Emerging Contaminants in California: Observations with Targeted Analytical Techniques

Rebecca Sutton, PhD Aquatic Science Center

What is Targeted Chemistry?

Analytical methods designed to quantify specific "target" chemical contaminants in an environmental matrix

I will touch on:

- Availability of targeted chemistry data in California
- Practical considerations for future study design

State CEC Synthesis: Targeted Chemistry

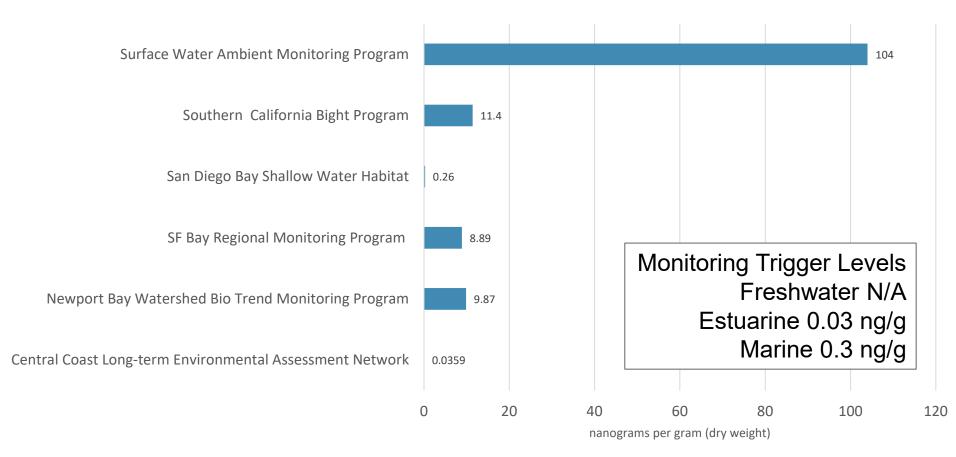
- Synthesize CECs data in California waters
 - Ambient: Water, sediment, tissue
 - Pathways: Stormwater, wastewater, recycled water
- Screen for potential ecotoxicity concerns
 - Tiered risk-based framework
- Suggest initial monitoring, management priorities
 - Informed by risk screening, use trends, persistence, other factors
- Identify data gaps

Classes of CECs: 2012 EcoPanel Urban Sources Recommendations

Poly- and perfluoroalkyl substances (PFAS)PFOS							
PBDEs, other brominated flame retardantsPBDE 47, 99							
Organophosphate esters							
Bisphenols							
PhthalatesDEHP, BBzP							
Alkylphenols, alkylphenol ethoxylates							
Pharmaceuticals, hormones Diclofenac, Ibuprofen, Estrone, 17-β estradiol							
Personal care, cleaning productsGalaxolide, Triclosan							
Urban current-use pesticides, degradatesBifenthrin,							
Fipronil,							
AQUATIC SCIENCE CENTER Permethrin							

