SETAC Europe 26th Annual Meeting - May 22-26, 2016

http://nantes.setac.eu

Advancing the use of passive sampling in risk assessment and management of contaminated sediments: Results of an international passive sampling ring test

Michiel T.O. Jonker¹, Stephan van der Heijden¹, Yongju Choi², Yanwen Wu³, Loretta Fernandez⁴, Robert M. Burgess⁵, Upal Ghosh⁶, Mehregan Jalalizadeh⁶, Jennifer Apell⁷, Phil Gschwend⁷, Rainer Lohmann⁸, Mohammed Khairy⁸, Dave Adelman⁸, Michael Lydy⁹, Samuel Nutile⁹, Amanda Harwood⁹, Keith Maruya¹⁰, Wenjian Lao¹⁰, Amy Oen¹¹, Sarah Hale¹¹, Danny Reible¹², Magdalena Rakowska¹², Foppe Smedes^{13,14}, and Mark Lampi¹⁵

Abstract

It is widely-accepted that not the total (solvent-extractable), but only the bioavailable concentration of hydrophobic organic contaminants in sediments is available for uptake in organisms and responsible for any subsequent effects. In view of proper risk assessment and management of contaminated sediments, several methods for assessing bioavailable concentrations have therefore been developed and are being used, mostly however within the scientific community. Among these methods, passive sampling methods (determining freely dissolved concentrations; Cfree) represent the most widely-used and well-characterized approach. In the regulatory community, there is some aversion to implementing these methods in actual risk assessment, as there is no consensus among scientists on which bioavailability method or passive sampling approach to use best and the variability associated with these methods is yet unknown. Therefore, the objectives of the international ring test study presented here were (1) to map the state of the art in determining Cfree with passive sampling (what is the intra/inter-method/lab variability); (2) to identify the sources of variability by means of dedicated, tiered experiments (including standardizing methods); (3) to provide recommendations and practical guidance (standard protocols); (4) to increase confidence in the use of passive sampling and to advance its use outside the scientific domain. The ring test was performed by a consortium of 11 labs and included experiments with 14 passive sampling formats on 3 sediments and 25 chemicals (PAHs and PCBs). The results demonstrated that standardizing

¹Institute for Risk Assessment Sciences, Utrecht University; Utrecht, the Netherlands

²Seoul National University, Seoul, Republic of Korea

³Stanford University, Stanford, USA

⁴Department of Civil and Environmental Engineering, Northeastern University, Boston, USA

⁵U.S. Environmental Protection Agency, Narragansett, USA

⁶Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, USA

⁷Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA

⁸Graduate School of Oceanography, University of Rhode Island, Narragansett, USA

⁹Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, USA

¹⁰Southern California Coastal Water Research Project Authority, Costa Mesa, USA

¹¹Norwegian Geotechnical Institute, Oslo, Norway

¹²Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, USA

¹³RECETOX, Brno, Czech Republic

¹⁴Deltares, Utrecht, the Netherlands

¹⁵ExxonMobil Biomedical Sciences, Inc., Annandale, USA

methods significantly decreased the overall inter-lab variability. The resulting variability however still largely exceeded the intra-lab/inter-method variability, because of the substantial variability introduced by analytical chemistry (identification, integration, calibration of target chemicals). Excluding the latter variability (all analyses performed in one lab) demonstrated that Cfree can be determined sufficiently accurately. Overall, passive sampling appears fit for implementation in risk assessment and management of contaminated sediments, when following standard protocols.