
performing model (e.g., Wilson et al., 2007; Pirtle et al., 2019;
Weijerman et al., 2019; Dove et al., 2020), and only retain the
important environmental covariates at the appropriate scales
in SDMs (Case Studies 1-3). From an ecological modeling
perspective, it is also prudent to consider only those covariates
that have realistic direct or indirect linkages to biological
and ecological processes that would be expected to influence
DSCS distribution (Case Studies 1-3). It is important that
researchers factor in the potentially extensive time required for
literature review, synthesis, and expert involvement for covariate
development during the planning phase of a modeling project.

Analysis
Presence-Only Models
Presence-only models, like MaxEnt and ENFA, have been the
most commonly employed SDM techniques for DSCS (Figure 2;
Vierod et al., 2014; Guinotte et al., 2017). These methods
have proven useful for some applications such as guiding
surveys for exploration (Georgian et al., 2014), contributing to
the development of conservation areas (Kinlan et al., 2020),
and providing a foundation for subsequent higher-resolution
modeling with alternative methods (Case Study 3). Indeed,
presence-only models are the only option when only presence
data are available. However, presence-only models have several
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disadvantages that are not conducive to effective management
of DSCS. The major limitation of presence-only models is that
sampling effort and resource density are confounded when the
former is not appropriately represented in the model (Peel
et al., 2019). Presence-only models can mistakenly identify well-
sampled areas with many presence observations as areas with
greater densities in contrast with less-sampled areas with fewer
presence observations, even if densities are similar between areas
(Fithian et al., 2015). That being said, presence-only models can
accommodate and correct for independent information about the
distribution of sampling effort when it is available (e.g., MaxEnt;
Elith et al., 2011), and several approaches have been used to
attempt to account for sampling effort when direct information
is not available (Merow et al., 2016; El-Gabbas and Dormann,
2018). Another limiting issue with presence-only models is that
they do not appropriately account for the effect of sampling
effort on estimates of model uncertainty (Renner et al., 2015).
Finally, it is not clear how to generalize presence-only models.
Predictions from these models are usually in relative terms and
the predicted quantities (e.g., relative habitat suitability) can be
difficult to interpret and validate. As a result, inference across
species and models is challenging, inhibiting the use of presence-
only models for understanding community structure and DSCS-
fish associations.

Preferred Modeling Frameworks
Given the limitations and challenges associated with presence-
only models, we recommend using alternative modeling
frameworks when possible (Case Studies 1-3). When data types
other than presence are available (e.g., presence-absence, count,
biomass), analysts should preferentially employ these data types
to develop DSCS SDMs that produce predictions that are
straightforward to interpret and validate (e.g., probability of
occurrence for presence-absence data). Use of absence, count,
or biomass data will naturally account for the distribution of
sampling effort in the model, by including data from areas
where taxa were detected and where they were not. It is also
important to account for the amount of sampling effort (e.g., area
viewed, trawl swept area) represented by each data replicate in
a model, either by expressing the modeled response data (e.g.,
biomass) per unit of effort, or, in the case of presence-absence
and count models, by including an effort “offset” in the model.
Modeling approaches such as generalized linear models (GLMs),
generalized additive models (GAMs), boosted regression trees
(BRTs), and random forest models (RFs) accommodate these data
types and model features.

Integration of Multiple Datasets and Types
In some cases it may be appropriate to combine multiple
biological datasets. A common issue with DSCS sampling
data is that the spatial footprint of an individual sampling
program often does not cover the entire geographic area
of interest to management or the geographic range of the
species. A solution to this issue is to fit SDMs to data
collected by multiple sampling programs (Case Study 1).
Differences in detectability among sampling programs can be
accounted for through inclusion of a “catchability” covariate

in the SDMs (Grüss et al., 2018). If different data types (e.g.,
presence-absence, count, and biomass) are available, recent
developments allow for the implementation of “data-integrated”
SDMs (Fletcher et al., 2019; Grüss and Thorson, 2019; Miller
et al., 2019). It is also possible to fit data-integrated SDMs to
a combination of presence-only data and other types of data.
However, in this specific case, the data-integrated SDMs must be
expanded to account for sampling intensity and the covariates
influencing sampling intensity for the presence-only data
(Fithian et al., 2015).

