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ABSTRACT
Open science principles that seek to improve science can effectively bridge the gap
between researchers and environmental managers. However, widespread adoption has
yet to gain traction for the development and application of bioassessment products.
At the core of this philosophy is the concept that research should be reproducible and
transparent, in addition to having long-term value through effective data preservation
and sharing. In this article, we review core open science concepts that have recently been
adopted in the ecological sciences and emphasize how adoption can benefit the field of
bioassessment for both prescriptive condition assessments and proactive applications
that inform environmental management. An example from the state of California
demonstrates effective adoption of open science principles through data stewardship,
reproducible research, and engagement of stakeholders with multimedia applications.
We also discuss technical, sociocultural, and institutional challenges for adopting open
science, including practical approaches for overcoming these hurdles in bioassessment
applications.

Subjects Data Science, Freshwater Biology, Natural Resource Management
Keywords Applied science, Bioassessment, Open data, Open science, Reproducible, R

INTRODUCTION
Bioassessment is an essential element of aquatic monitoring programs that helps guide
decisions for managing the ecological integrity of environmental resources. Legal mandates
to assess biological condition have stimulated the development of bioassessment programs
and tools in the United States (Clean Water Act, CWA), Canada (Canada Waters Act),
Europe (Water FrameworkDirective), China (Environmental Quality Standards for Surface
Water), South Africa (National Water Act), and elsewhere (Borja et al., 2008). Decades of
research have supported the development of assessment indices for multiple assemblages
with regional applications in streams, rivers, lakes, and marine environments (Karr et
al., 1986; Kerans & Karr, 1994; Fore & Grafe, 2002; Beck & Hatch, 2009; Borja, Ranasinghe
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&Weisberg, 2009; Borja et al., 2016). Substantial technical advances have been made in
measuring biological responses to environmental change (Hawkins et al., 2000a; Hawkins
et al., 2000b), how these responses can be distinguished from natural environmental
variation (Stoddard et al., 2006;Hawkins, Olson & Hill, 2010), and interpreting the impacts
of these changes (Davies & Jackson, 2006).

Integrating bioassessment products (e.g., scoring indices, causal assessment protocols)
into management or regulatory frameworks can be challenging, despite the technological
advances (Kuehne et al., 2017). How a bioassessment product is used in practice to inform
decisions and prioritize management actions can differ from why it may have been
originally developed. Numerous assessment products have been developed for specific
regional applications (Birk et al., 2012) and concerns about redundancy, comparability,
duplicated effort, and lack of coordinated monitoring have recently been highlighted
(Cao & Hawkins, 2011; Poikane et al., 2014; Kelly et al., 2016; Nichols et al., 2016). Kuehne,
Strecker & Olden (2019) recently highlighted a lack of institutional connectivity among
actors with expertise in freshwater assessment as a hallmark of the status quo in which
applied science is conducted. Moreover, existing indices may not be easily calculated by
others beyond initial research applications (Hering et al., 2010; Nichols et al., 2016) or may
be incorrectly applied based on differences between goals for developing an index and the
needs of management programs (Dale & Beyeler, 2001; Stein et al., 2009). The abundance
of available products can be a point of frustration for managers given a lack of guidance for
choosing among alternatives, particularly as to how different assessment products relate
to specific management, monitoring, or policy objectives (Dale & Beyeler, 2001; Stein et
al., 2009).

To address these challenges, a new mode of operation is needed where method
development is open and transparent, developed products are discoverable and
reproducible, and most importantly, implementation in the management community
is intuitive and purposeful. Open science principles that improve all aspects of the scientific
method can help meet these needs and there is a unique opportunity in bioassessment
to leverage openness to support public resources. Open science and its ideals originated
partly due to failures of reproducibility and biases in the primary literature that were
revealed as systematic concerns in research fields with immediate implications for
human health (Makel, Plucker & Hegarty, 2012; Franco, Malhotra & Simonovits, 2014).
These ideas and the failures that they address have slowly permeated the ecological and
environmental sciences (Hampton et al., 2015; Hampton et al., 2016; Lowndes et al., 2017).
Open science has also influenced how research workflows are conceptualized in other
disciplines (e.g., archaeology, Marwick et al., 2016, behavioral ecology, Ihle et al., 2017,
hydrology, Slater et al., 2019, vegetation sciences, Collins, 2016) and has enabled a shift
towards publishing structures that are more fair and transparent through open access
(Van Oudenhoven, Schröter & De Groot, 2016; Essl et al., 2020). Limited examples have
suggested that open access databases can be leveraged to develop bioassessment products
that increase transparency among stakeholders (Borja et al., 2019). Adopting an open
science paradigm in bioassessment is particularly relevant compared with other fields given
the explicit need to develop products that are accessible to the management community.
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Legal and ethical precedents in bioassessment may also necessitate open data sharing given
that environmental monitoring programs are often established to protect and maintain
publicly-owned natural resources.

SURVEY METHODOLOGY AND OBJECTIVES
This review draws on previous literature to describe approaches for open science that can
empower the research and management community to embrace a new mode of thinking
for bioassessment applications. These approaches are expected to benefit the bioassessment
research community by providing new tools that augment existingworkflows for developing
assessment products and improving their ability to address environmental issues by
bridging the gap between the scientific, management, and regulatory communities. The
intended audience for this review is primarily the research team that develops bioassessment
products, but we also write for the funders and users (e.g., regulators and managers) of
these products to emphasize the value of investing in open science for the protection of
public resources.

