SCCWRP Annual Report 2013

Evaluation of the repeatability and reproducibility of a suite of qPCRbased microbial source tracking methods

Darcy L. Ebentier¹, Kaitlyn T. Hanley^{1,2}, Yiping Cao³, Brian D. Badgley⁴, Alexandria B. Boehm⁵, Jared S. Ervin^{6,7}, Kelly D. Goodwin⁸, Michèle Gourmelon⁹, John F. Griffith³, Patricia A. Holden^{6,7}, Catherine A. Kelty¹⁰, Solen Lozach⁹, Charles McGee¹¹, Lindsay A. Peed¹⁰, Meredith Raith³, Hodon Ryu¹⁰, Michael J. Sadowsky⁴, Elizabeth A. Scott³, Jorge Santo Domingo¹⁰, Alexander Schriewer², Christopher D. Sinigalliano⁸, Orin C. Shanks¹⁰, Laurie C. Van De Werfhorst^{6,7}, Dan Wang⁵, Stefan Wuertz^{2,12} and Jennifer A. Jay¹

¹University of California, Department of Civil and Environmental Engineering, Los Angeles, CA
²University of California, Department of Civil and Environmental Engineering, Davis, CA
³Southern California Coastal Water Research Project, Costa Mesa, CA
⁴University of Minnesota, BioTechnology Institute and Department for Soil, Water and Climate, St. Paul, MN
⁵Stanford University, Department of Civil and Environmental Engineering, Environmental and Water Studies, Stanford, CA
⁶University of California, Bren School of Environmental Science and Management, Santa Barbara, CA
⁷University of California, Earth Research Institute, Santa Barbara, CA
⁸National Oceanic and Atmospheric Administration, Atlantic Oceanographic & Meteorological Laboratory, Miami, FL (stationed at SWFSC, La Jolla, CA)
⁹Ifremer, Laboratoire de Microbiologie, MIC/LNR, Département Ressources Biologiques et Environnement, Unité Environnement, Microbiologie et Phycotoxines, Plouzané, France
¹⁰US Envrionmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH
¹¹Orange County Sanitation District, 10844 Ellis Ave, Fountain Valley, CA

Biological Sciences, and School of Civil and Environmental Engineering, Singapore, Singapor

ABSTRACT

Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Interlaboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management. In this study, a blinded set of 64 filters (containing 32 duplicate samples generated from 12 composite fecal sources) were analyzed by three to five core laboratories with a suite of PCR-based methods utilizing the standardized reagents and protocols. Repeatability (intra-laboratory variability) and reproducibility (inter-laboratory variability) of observed results were assessed. When standardized methodologies were used, intra- and inter-laboratory %CVs were generally low (median %CV 0.1 - 3.3% and 1.9 - 7.1%, respectively) and comparable to those observed in similar inter-laboratory validation studies performed on other methods of quantifying fecal indicator bacteria (FIB) in environmental samples. ANOVA of %CV values found three humanassociated methods (Bsteri, BacHum, and HF183Taqman) to be similarly reproducible (p >0.05) and significantly more reproducible (p <0.05) than HumM2. This was attributed to the increased variability associated with low target concentrations detected by HumM2 (approximately 1 - 2 log10copies/filter

lower) compared to other human-associated methods. Cow-associated methods (BacCow and CowM2) were similarly reproducible (p >0.05). When using standardized protocols, variance component analysis indicated sample type (fecal source and concentration) to be the major contributor to total variability with that from replicate filters and inter-laboratory analysis to be within the same order of magnitude, but larger than inherent intra-laboratory variability. However, when reagents and protocols were not standardized, inter-laboratory %CV generally increased with a corresponding decline in reproducibility. Overall, these findings verify the repeatability and reproducibility of these MST methods and highlight the need for standardization of protocols and consumables prior to implementation of larger scale MST studies involving multiple laboratories.

Full Text

http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2013AnnualReport/ar13_433_444.pdf