DSCS-Fish Associations
Managers are often interested not only in DSCS spatial
distributions, but also in community structure and DSCS-fish
associations. A simple way to explore these associations is
to examine correlations between DSCS presence, abundance,
density, or total cover and fish presence, abundance, or density
(Auster, 2005;Malecha et al., 2005; Stone, 2006; Tissot et al., 2006;
Kenchington et al., 2013; Conrath et al., 2019). Alternatively,
the presence, abundance, or density of fish can be modeled
as a function of DSCS-related and abiotic covariates (Laman
et al., 2015; Sigler et al., 2015). A more community-oriented
approach is to identify distinct habitat clusters through analysis
of DSCS sampling data and then ascertain which fish species are
associated with the different habitat clusters (Woolley et al., 2013;
D’Onghia et al., 2016). Joint SDMs, which consider fish andDSCS
species simultaneously and correlations among these species
(e.g., Ovaskainen et al., 2017; Thorson and Barnett, 2017), can be
employed to reveal community structure and which fish groups
associate with which DSCS groups.With any of these approaches,
it is important to distinguish the correlations between DSCS
and fish per se from any apparent correlations that arise simply
because both are correlated with other covariates in similar ways.

Model Ensembles
No SDM is perfect and it is, therefore, good practice for analysts
to consider multiple models. Ensemble modeling techniques
facilitate the integration of results across multiple models (Case
Studies 1 and 3). When working with a model ensemble, it
is important to weight the predictions made by the different
models of the ensemble using an objective weighting scheme.
For example, Rooper et al. (2017a) employed a model ensemble
including GLMs, GAMs, BRTs, and RFs to predict the spatial
distribution of DSCS in the Gulf of Alaska, and utilized model
errors to produce model ensemble predictions. Another example
is that of Georgian et al. (2019), who used a model ensemble
including MaxEnt models, BRTs and RFs to determine the spatial
distribution of vulnerable marine ecosystem indicator taxa in the
South Pacific Ocean; the authors constructed a weighted average
of the predictions of the different models in the ensemble on the
basis of the area under the receiver operating characteristic curve
(AUC) and the coefficients of variation of the model predictions.
Ensemble models can have better performance and produce less
uncertain predictions than individual models (Rooper et al.,
2017a; Lo Iacono et al., 2018; Georgian et al., 2019).
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Spatial Autocorrelation
An important consideration for any SDM is the assessment
of and accounting for spatial autocorrelation in the residual
errors (Case Study 3). It is typically the case that the predictor
variables included in an SDM only explain some of the spatial
variation in a species’ distribution. Remaining unexplained
variation can lead to spatial autocorrelation in residual errors,
which affects statistical inference (Legendre, 1993). There are
numerous approaches for addressing spatial autocorrelation in
SDMs (Dormann et al., 2007), although DSCS SDMs have rarely
employed these techniques (but see Georgian et al., 2019). An
SDM approach that has become more common recently is to
estimate spatial and spatio-temporal variation in the quantities
of interest (e.g., probability of presence) to explicitly account for
the component of the species’ distribution that is not explained
by the predictor variables (e.g., Shelton et al., 2014; Thorson
and Barnett, 2017). At a minimum, spatial autocorrelation in
the residual errors of any DSCS SDM should be assessed and
statistical inferences adjusted accordingly (Grüss et al., 2019).