This traditional review covers literature published in recent years advocating for open
science in different fields of study. Because no similar efforts have yet been made to apply
these principles to bioassessment, we draw on examples from the previous literature that
demonstrate successful applications in other fields tomotivate researchers and practitioners
to embrace these new ideas in bioassessment. Comprehensive and unbiased coverage of the
previous literature was accomplished by querying online search engines, primarily Google
Scholar, with search terms as they relate to open science (e.g., ‘‘reproducibility’’, ‘‘data
science’’, ‘‘open source’’) and with Boolean operators to find applications to bioassessment
(e.g., ‘‘reproducibility ANDbioassessment’’). Studies were included if they provided general
overview of open science concepts that were relevant to bioassessment or if they directly
described open science applications to bioassessment, although the latter were scarce.
Emphasis was given to the breadth of research that has supported the development of open
source software applications that can aid bioassessment, both as general tools and more
specific programs tailored for indicator development. We excluded studies that described
applications with citizen science components. Although citizen science can be a valuable
tool for researchers and managers, methods for effective implementation are beyond the
scope of this review.

Our objectives are to (1) provide a general overview of principles of open science and
(2) empower the research community by providing examples of how these principles
can be applied to bioassessment. For the second objective, we also provide a case study
of stream bioassessment in the urban landscape of southern California to demonstrate a
successful proof of concept. Herein, open science ‘tools’ describe best practices and specific
applications that use an open philosophy to support applied science. We structure the
review by first introducing open science principles, then describing how these principles
could be applied to bioassessment (i.e., developing goals, curating data, and applying
open-source software) including a case study example, and lastly providing a discussion
of limitations and opportunities to better contextualize real world applications of open
science.
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Table 1 Core definitions and principles of open science. Content adapted from Open Knowledge Inter-
national, http://opendefinition.org/, Creative Commons, https://creativecommons.org/about/program-
areas/open-science/, D. Gezelter, http://openscience.org/, and Powers & Hampton (2019).

Concepts and principles Description

Open Anyone can freely access, use, modify, and share for any
purpose

Open Science Practicing science in such a way that others can collaborate
and contribute, where research data, lab notes and other
research processes are freely available, under terms that
enable reuse, redistribution and reproduction of the
research and its underlying data and methods

Reproducible Producing equivalent outcomes from the same data set, or
in the case of computational reproducibility, producing
equivalent outcomes from the same data set using the same
code and software as the original study

Principle 1 Transparency in experimental methods, observations, and
collection of data

Principle 2 Public availability and reusability of scientific data
Principle 3 Public accessibility and transparency of scientific

communication
Principle 4 The use of web-based tools to facilitate scientific

collaboration and reproducibility

Principles of open science
Conventional modes of creating scientific products and more contemporary approaches
that align with open science principles share the same goals. Both are motivated by
principles of the scientific method that make the process of discovery transparent and
repeatable. Where the conventional and open science approaches diverge is the extent to
which technological advances facilitate the entire research process. Distinction between
the two approaches can be conceptualized as the ‘‘research paper as the only and final
product’’ for the conventional approach, whereas the open science approach is inherently
linked to advances in communication and analysis that have been facilitated by the Internet
and computer sciences (Table 1). As a result, the open science approach can enhance all
aspects of the scientific process from initial conception of a research idea to the delivery
and longevity of a research product (Fig. 1). The process is iterative where products are
improved by the individual and/or others, facilitated by open science tools that enhance
access and reproducibility of data.

The paradigm of the research paper as a final scientific product can inhibit the uptake
of research methods and findings by environmental managers. The research paper is
conventionally viewed as a communication tool for scientists to report and share results
among peers. Researchers access periodicals to stay informed of scientific advances and use
the information to replicate and improve on methods for follow-up analysis. Although the
primary literature continues to serve this critical role, this workflow is problematic when
scientific products are needed to serve interests outside of the research community. For
example, the paper as an endpoint for environmental managers fails to deliver products
that are easily accessible from the practitioner’s perspective, both in application and
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Figure 1 A simplified workflow of the open science paradigm (adapted fromHampton et al., 2015).
All aspects of the research process, from the conception of an idea to publishing a product, can be
enhanced using open science tools. The workflow is iterative where products are continually improved
through collaborations facilitated through discovery and reproducibility of open data.

Full-size DOI: 10.7717/peerj.9539/fig-1

interpretation. A research paper is less likely to effect environmental change because it does
not provide a mechanism to transfer actionable information to those that require scientific
guidance for decision-making, such as sharing analysis code or results that describe output
from assessment products. Numerous studies have documented implementation failures
as a result of siloing among research communities where the flow of information does
not extend beyond institutional walls (e.g., Mitchell, 2005; Liu et al., 2008). Information
loss over time is another concern associated with the paradigm of research paper as final
product (Michener et al., 1997), particularly as intimate knowledge of study details is lost
as new projects are initiated or individuals leave institutions.