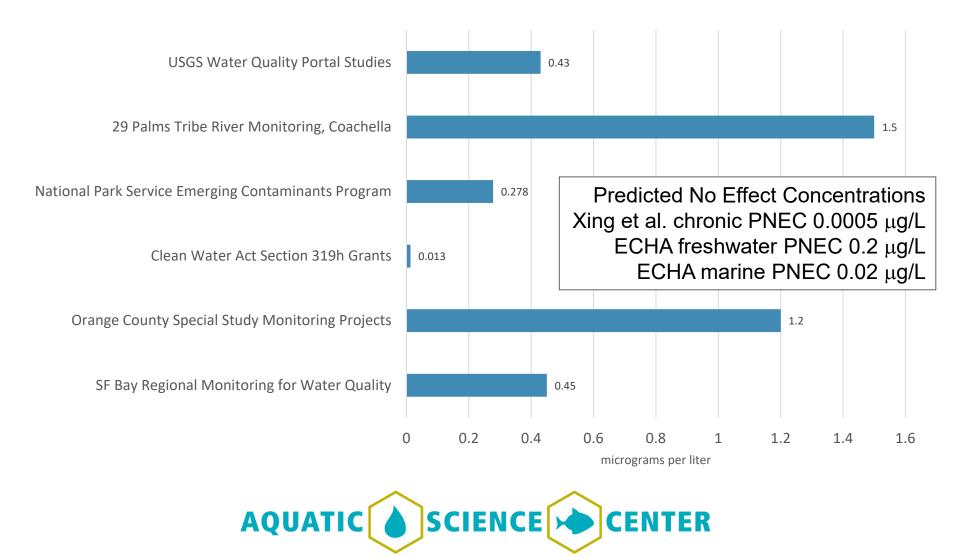
Data Richness Varies

Work in Progress!


Data- base	PFAS	BrFRs	OPEs	Bis- phenols	Phthal- ates	APs APEs	Pharm	Personal Care	Pesti- cides
CEDEN (state)	W 400 S 588 E 110	W 12k S 19k E 18	W 327 S 225	W 1 S 14	W 5k S 332	W 13 S 39	W 3k S 87 E 110	W 54 S 171 E 5	W 152k S 17k E 18
CIWQS (state)		W 5k	W 9		W 47k		W 7k	W 3	W 13k
Water Quality Portal (USGS)		W 32 S 148	W 608 S 1	W 116 S 1	W 419	W 302 S 1	W 15k S 6	W 3k S 26	W 165k S 28k

W water (freshwater, estuarine, marine), including streams and stormwater

- S sediment
- E wastewater effluent



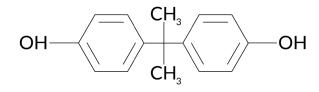
PBDE-47 in Sediment (maximums, 2005+)

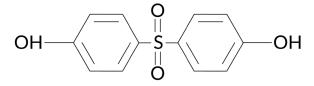
TDCPP in Water (maximums, tris(1,3-dichloro-2-propyl) phosphate)

Practical Considerations: Class-based Methods

A single targeted analytical method can detect dozens of chemically <u>similar</u> contaminants

However, a short list of <u>diverse</u> CECs can mean the need for many methods, more resources


If a method provides data beyond an analyte of interest, acquire and review data for all contaminants


Practical Considerations: Standard Methods, New CECs

By the time a CEC is part of a standard method widely available in commercial labs, it may already be going through regrettable substitution

Bisphenol A

Bisphenol S

Practical Considerations: Method Selection

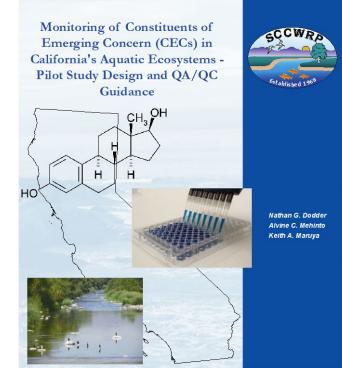
Standard Methods

- Commercial lab
- Discrete analyte list
 - Available standards
- Prompt turnaround
- Standardized QA, data management
- Readily comparable across studies

Exploratory Methods

- Academic lab
- Adaptable analyte list
 New CECs
- Academic timetable
- Training needed for QA, reporting
- Uncertainty regarding comparability

AQUATIC


Practical Considerations: Study Design, Site Selection

Ambient environment vs. pathways

 SF Bay RMP phased approach

Representative vs. comprehensive sites

- PFAS Investigation Order
 - SF Bay Area wastewater response uses a regional, representative study design

Southern California Coastal Water Research Project SCOWRP Technical Report 854

Practical Considerations: Informing Management

Key questions

- What management actions are possible?
- What data gaps must be filled to inform management decisions?
- What is the minimum science needed?

Final Thoughts

- Growing body of targeted CECs data in California
- EcoPanel strategy can guide use of limited resources for monitoring and management
- Regions vary with respect to:
 - Data richness, CECs expertise, industries, resources, local management opportunities
 - Prioritization can help regions to adapt recommendations for maximum impact

For more information: RebeccaS@sfei.org

Thank you