Uncertainty and Validation
Regardless of the modeling approach taken, predictions from
DSCS SDMs should be presented with associated estimates of
uncertainty (Case Studies 1 and 3) and be validated (Case Studies
1-3). A common approach to estimating uncertainty in model
predictions is non-parametric bootstrapping (Georgian et al.,
2019). Bootstrapping provides a set of replicatemodel predictions
from which various statistics can be calculated to characterize
their statistical distribution (e.g., mean, standard deviation).
The coefficient of variation (CV) can be particularly useful for
comparing relative uncertainty in predictions among models
(Rooper et al., 2017a; Georgian et al., 2019). Mapping spatial
uncertainty is informative for managers, for example uncertainty
information can be used to prioritize areas that would benefit
most from additional data collection (i.e., areas with high
uncertainty). Model predictions should also be validated; ideally,
by using new independent data collected in a statistically robust
manner for model validation purposes (Williams and Brown,
2019). Simulation can be a useful tool for determining optimal
sampling designs (Hirzel and Guisan, 2002). When new surveys
are not practical or are cost prohibitive, data subsetting can be
used to derive “training” and “test” data, whereby the model is
fit to the former and then the fitted model is used to predict the
latter allowing an assessment of how well the model performs
with respect to “new” data (Rooper et al., 2014, 2017a). Cross-
validation is a common form of data subsetting that is often
combined with a model selection process to optimize a model’s
predictive ability (Kuhn and Johnson, 2013). Using spatial units
as cross-validation folds can be a useful technique for developing
a model that predicts well to new areas (Valavi et al., 2019).

Model Performance
Many metrics exist for assessing model fit and predictive
performance, each with strengths and limitations. AUC is
commonly employed for presence-only and presence-absence
models, although it is important to be aware of limitations
with this metric, especially when comparing the performance

of models across species with different distributions and
abundances (Lobo et al., 2008; Jimenez-Valverde, 2012). A variety
of threshold-dependent metrics exist, but the choice of threshold,
choice of metric, and species prevalence can affect apparent
performance and must be considered carefully (Liu et al., 2005;
Allouche et al., 2006). Other metrics appropriate for models
fitted to binary data include point biserial correlation between
predictions and observations, calibration plots, and adjusted-R²,
among others (Rooper et al., 2018; Grüss et al., 2019). In general,
assessing the fit of models to binary data is challenging; there are
more standard options for assessing fit to count and continuous
data such as correlations between predictions and observations,
root mean square error, residual deviations, etc. Likelihood-
derived measures like percent deviance explained and the Akaike
Information Criterion (AIC) can be calculated for likelihood-
based models of presence-absence, count, and continuous data.
AIC is an example measure that provides an indication of model
fit balanced against model complexity thereby potentially better
representing a model’s predictive ability. In general, performance
metrics calculated with respect to training data will indicate
how well a model captures variation in existing data while
performance metrics calculated with respect to test data will
indicate a model’s predictive ability (Section Uncertainty and
Validation). If one’s primary objective is prediction to unsampled
areas, performance should be evaluated in terms of test data.

Management
Arguably, the most important element in science designed to
support resource management is how the interface between
science and management is designed. This interface is best
conceived as an iterative process, where managers define
goals, scientists provide scientific recommendations, managers
refine goals and request more input, scientists validate and
extend previous results, and so on (Case Study 1). Integrated
ecosystem assessments (sensu Levin et al., 2009) are an example
formalization of such an iterative process.

Science that supports management of DSCS poses several
unique challenges. In particular, SDMs representing DSCS are
usually developed based on opportunistic data at large spatial
scales that are not designed specifically to sample DSCS (e.g.,
Sigler et al., 2015), or alternatively based on data that were
designed to sample DSCS but only at small spatial scales. To
develop confidence in results among stakeholders and managers,
SDMs that integrate these two data types must be carefully
validated to (1) determine whether the geographic distribution is
accurately represented, and (2) identify critical knowledge gaps
regarding habitat. This validation should be conducted across
the entire spatial extent being considered using a probabilistic
sampling design that provides strong statistical inference and
which includes areas with both high and low predicted DSCS
density to corroborate inference for both high and low-quality
habitats, using sampling techniques such as underwater cameras
that can positively confirm the presence or absence and density
of DSCS (e.g., Rooper et al., 2016).

To further promote stakeholder and manager understanding,
confidence, and usage of DSCS SDMs, we suggest expressing
model predictions and their associated uncertainties in units
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that are easily tested and widely understood (Case Studies 1-
3). For example, SDM results should be expressed as encounter
probabilities for a given sampling program, expected biomass,
size, etc. rather than as “relative habitat suitability” which is
typically produced by presence-only models. These ecologically
interpretable metrics also lend themselves more easily to
thresholding if required for management. These metrics can
be computed using models that are simultaneously fitted to
different types of data, e.g., biomass, counts, and presence-
absence samples (Grüss and Thorson, 2019), although this
data-integrated approach has not typically been used when
modeling DSCS.