Open data as a component of the open science process
Open data is a fundamental component of the broader open science process described in
Fig. 1. Under this mode of thinking, the research team becomes stewards of its data. For
bioassessment data, government institutions may be the primary stewards of information
that supports product development within a broader research team. Stewardship allows
the data to be treated as a dynamic product with a traceable and replicable provenance (i.e.,
origin), rather than proprietary and serving only the internal needs of an immediate research
goal. Metadata that describe the structure and history of a dataset ensure the data have an
identity. Metadata also encourage adoption of core data structures that allow integration
across different sources, which is critical for collaboration across institutional boundaries
(Horsburgh et al., 2016; Hsu et al., 2017). Other open science practices, such as integration
of data with dynamic reporting tools or submitting data to a federated repository (i.e., a
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decentralized database system for coordination and sharing), can facilitate communication
for researchers and those for which the research was developed (Bond-Lamberty, Smith
& Bailey, 2016). Prominent examples that can benefit next-generation bioassessment
methods, such as molecular-based techniques for species identification, include the
BarCode of Life Data Systems (BOLD) and GenBank repositories.

Open data can benefit research by contributing to an increase in novel products created
through collaboration. Collaborative publications have increased in the environmental
sciences as research teams leverage open data to create synthesis products that allow
novel insights from comparisons across multiple datasets. Quantitative meta-analyses and
systematic reviews are increasingly used to extract information from the primary literature
(Carpenter et al., 2009; Lortie, 2014). In addition, open data products can increase efficiency
of the individual researcher and a collective research team by encouraging collaborators
to adopt an open science workflow. Many tools developed within the software and
computer science community to facilitate open process and the creation of open data
are now easily accessible to environmental scientists (Yenni et al., 2019). Version control
software (e.g., Git, GitHub), open source programming languages (e.g., R, Python), and
integrated development environments (IDEs, e.g., RStudio, Spyder) can all be leveraged to
dynamically create and share open data products that can build institutionalmemory. These
tools promote deliberate and shared workflows among researchers that can lead to better
science in less time (Lowndes et al., 2017) and have proven useful in recent applications in
the hydrologic sciences (Idaszak et al., 2017; Slater et al., 2019).

Open access to data can also benefitmanagement and regulatory communities. Openness
can improve the value of data frommonitoring programs by facilitating data discovery and
synthesis, often through the adoption of a common metadata structure and integration of
data within federated data networks (e.g., DataONE, iRODS). Research institutions can also
use open data maintained by management or regulatory communities to develop products
that directly support the mission of the latter, e.g., assessment methods developed from
long-term monitoring datasets that identify priority areas to focus management actions or
fulfill regulatory obligations. Open data can also improve public trust in scientific findings
by exposing the underlying information used to develop a research product (Grand et al.,
2012). Similar concepts are used in ‘‘blockchain’’ technologies that allow public financial
transactions in an open, distributed format, as for trading in cryptocurrencies (Pilkington,
2016). Increased trust could facilitate eventual adoption of proposed rules or regulations
that are based on research products created from open data. More efficient and effective
implementation of potential regulations may also be possible if supporting data are openly
available.

Applying open science principles to bioassessment
Here we provide a detailed description of open science processes that the bioassessment
community could leverage to create reproducible, transparent, and discoverable research
products for environmental managers. The below examples require understanding the
distinction between the general open science process in Fig. 1, open data as an individual
component of the open science process, and the technology-based tools that can be used
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to achieve these ends. Both the tools and open data are critical components that facilitate
the broader process to achieve the principles outlined in Table 1. ‘‘Openness’’ of process,
tools, and data exists on a continuum, and incremental improvements can transform an
individual’s and research group’s practice over time. We encourage awareness that an open
process adopts the open science tools that are appropriate for a research question and the
creation of open data can be a fundamental component of the process. Acceptance by the
research team and collaborators of the concepts described in Table 1 is critical to achieving
openness.

The overall process is shown in Fig. 2 as an expansion of general concepts in Fig. 1. This
iterative flow of information is facilitated by (1) openly sharing planning documents, (2)
using established metadata standards to document synthesized data products, (3) hosting
data products on open repositories, (4) creating reproducible summary documents that
integrate the data and research products, and (5) incorporating the developed product
into interactive applications that deliver the results to the managers and stakeholders. The
technical phase of defining research goals, collecting and synthesizing data, and developing
the bioassessment product are primary tasks of the research team. However, the open
science process is distinguished by the flow of information to and from the research phase
that can benefit the specific project and the science of bioassessment as a whole.

Developing bioassessment goals
In an open science process, the goals identified by the research team for developing
a bioassessment product should occur through direct, two-way interaction with the
management or regulatory institution that requires the product. Although such an
approach has historically been used to develop bioassessment products, the interaction
in an open science workflow differs in how information is exchanged. This exchange can
be accomplished through direct communication and sharing of planning documents to
ensure all decisions are transparent, i.e., open planning. In person meetings are ideal, but
planning documents are dynamic and will require remote sharing and revision as ideas
progress. Online tools such as Google documents, Slack discussion channels, and open
lab notebooks can be instrumental for collaboration. More informal approaches, such
as blogging and sharing ideas on social media, can expose new concepts to the broader
community for guidance (Woelfle, Olliaro & Todd, 2011; Darling et al., 2013). Overall, the
research team should use these tools to identify stakeholder needs while also considering
the balance between the research goals and limitations of the data to meet these goals. This
approach will ensure that the needs of the management and stakeholder communities will
be consistent with the services provided by the research product.

An important practice that is not often used in bioassessment for project planning is
study pre-registration. This is a relatively new addition to the philosophy of open science
that allows a research team to define their study procedures, expected outcomes, and
statistical analysis plans in advance of the actual study (Munafó et al., 2017). Although the
standard scientific method may seem to support such proactive practices, pre-registration
is an explicit declaration to make the intentions of a study design clear to avoid publication
bias where only positive outcomes are reported and to prevent an interpretive result where
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Figure 2 An idealized open approach for bioassessment applications. The green box represents the
technical steps of the individual research team for developing the product, the manager and stakeholder
box are those that require or motivate the creation of bioassessment products, the gray boxes indicate
sources of external information (data and guidance documents) as input into the technical process, and
the open text indicates open components of the planning, application, or implementation phase of a
bioassessment product. The figure was adapted from Hampton et al. (2015). NGO: non-government
organization, RMP: regional monitoring program.

Full-size DOI: 10.7717/peerj.9539/fig-2

the researcher retrospectively defines study objectives after initial results are obtained if
they do not agree with expectations. This latter issue is a serious concern where scientists
use postdiction with significant hindsight bias in place of prediction and conventional
hypothesis testing to inform scientific discovery (Nosek et al., 2018). Registered reports can
also be used as a publishing format where an initial study design is peer-reviewed and the
article is provisionally accepted by a journal if the results are created with methods that
do not deviate from the accepted design. This promotes greater coverage in the primary
literature of null conclusions that otherwise may not have been published, reducing bias
for publishing positive results.
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Pre-registration has been used extensively in clinical research (Dickersin & Rennie, 2003),
where outcomes often have immediate implications for human health and well-being.
In contrast, bioassessment studies often focus on developing applied products, where
conventional hypothesis testing is less a concern. Studies are typically methods-focused
where a research product is developed to address a management or regulatory need, rather
than a specific research question with a testable hypothesis. However, pre-registration
could be an important tool for the environmental sciences where an explicit declaration
of study intent as being applied or methods-focused could prevent postdiction or an
otherwise misuse of study results after a project is completed. Existing venues that support
pre-registration of studies across multiple disciplines could be used in bioassessment study
planning (e.g., Open Science Framework, AsPredicted).

Curating bioassessment data
After project goals are established, the research team identifies requirements and sources of
data that need to be synthesized to meet the research needs. Bioassessment data, or more
generally, biological data obtained from field sampling have a unique set of challenges that
require added vigilance in data stewardship (Cao & Hawkins, 2011). Species identification
requires a tradeoff between taxonomic specificity and cost (Lenat & Resh, 2001; Chessman,
Williams & Besley, 2007). Species names also change regularly requiring updates to standard
taxonomic effort (STE) tables that are critical for many biological indices, although some
standardized databases have facilitated broad-scale comparisons (e.g., World Register
of Marine Species, Costello et al., 2013). Unidentified or ambiguous taxa must also be
explicitly treated in analysis workflows (Cuffney, Bilger & Haigler, 2007), e.g., are they
treated as missing values or are they substituted with coarser taxonomic designations?
In contrast, molecular techniques based on DNA barcoding eliminate the need for direct
species collection andmorphological identification (Deiner et al., 2017;Hering et al., 2018).
These next-generation approaches have capitalized on advances in database development
that allow open access by diverse researchers across disciplines and are well-suited for the
development of additional open science tools. Despite these advances, molecular-based
approaches have also suffered from challenges related to standardization of workflows and
coverage of reference databases (White et al., 2014; Elbrecht et al., 2017).

Open science tools can facilitate the curation of bioassessment data by addressing the
above challenges. For example, a multimetric index may require taxonomic data collected
at multiple sites by different institutions, whereas the output data may include summary
scores, individual metrics, and any additional supporting information to assess the quality
of the output. In an open science workflow, these data products can be documented
using a standardized metadata language (e.g., Ecological Metadata Language Standard,
or EML) which describes the who, what, and why to ensure the data have an identity.
Adoption of a metadata standard also ensures that a machine-readable file is produced to
allow integration into a data repository. This will allow a synthesized data product to be
discoverable beyond the specific research application and will provide metadata to help
others understand the context of the data (e.g., Idaszak et al., 2017). Finally, the dataset can
be assigned a unique digital object identifier (DOI, e.g., through Zenodo) that provides a
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permanent address and is also citable to allow researchers to track usage of a bioassessment
data product.

In an open paradigm, the data itself is a product to achieve the research goals and also
becomes available to the research and management community as a fully documented
source of information that has value beyond the specific project. The openness of the
synthesized data product is one of the primary means of facilitating the application of a
bioassessment product. The synthesized data product can be used by the research team to
create interactive applications for stakeholders to share and explore the data and is also
fully integrated into summary reports using software for generating dynamic documents
(e.g., using knitr, Xie, 2015, RMarkdown, Allaire et al., 2018, Jupyter notebooks, Kluyver
et al., 2016). Continuous integration services can automate quality control and regularly
update data products as new information is collected (Yenni et al., 2019). The data product
also becomes available on an open data repository that is discoverable by other researchers
and can contribute to alternative scientific advances beyond the immediate goals (e.g.,
Hydroshare for the hydrologic sciences, Idaszak et al., 2017).