Productive communication between scientists, managers,
and stakeholders also is essential for stakeholder and manager
understanding of DSCS SDMs. Stakeholders often view
protection of DSCS as a zero-sum game in balancing sustainable
fishing practices and habitat protection. Non-governmental
organizations (NGOs) want more habitat protection while the
fishing community is concerned that the protections will go
beyond those necessary for sustainable fishing. Some controversy
is inevitable when management affects allowed behavior for
different stakeholders (MacLean et al., 2017). Early and frequent
communication by scientists with NGOs and fishing associations
helps everyone understand the SDM progress and results and
helps to reduce controversy in the management decision.

Finally, DSCS SDMs can play an important role in
choosing among alternative management actions. For example,
management strategy evaluation (Bunnefeld et al., 2011) can
be conducted to evaluate how different spatial fishery closures
are likely to perform in terms of protecting DSCS given the
uncertainty associated with existing SDMs.

CASE STUDIES

We now review three case studies that illustrate some of the good
practices that we have discussed previously. These case-studies
demonstrate that our good practices can be accomplished and
inform management objectives despite real-world constraints
regarding funding, data availability, and analytical capacities.

Eastern Bering Sea Coral Canyons
The canyons that incise the eastern Bering Sea outer shelf
and slope are among the largest in the world. The eastern
Bering Sea is also an important source of wild-caught seafood,
accounting for about 40% of the volume by weight of U.S.
catches. In 2011, a group of NGOs asked the North Pacific
Fishery Management Council (NPFMC) to consider protecting
some eastern Bering Sea canyon habitat from the effects of
fishing. In response in 2012, the NPFMC requested an analysis
of existing data on canyon habitat, fish associations, and fishing
activity (Figure 3). DSCS presence-absence data collected during
region-wide bottom trawl surveys were analyzed using GAMs to
estimate probability of presence of DSCS for the eastern Bering
Sea outer shelf and slope (Sigler et al., 2015; Figure 3); these
results were reported to the NPFMC in 2013. In their discussion,
the NPFMC recognized that management measures might be
necessary for coral conservation and management and that the

distribution modeling had highlighted areas that might be of
concern; however, the NPFMC called for a validation study to
test model predictions before making a decision.

A validation study was conducted in 2014 using an underwater
stereo camera system (Williams et al., 2010). The stereo camera
system is highly desirable for region-wide surveys because it can
generate large sample sizes (8–10 deployments per day at depths
of up to 800m are routinely achievable) potentially across a large
region, where each deployment can sample ∼1,100 m2 during
a 15-min transect. A stratified random survey was conducted
where nine strata were identified as 5 canyons, inter-canyon
areas, and the outer continental shelf. Sample locations (n = 210
stations) were randomly chosen, but weighted by the probability
of coral presence from the bottom trawl survey model, so that on
average, locations with higher probability of coral presence were
more likely to be chosen. In addition, 10 locations per stratum
(n = 90 stations total) were randomly assigned to ensure that
unlikely coral habitats also were sampled. During the subsequent
fieldwork, a total of 250 locations were sampled (sample locations
in the two canyons north of Zhemchug Canyon were largely
unsampled due to weather and time constraints). The model
validation was conducted by comparing the predictions of the
bottom trawl survey model with the observations from the field
survey. The new stereo-camera presence data were also used to
update the model predictions and used to predict the distribution
of density and height of corals and sponges from the underwater
stereo camera survey (Rooper et al., 2016; Figure 3); these results
were reported to the NPFMC in 2015.

TheNPFMCdecided against closures of the eastern Bering Sea
outer shelf and slope. They concluded that the scientific evidence
did not suggest a risk to deep-sea corals, citing the low occurrence
and density of deep-sea corals (other than pennatulaceans), the
lack of hard substrate to support these corals, and their relatively
small size, interpreted as indicating lower vulnerability in these
areas to fishery impacts (MacLean et al., 2017). Their conclusion
was based on the coral density and height models and the stereo
camera survey. The key lessons in this case study in terms of
coral modeling were: (1) a model was generated using the best
available data (presence and absence from the bottom trawl
survey); (2) this model was presented to managers and evaluated
by scientists; (3) managers requested more information and
validation of the model before using it to make decisions that
would affect fisheries; (4) additional data on occurrence, density,
and height to validate and improve the model were collected
with a sample size and robust statistical design that allowed for
inference throughout most of the spatial domain of the model;
and (5) these new findings were presented tomanagers for further
evaluation. Throughout the process there were multiple points
where updates were provided to managers, stakeholders and
scientists so there would be no surprises when each report was
formally presented to managers and stakeholders. In this case, a
key point was that managers waited for completion of a region-
wide field validation study before reaching a decision and were
able to reach that decision with more confidence that the deep-
sea coral model based on trawl survey data was largely correct
(predicting the presence or absence of corals in the camera
observations correctly in 72% of cases; Rooper et al., 2016).
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FIGURE 3 | Case Study 1: Eastern Bering Sea Coral Canyons. Timeline (top): Chronology of North Pacific Fishery Management Council (NPFMC) requests, reports,

and decision. Plots of predicted presence of coral (adapted from Sigler et al., 2015, left) and predicted density of coral (adapted from Rooper et al., 2016, right).

Predicted presence (left) was reported in June 2013 and was based on presence-absence data collected during ecosystem-scale bottom trawl surveys. Predicted

density (right) was reported in October 2015 and was based on density data collected during an ecosystem-scale underwater stereo camera survey (the validation

study) that was used to update the predicted presence model. Black areas indicate land, and black lines represent boundaries between inner, middle, and outer shelf

and slope areas (Sigler et al., 2015).

Southern California Bight
The Southern California Bight (SCB) has a variety of seafloor
habitats and oceanographic conditions that promote a rich
diversity of demersal organisms, including a wide variety of fishes
(Love et al., 2009) and dense stands of vulnerable DSCS (Tissot
et al., 2006; Yoklavich et al., 2011). The SCB is also bordered by
one of the most populated areas along the Pacific coast of North
America, and the waters of the SCB have been intensively fished
both commercially and recreationally to depths over 300m for
at least 40 years (Yoklavich et al., 2011; Salgado et al., 2018).
Fishes in the SCB are dominated by rockfish (genus Sebastes;
Love et al., 2009), and the two overfished species in the SCB
are both within this genus: cowcod (S. levis) and yelloweye
(S. ruberrimus). Stakeholder input typically includes a tension
between competing goals (maintaining fishing and rebuilding
overfished species). Since 2002, management agencies (Pacific

Fishery Management Council, NOAA Fisheries, Channel Islands
National Marine Sanctuary, and the State of California) have
worked together to establish a network of marine reserves with
multiple aims, including habitat protection. To conserve and
manage the habitats these fish rely on, including DSCS, it is
critical to develop SDMs that can provide guidance on the best
locations for restrictions on human activities.

In support of these goals, researchers at NOAA’s Southwest
Fisheries Science Center collected a long time-series (2001–
2011) of submersible video from which they built a database
of spatially explicit fish and DSCS data (Tissot et al., 2006;
Love et al., 2009; Yoklavich et al., 2011) that can be used to
build SDMs. All video data recorded during these surveys
were processed (i.e., no sub-sampling occurred) and geo-
referenced. All fish and invertebrate species were identified
to the lowest possible taxonomic level and the length and
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height of invertebrates were measured to the nearest 5 cm
using calibrated lasers. Furthermore, the submersible track
locations from all survey dives were recorded, providing data
on both DSCS presence and absence. These data were used
to quantify the area surveyed and, thus, estimate the density
of DSCS. Using these data, Huff et al. (2013) built a GAM to
estimate the density of the Christmas tree coral (Antipathes
dendrochristos) as a function of multiple environmental
covariates (depth, slope, profile, surface productivity, and
oceanographic conditions near the seafloor). This GAM was
then used to develop a SDM for Christmas tree coral in the SCB
(Figure 4).