Using R for bioassessment application
The R statistical programming language (RDCT, 2020) is one of the most commonly used
analysis platforms in the environmental sciences (Lai et al., 2019; Slater et al., 2019) and
many existing R packages have value for the bioassessment community (Table 2). For
managing the day to day tasks of working with multiple datasets, the tidyverse suite of
packages provides the necessary tools to import, wrangle, explore, and plot almost any
data type (Wickham, 2017). The tidyverse also includes the powerful ggplot2 package
that is based on a syntactical grammar of graphics for plotting (Wilkinson, 2005;Wickham,
2009). This package provides a set of independent plotting instructions that can be built
piecewise and is a departure from other graphics packages that represent a collection of
special cases that limit the freedom of the analyst. In bioassessment, ggplot2 can be used
both in an exploratory role during the development phase and also to create publication
quality graphics.

Bioassessment data are inherently spatial and recent package development has greatly
improved the ability to analyze and map geospatial data in R. The raster package can used
to read/write, manipulate, analyze, and model grid-based spatial data (Hijmans, 2019),
which are often common supporting layers for bioassessment (e.g., elevation or climate
data). For vector data (i.e., points, lines, and polygons), the sfpackage (‘‘simple features’’,
Pebesma, 2018) uses principles of data storage that parallel those from the tidyverse
by representing spatial objects in a tidy and tabular format. This facilitates analysis by
presenting complex spatial structures in a readable format that can be integrated in
workflows with existing packages, including other mapping packages (e.g., leaflet,
Cheng, Karambelkar & Xie, 2018, or mapview, (Appelhans et al., 2018)). This allows the
research team to use a workflow that is focused in a single environment, rather than using
separate software for statistical and geospatial analysis.

R is fundamentally a statistical language and several existing R packages can be used
to evaluate and support bioassessment data. Random forest models have been used
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Table 2 R packages that can be used in the development and application of bioassessment products.

Task Package Description

General tidyverse (Wickham, 2017) A suite of packages to import, wrangle, explore, and plot
data. Includes the popular ggplot2 and dplyr packages.

Mapping, geospatial sf (Pebesma, 2018) A simple features architecture for working with vectorized
spatial data, including common geospatial analysis
functions

raster (Hijmans, 2019) Reading, writing, manipulating, analyzing, and modeling
gridded spatial data

leaflet (Cheng, Karambelkar & Xie, 2018) Integration of R with the popular JavaScript leaflet
library for interactive maps

mapview (Appelhans et al., 2018) Creates interactive maps to quickly examine and visually
investigate spatial data, built off leaflet and integrated
with sf

Statistical modeling randomForest (Liaw &Wiener, 2002) Create classification and regression trees for predictive
modeling

nlme (Pinheiro et al., 2018) Non-linear, mixed effects modeling
mgcv (Wood, 2017) Generalized additive modeling

Community analysis TITAN2 (Baker, King & Kahle, 2015) Ecological community threshold analysis using indicator
species scores

indicspecies (De Caceres & Legendre, 2009) Indicator species analysis
vegan (Oksanen et al., 2018) Multivariate analysis for community ecology

Science communication shiny (Chang et al., 2018) Reactive programming tools to create interactive and
customizable web applications

rmarkdown (Allaire et al., 2018) Tools for working with markdown markup languages in
.Rmd files

knitr (Xie, 2015) Automated tools for markdown files that process integrated
R code chunks

to develop predictive bioassessment indices that compare observed taxa to modeled
expectations (i.e., O/E indices). The randomForest package (Liaw &Wiener, 2002) uses
an ensemble learning approach that is robust to complex, non-linear relationships and
interactions between variables. These models are particularly useful with large, regional
datasets that describe natural and anthropogenic gradients in condition (Laan & Hawkins,
2014; Mazor et al., 2016). The nlme package can be used to create non-linear mixed effect
models that are more flexible than standard regression approaches (Pinheiro et al., 2018).
The nlme package can develop models for nested sampling designs, such as repeat visits to
sample sites or otherwise confounding variables that contribute information but are not
unique observations (Mazor et al., 2014). The mgcv package provides similar functionality
as nlme, but uses an additive modeling approach where individual effects can be evaluated
as the sum of smoothed terms (Wood, 2017). The mgcv package is often applied to model
biological response to stressor gradients (Yuan, 2004; Taylor et al., 2014).

Other R packages have been developed specifically for bioassessment. For example, the
TITAN2 package can be used to develop quantitative evidence of taxon-specific changes in
abundance and occurrence across environmental gradients (Baker, King & Kahle, 2015).
Results from this package can support exploratory analysis for developing bioassessment
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products, such as identifying indicator species or establishing numeric criteria (Taylor et al.,
2018). The results can be also be used post hoc to evaluate potential response of a biological
index with changing environmental conditions, such as proposed management actions
for rehabilitation (King et al., 2011). Alternatively, the indicspecies package provides
similar functionality but is based only on species occurrence or abundance matrices across
sites (De Caceres & Legendre, 2009). This package can be used to identify species at sites
if continuous environmental data are unavailable, such as those that are representative
of reference conditions (Bried et al., 2014). Finally, the vegan package has been a staple
among community ecologists for multivariate analyses in R (Oksanen et al., 2018).

Although the R network includes over 15,000 user contributed packages, only a handful
of these packages are specific to bioassessment. Community practices have allowed R to
reach new audiences where new packages build on the work of others and are transportable
between users and operating systems. Formalized communities, such as rOpenSci,
encourage standardization and reviewof contributed packageswithin the ecological sciences
to make scientific data retrieval reproducible. Several tools have also been developed and
published in the last five years that greatly simplify the process of creating new packages
in R (Wickham, 2015; Wickham, Hester & Chang, 2018). The advantages of creating and
sharing R packages that are specific to bioassessment applications are important for several
reasons. First, an R package compartmentalizes technical instructions developed during the
research phase that can be executed by anyone with access to the software. R packages also
require explicit documentation of the functions and data requirements. As such, package
users will not only have access to underlying code but also understand the why and what
for different package functions.

Finally, R can be used to create interactive applications that deliver bioassessment
products to stakeholders and managers in entirely novel contexts. In particular, the shiny
package provides programming tools built around concepts of reactivity, where data
inputs and outputs can be modified in real time (Chang et al., 2018). A shiny application
is an interactive user interface that is developed with R code, but is a standalone product
that can be used without any programming experience. These applications are deployed
online and can extend the reach of bioassessment products to those that require the
information for decision-making but otherwise do not have the time or resources to learn
R. Applications built in shiny can also be easily linked to other R packages. For example,
a shiny website could be created to allow users to upload raw data and estimate and
report bioassessment scores using an R package developed externally. Moreover, shiny
applications are completely customizable and can be tailored by the developer to the
specific needs of any user. This distinction separates shiny from other web-based analysis
platforms.

Open science in practice: the SCAPE project
Although bioassessment products have been sufficiently developed in California (USA),
there are no narrative or numeric criteria in place to support designated aquatic life uses
in wadeable streams, nor are bioassessment data actively used to support conservation or
watershed management. Indices using benthic macroinvertebrates and algae have been
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developed that provide consistent indications of biological condition across the diverse
geography and climates in the state (Fetscher et al., 2013; Mazor et al., 2016; Ode et al.,
2016). A physical habitat index has also been developed that provides complementary
information supporting bioassessment data (Rehn, Mazor & Ode, 2018). Combined,
these indices represent significant achievements in overcoming technical challenges for
developing accurate and interpretable bioassessment products. However, these products
are not used at a statewide scale to inform decisions and past efforts for streammanagement
have only used a fraction of available products. A synthesis of condition assessments is
needed to effectively implement bioassessment products in California and data must be
presented in a context that is relevant to the needs of decision makers.

Recent regulatory initiatives in California have established a foundation for openness
that could greatly improve the application of bioassessment products to support decision-
making. In particular, these initiatives have set a precedent for openly sharing data collected
with public funds. The Open and TransparentWater Data Act passed by the state legislature
in 2016 requires water quality institutions to ‘‘create, operate, and maintain a statewide
integrated water data platform that, among other things, would integrate existing water
and ecological data information from multiple databases and provide data on completed
water transfers and exchanges’’ (AB 1755, Dodd, 2015--2016). This legislation also calls
for state agencies to ‘‘develop protocols for data sharing, documentation, quality control,
public access, and promotion of open-source platforms and decision support tools related
to water data’’. These aspirations were further supported by a resolution on July 10, 2018
that formally committed the State Water Resources Control Board to ‘‘provide broader
access to data used tomake local, regional, and statewide water management and regulatory
decisions in California’’. These recent initiatives in California have similarly been observed
at the national level. For example, the Data Coalition is an advocacy group that operates
on behalf of the private and public sector for the publication of government data in a
standardized and open format. The Internet of Water also operates at the national-level
by focusing on strengthening connections between data producers and users through
centralized data hubs and data standards.

Open science tools have recently been used in California to address bioassessment
implementation challenges in developed landscapes. The Stream Classification and Priority
Explorer, or SCAPE (Beck, 2018a; Beck et al., 2019), was developed using an open science
framework to help identify reasonable management goals for wadeable streams using
existing bioassessment and watershed data. The SCAPE tool represents both a modeling
approach to help prioritize management goals (Fig. 3) and a set of open science products
for direct application to environmental managers. The modeling component addresses a
practical problem of achieving reference conditions in developed landscapes, where channel
modification is common. Using the National Hydrography Dataset (NHD-Plus; McKay
et al., 2012) and watershed predictors (StreamCat; Hill et al., 2016), the model classifies
stream segments as biologically ‘‘constrained’’ or ‘‘unconstrained’’ by landscape alteration.
This classification system can be used to set management priorities based on the constraint
class. For example, a monitoring site with an observed biological index score that is above
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Figure 3 Schematic demonstrating how the Stream Classification and Community Explorer (SCAPE)
can be used to identify potential management actions for stream sites. Stream segment classifications are
defined as biologically constrained or unconstrained based on landscape characteristics (A) and sites with
bioassessment scores are evaluated relative to the classifications. Sites can be under-scoring, as expected,
or over-scoring relative to the segment classification and expected range of scores (B). Unconstrained sites
are those where present landscape conditions do not limit biological potential and constrained sites are
those where landscape conditions limit biological potential. Management actions and priorities can be de-
fined based on site scores relative to segment classifications. TMDL: Total Maximum Daily Load. Photo
credit: Raphael Mazor.