These SDMs are extremely valuable to fisheries managers
mandated to conserve and manage marine fisheries and their
associated habitats, and recent evidence from the SCB has
provided further support that multiple species of DSCS are
important habitat for demersal fish. Structure-forming DSCS
can play an important role in deep-sea benthic communities
(D’Onghia, 2019), providing increased prey density (Quattrini
et al., 2012) and nursery habitat (Stone, 2006; Baillon et al.,
2012). A recent study (Henderson et al., in revision) in
the SCB used various spatially explicit analytical methods
to identify 8 DSCS taxa that increased the probability of
presence for commercially important Sebastes species (S.
rufus and S. paucipinis) as well as young-of-year Sebastes,
even after accounting for depth and seafloor relief. These

results support the classification of these DSCS as essential
fish habitat.

The key lessons from this case study are that: (1) it is important
to analyze, and geo-reference, all collected data so researchers
are not restricted to using presence-only methods; (2) geo-
referencing both the fish and DSCS data can provide sufficient
data to investigate whether DSCS taxa serve as essential fish
habitat within the survey area; and (3) quantifying the area
surveyed allows estimation of the density of any DSCS taxa of
interest, which provides more management-relevant information
than presence-absence estimates. Based on our good practices,
we recommend that researchers implement a field-sampling
program to validate results from these DSCS SDMs.

Louisville Seamount Chain
The Louisville Seamount Chain is comprised of over 80
seamounts spanning a distance of more than 4,000 km across the
South Pacific Ocean. These seamounts are historical and current
targets for commercial bottom-trawling fisheries, dominated by
the catch of orange roughy (Hoplostethus atlanticus) by New
Zealand and Australian flagged vessels (Clark et al., 2016b).
These fisheries pose a considerable threat to Vulnerable Marine
Ecosystems (VMEs), ecosystems that are particularly susceptible
to anthropogenic disturbance as determined by the fragility,
functional significance, rarity, and life history traits of their
components (FAO (Food and Agriculture Organization of the

FIGURE 4 | Case Study 2: Southern California Bight. This map depicts coral density (coral colonies per transect group) estimated from a generalized additive model,

presence and absence from a calibration dataset and from an independent dataset for Christmas tree corals, along with the boundaries of areas closed to fishing.

Mean transect area = 740 m2. Figure reproduced with permission from Huff et al. (2013).
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FIGURE 5 | Case Study 3: Louisville Seamount Chain (Rowden et al., 2017). Left: Regional habitat suitability models (1 km, adapted from Georgian et al., 2019)

indicated high suitability for the stony coral Solenosmilia variabilis throughout the Louisville Seamount Chain. Right: High resolution models (25m, adapted from

Rowden et al., 2017) were constructed for six individual seamounts (Forde Seamount shown), and Vulnerable Marine Ecosystems (VMEs) were identified based on a

threshold applied to S. variabilis abundance models.

United Nations), 2009). The seamount chain lies outside of
national jurisdiction, and fisheries management is conducted by
the South Pacific Regional Fisheries Management Organization
(SPRFMO), an intergovernmental agency mandated by the
United Nations to protect VMEs while also ensuring the
future of sustainable fisheries [UNGA (United Nations General
Assembly), 2006]. SPRFMO has implemented two primary
interim measures to protect VMEs. First, a move-on rule that
requires vessels to cease fishing within 5 nautical miles of an
encountered VME, usually triggered by the bycatch of a VME
indicator taxon. Indicator taxa are those that are vulnerable to
fishing gear, functionally significant (e.g., habitat creators), rare
or endemic, or low productivity species (e.g., slow growth rate,
low fecundity) (Parker et al., 2009). Second, SPRFMO enacted a
series of large (20 arc-min) closures in areas with a historically
low fishing impact. However, the underlying effectiveness and
real-world implementation of these interim measures has been
questioned (Penney and Guinotte, 2013), and SPRFMO is
actively pursuing long-term replacement measures with a focus
on more effective spatial closures.