Full-size DOI: 10.7717/peerj.9539/fig-3

a predicted range could be assigned a higher management priority relative to a site that is
scoring within the range that is expected based on landscape development.

Open science tools were critically important for translating and delivering SCAPE
products to decision-makers. Local stakeholder engagement to identify research goals
guided the technical development process of SCAPE. All analyses, including model
development and validation, were conducted using R. A version control system (Git)
and online hosting (GitHub) also allowed full transparency of decisions that were made
to create the SCAPE model. A permanent DOI was assigned through Zenodo to track
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downloads and portability of source code (Beck, 2018a). Importantly, an online, interactive
web page (https://sccwrp.shinyapps.io/SCAPE) greatly increased the impact and relevance
of SCAPE by improving stakeholder understanding through direct interaction with key
decision points that influenced model output. A manuscript describing the technical
components of the model was created using knitr and RMarkdown (Xie, 2015; Allaire et
al., 2018). This increased efficiency of the writing process also minimized the potential of
introducing errors into tables or figures by eliminating the need to copy results between
different writing platforms. Finally, a geospatial data file from the model was also made
public on a federated data repository, which included metadata and plain language
documentation to track provenance of the original information (Beck, 2018b).

Limitations and opportunities
Although the case for open science in bioassessment is appealing, the widespread adoption
of these principles in practice is inhibited by inertia of existing practices, disciplinary
culture, and institutional barriers. Conventional and closed workflows used by many
scientists are adopted and entrenched because of ease of use, precedence, and familiarity,
yet they can be inefficient, inflexible, and difficult to communicate or replicate. Open
science tools can improve analysis, documentation, and implementation through greater
flexibility, but they expose research teams to entirely new concepts and skillsets in which
they may never have been trained (e.g., Idaszak et al., 2017). Not only are the required
skillsets demanding, but the open science toolbox continues to expand as new methods are
developed and old methods become obsolete. This requires a research team to stay abreast
of new technologies as they are developed and weigh the tradeoffs of adopting different
workflows for different research tasks.

Advocates for open science are well aware of the technical challenges faced by individuals
and research teams that have never been exposed to the core concepts. Most importantly,
education and training (e.g., through The Carpentries) remain key components for
developing skillsets among researchers where the focus is both on learning new skills for
transferability and realizing their value for improving science as a whole (Hampton et al.,
2017). A goal of many training curricula is to instill confidence in new users by developing
comfort with new workflows, such as replacing a point-and-click style of analysis with
one focused on using a command line through a computer terminal. Other approaches
to demonstrate the value of new techniques use a side by side approach of closed vs open
workflows to show the increased efficiency and power of the latter. Adoption becomes
much more reasonable once users realize the value of investing in learning a new skill.

Advocates of open science also recognize the limitations of teaching in that not all
audiences can be reached and not all materials are retained or even used after training.
A strategy of empowering trainees to become trainers and teach others at their home
institutions (e.g., train-the-trainer workshops and programs) enables open science to
reach more individuals, and benefits science more broadly as they develop technical and
communication skills, and build local communities. Those that also adopt new workflows
through training can also direct their research products to facilitate collaboration with
non-adopters rather than the latter synthesizing and analyzing their data in potentially
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suboptimal ways (Touchon & McCoy, 2016). These ‘‘champions’’ can be a voice of
encouragement for others by demonstrating how new tools can be introduced and learned
over time through shared experiences (Lowndes et al., 2017). This also encourages the
development of a community of practice that shares and learns together to navigate the
collection of existing and developing open science tools (Stevens et al., 2018). Champions
of open science should also be vocal proponents that spread awareness of the value of open
science tools, particularly to those that make decisions on project resources. Department
heads or administrative leaders may not be aware of the value of investing in open science,
particularly if the consequences of not doing so are externalized in indirect costs that are
not budgeted. A change in mindset may be needed where open science is viewed as a core
tool that is critical to maintaining relevance of a research program in the future (Hampton
et al., 2017).

Many scientists feel they cannot prioritize learning new skills given existing demands
on their time, particularly if the benefits of these approaches, such as the value for the
research team of sharing their data, are not apparent or immediate. Short-term funding
and even political cycles can disincentivize scientists from spending time on anything
but contractually obligated deliverables, which as noted above, may not effectively apply
science in decision-making. This is an acute concern for early career scientists that have
higher demands on establishing reputation and credentials, where investments in open
science may be seen as detracting from progress (Allen & Mehler, 2019). As an alternative,
a practical solution is to actively encourage the investment in open science within the
research team or lab, as opposed to placing the burden on the individual as an isolated
researcher (i.e., team science,Cheruvelil & Soranno, 2018). Laboratory or department heads
should allow and encourage research staff to invest time in learning new skills and exploring
new ideas, even if this does not immediately benefit the latest project. Over time, small
investments in developing new skills will have long-term payoffs, particularly if a growing
skillset among the research team encourages networking and peer instruction (Lowndes et
al., 2017; Allen & Mehler, 2019). Developing an environment where open science tools are
highly valued and encouraged may also increase job satisfaction and benefit recruitment
and retention if researchers are allowed the space and time to develop skills beyond the
current project.

The scientific culture within a discipline or institution may inhibit the adoption of open
science methods. A common argument against open science is the protection of data that
an individual research team may view as proprietary or sensitive. There are reasonable
arguments to treat data as personal property, particularly if exceptional effort was spent
to secure funding for a project and if the data were hard-earned or sensitive, e.g., detailed
location data on endangered species or medical/socioeconomic data (Zipper et al., 2019).
These issues are less of a concern for bioassessment where many datasets are collected
by institutions that are publicly funded and data accessibility may be mandated by law.
However, an open science process dictates that both interim and completed research
products derived from public data should be available to the broader bioassessment
community. This raises an additional concern that research teams using transparent
workflows could expose themselves to increased criticism by their peers and the public
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(Lewandowsky & Bishop, 2016; Allen & Mehler, 2019), particularly where the developed
products can have important regulatory implications.

Feedback and criticism are fundamental and natural parts of the scientific process.
Scientists receive feedback at many stages in the conventional scientific workflow (e.g.,
internal review, peer-review, presentations at conferences). Potentially new and challenging
avenues for feedback are created in an open workflow. A concern is that openness can
provide a platform for antagonistic or even hostile views, which could alter or degrade
the scientific product (Landman & Glantz, 2009; Lewandowsky & Bishop, 2016). However,
opportunities for addressing alternative viewpoints are critical to the open process of
creating applied products, even if some voices are politically charged. This is especially
true in bioassessment where finished products that could be adopted in regulation are
often heavily scrutinized. It is in the interest of applied scientists to hear the concerns of
all parties during the development phase. This is not to provide an avenue to erode the
integrity or objectives of the science, but to enable full knowledge of the very real barriers
to adoption that exist when science is applied in regulation. Openness that invites all voices
to participate is a much more agreeable path to consensus than producing the science in
isolation of those that it affects (Pohjola & Tuomisto, 2011). Ultimately, these products are
developed to improve the environment as a public resource and the ideals promoted by an
open science process directly align with these goals.

Institutional barriers can inhibit open science given the scale of change that must
occur for adoption. Bureaucratic hurdles can disincentivize initiatives that promote
change, particularly if that change originates from researchers not in administrative
roles. Regulatory institutions may also prefer some level of opacity for how research
products that influence policy are made available during development. The level of
transparency advocated by open science could be viewed as opening the floodgates to
increased legal scrutiny that can unintentionally hinder forward progress. Despite these
reservations, many public institutions now advocate for increased openness because of
the benefits that facilitate and engender public trust. Open data initiatives are now fairly
common and represent a form of advocacy by public institutions for broader adoption
of open science principles. Many national-level data products already exist that embrace
openness to invest in the quality and availability of data (e.g., initiatives, US Geological
Survey products through NWIS and BioData, US Environmental Protection Agency
through STORET/WQX). Internationally, institutions in Europe and Canada that have
projects supported by public funds are obligated to publish data and papers as open access
(Horizon 2020, Tri-Agency Open Access Policy). Although past efforts and recent changes
represent progress, many institutions have yet to strictly define open science and how it is
applied internally and externally. As open science continues to build recognition, means of
integrating toolsets that promote openness and transparency beyond publicly shared data
will have to be adopted by regulatory and management institutions.

CONCLUSIONS
The relevance of bioassessment applications can be improved with open science by using
reproducible, transparent, and effective tools that bridge the gap between research and
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management. Many open science tools can improve communication between researchers
and managers to expose all aspects of the research process and facilitate implementation
to support policy, regulation, or monitoring efforts. Communication ensures that the
developed product is created through an exchange of ideas to balance the potentially
competing needs of different sectors and institutions. The documentation and archiving
of data used to create a bioassessment product also ensures that other researchers can
discover and build on past efforts, rather than constantly rebuilding the wheel. Incremental
improvements of existing products can reduce the proliferation of site- and taxon-specific
methods with limited regional applications by exploring new ways to integrate biological
indicators across space and time.

Efforts to formally recognize and integrate open science in bioassessment are needed now
more than ever. The transition of bioassessment from taxonomic-based indices tomolecular
approaches presents novel challenges that will only increase in severity as researchers
continue to refine methods for molecular applications (Baird & Hajibabaei, 2012).
Although molecular-based indices share similar assessment objectives as conventional
indices, the data requirements and taxonomic resolution are substantially more complex.
Bioassessment researchers developing molecular methods are and will continue to be
inundated with data from high-throughput DNA sequencers. Systematic approaches to
document, catalog, and share this information will be required to advance and standardize
the science. Molecular approaches are also dependent on existing reference libraries for
matching DNA samples for taxonomic identification. The integrity of reference libraries
depends greatly on the quality of metadata and documentation for contributed samples.
Open science principles should be leveraged in this emerging arena to ensure that new
bioassessmentmethods continue to have relevance for determining the condition of aquatic
resources.
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