Rowden et al. (2017) used a variety of habitat suitability
modeling techniques to map the distribution of VMEs across
the Louisville Seamount Chain in order to support the improved
spatial management of the region’s fisheries (Figure 5). The
authors built on a series of broad-scale regional models that
generally highlighted the seamount chain as being highly suitable
for a variety of VME taxa (Anderson et al., 2016a,b; Georgian
et al., 2019). Three VME indicator taxa were modeled at a
high spatial resolution (25m) on seven seamounts: the stony
coral Solenosmilia variabilis, sea stars (Brisingida), and crinoids

(Crinoidea). Biological data were collected during a cruise
designed to ground-truth the regional models using a random-
stratified survey. Environmental data (backscatter and a large
suite of multi-scale terrain metrics) were derived from high-
resolution multibeam surveys conducted during the cruise.
Both presence-absence and abundance ensemble models were
constructed using the performance-weighted average of BRT,
GAM, and RF models. Model performance was assessed using
a 70–30 cross-validation approach and by bootstrapping the
input presence-absence and abundance data to estimate model
uncertainty (CV) (sensu Anderson et al., 2016b). To reduce
the effect of spatial autocorrelation on model performance,
the residual autocovariate was calculated from the residuals of
preliminary models (Crase et al., 2012).

Ultimately, Rowden et al. (2017) demonstrated that the
modeled seamounts constituted less suitable habitat than
previously predicted by broader scale regional models. However,
small sections of each seamount (<0.1% of the modeled area)
contained highly suitable habitat for one or more VME indicator
taxa. These results suggest that an optimal management solution
that prioritizes VME protection while simultaneously allowing
fishery access to less suitable areas may exist for the Louisville
Seamount Chain. The modeling approach used provides several
useful lessons for future modeling studies, particularly when
resource management is the eventual goal: (1) it is imperative
to revise and improve models when new or better data become
available; (2) high resolution models continue to be important
tools that capture spatial patterns that may differ from broad
scale models and have the potential to significantly alter
spatial management plans (e.g., Dolan et al., 2008); (3) true
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presence-absence and abundance models should be used when
the data allow, given their generally improved performance and
easier ecological interpretation (see Yackulic et al., 2013); (4)
sampling bias and spatial autocorrelation, although frequently
ignored in modeling studies (see Dormann, 2007), should be
accounted for using either statistical approaches (e.g., Georgian
et al., 2019) or an appropriate survey structure (e.g., Rowden
et al., 2017); (5) ensemble models are powerful tools that
avoid overreliance on the underlying structure and assumptions
of different modeling techniques (Robert et al., 2016); and
(6) calculating a spatial measure of model uncertainty allows
decision makers to prioritize management measures based on
both the suitability of a given area as well as the confidence of
the model at that site (Anderson et al., 2016a,b).

CONCLUSION

The geographic scale of potential human impacts on DSCS
combined with the localized nature of available information
about the spatial distributions of these species necessitates the
use of SDMs by managers looking to assess and mitigate
these impacts. Here we have described some good practices
for developing such models and making use of them in
management decision-making (Table 1). In particular, we
recommend that SDMs move beyond presence-only models to
include measurements of DSCS presence-absence, abundance,
and height; these predictions are easier to validate and/or
test in subsequent targeted field-sampling programs and are
more easily understood by managers and stakeholders. Model
predictions should be presented with associated measures of
uncertainty, where this uncertainty is used to weight predictions
from different models within an ensemble of SDMs. We
strongly encourage consideration of scale in DSCS SDMs used
in management decision-making, including spatial (e.g., large
marine ecosystem or management region, or more localized
marine protected area or ecologically sensitive location) and
temporal (e.g., short-term response to specific impacts or
long-term) scale (Lecours et al., 2015). We recognize the
logistical challenges and expense of collecting data on DSCS
and appreciate that it may be impractical to implement
all of these good practices in every situation. Indeed, the
case studies presented here sometimes required significant
financial resources, and they did not necessarily incorporate
every one of our good practices. Nevertheless, we hope
that these good practices provide useful guidance for future
DSCS data collections and SDMs, especially models that will
be used to inform management of human activities in the
deep sea.
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