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Abstract

	 Accurate estimates of the extent and distribution 
of wetlands and streams are the foundation of 
wetland monitoring, management, restoration, and 
regulatory programs.  Traditionally, these estimates 
have relied on comprehensive mapping.  However, 
this approach is prohibitively resource intensive 
over large areas, making it both impractical and 
statistically unreliable.  Probabilistic (design-based) 
approaches to evaluating status and trends provide 
a more cost-effective alternative; however, limited 
information exists about the ability of various design 
options to meet diverse, state-level information 
needs such as accounting for both streams and 
wetlands in a single program.  This study utilized 
simulated sampling to assess the performance of 
sample design options for monitoring the extent 
of wetlands and streams in California.  Simulation 
results showed significantly and reliably increased 
precision and reduced bias with the spatially 
balanced, generalized random tessellation 
stratified (GRTS) sampling method compared to 
simple random sampling.  In contrast, results for 
stratification were mixed and highly dependent 
on aquatic resource type and geographic region; 
consequently, there was no clear, broad advantage 
observed for stratification.  This study also 
demonstrated the utility of a model-based approach 
for evaluating design options for application in other 
state, tribal, and regional programs.

Introduction

	 Wetland and stream mapping is the foundation 
for many regulatory, restoration and management 
programs, including those that support state and 
federal no-net loss policies (Nusser and Goebel 1997, 
Mitsch and Gosselink 2000) and inform decisions on 
compensatory mitigation (Baron et al. 2002, Clare et 
al. 2011).  Accurate estimates of wetland and stream 
extent and distribution are necessary to evaluate the 
effectiveness of programs and policies and serve as 
sample frames for ambient condition surveys.

	 The predominant approach for evaluating the 
extent of streams and wetlands (here referred to 
jointly as aquatic resources) has been comprehensive 
inventory and mapping of all aquatic features; such 
an approach is used by the US Fish and Wildlife 
Service (USFWS) National Wetland Inventory 
(NWI).  Comprehensive maps are often preferred 
because they can provide detailed information for all 
locations without assumptions or inference, are easy 
to understand, and can readily convey information to 
policymakers and the public.  

	 While comprehensive mapping is an attractive 
approach, it has proven inadequate for large or 
complex areas.  Under a comprehensive approach, 
the entire area must be mapped in order to provide 
unbiased estimates of area-wide parameters, such 
as total wetland area or total stream length (Nusser 
et al. 1998, Gregoire 1999).  For large geographic 
areas, insufficient resources frequently prevent 
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timely completion and updating of comprehensive 
aquatic resource inventories (Tiner 2009, Ståhl et al. 
2010).  As a result, these inventories fail to provide 
estimates of total extent for a single point in time.  
For example, the NWI, begun in the 1970s by the 
USFWS, has yet to produce a complete, national 
map of wetland extent (Tiner 2009).  The current 
NWI covers less than two thirds of the country and 
is composed of maps produced between 1970 and 
the present.  As a result, the NWI provides neither 
an estimate of current national wetland extent nor a 
clear mechanism for determining change with time.  
	 In contrast to comprehensive inventories, 
design-based mapping uses a probabilistic approach 
to produce extent and trend estimates more 
frequently and from significantly fewer resources 
(Olsen and Peck 2008).  We use the statistical 
term “design-based” to refer to probability-based 
sampling designs where every individual in the 
population has a known, non-zero probability 
of selection.  These selection probabilities are 
determined by the sampling design and are, in turn, 
used to infer population characteristics from the 
selected sample.  Under a design-based approach, 
a grid is laid out over the entire area of interest 
and plots are selected at random and mapped.  
Then, the fraction of the target area covered by the 
aquatic resource of interest is easily estimated by 
design-based inference (Gregoire 1999, Albert et 
al. 2010).  This approach can be independent of the 
spatial distribution of aquatic resources and does 
not require a pre-existing map of aquatic resources.  
By mapping probabilistically, observations can be 
completed at a single point in time and repeated at 
regular intervals, enhancing ability to estimate extent 
and detect trends.  
	 While probabilistic sampling and mapping 
cannot produce a complete map of aquatic resources, 
the approach can provide unbiased estimates of 
area-wide extent and the uncertainties in that 
estimate (Albert et al. 2010).  For example, while 
the NWI has yet to map the entire country, the 
USFWS’s design-based NWI Status and Trends 
program (NWI-S&T) has produced five reports 
over the last thirty years (Dahl 2011).  These reports 
include statistical, quantitative estimates of losses in 
wetland area between the 1950s and today.  Similar 
probabilistic programs include the Minnesota 
Wetland Status and Trends Monitoring Program 
(MN-S&T), operated by the Minnesota Department 
of Natural Resources; and the National Inventory 

of Landscapes in Sweden (NILS), operated by the 
Swedish Environmental Protection Agency (Kloiber 
2010, Ståhl et al. 2010).  
	 Evaluation of wetland extent and distribution is 
particularly challenging in a state as large (424,000 
km2) and diverse (13 distinct Level-III ecoregions) 
as California (Omernik 2010).  In addition, the 
California Status and Trends (S&T) program is 
intended to include both wetlands and streams, 
which have very different spatial distributions.  
Wetlands are often irregularly distributed based 
on requisite geomorphic and hydrologic settings; 
whereas, streams are more uniformly distributed 
across the landscape.  Because of these challenges, 
a quantitative comparison of design-based sampling 
options is appropriate.
	 This study considered two major design issues 
for a hybrid wetland and stream S&T program; 
sample selection method and stratification.  This 
work is also the first time these parameters have 
been rigorously evaluated for monitoring wetland 
and stream extent and distribution.  In previous 
simulation work, spatially balanced sampling 
methodologies have reduced sample variance 
compared to non-spatially balanced methods, 
such as simple random sampling (SRS), which 
can produce clustered samples (Theobald et al. 
2007).  Nevertheless, SRS is still commonly used, 
including by the NWI-S&T program, because of 
ease of implementation and communication of 
results (Dahl 2011).  Systematic sampling is the 
simplest spatially balanced design to implement.  
This approach, used by the NILS program, selects 
sampling locations using a regularly spaced grid 
(Ståhl et al. 2010).  However, systematic designs 
may align with spatial patterns in the population and 
unbiased variance estimation requires knowledge of 
the spatial variability of the population (Flores et al. 
2003).  Generalized random tessellation stratified 
(GRTS) sampling combines the advantages of SRS 
and systematic sampling and is used by the MN-
S&T program (Kloiber 2010).  GRTS provides better 
spatial balance than SRS by basing sample selection 
on a hierarchical, square grid placed over the sample 
area.  GRTS also avoids the spatial alignment 
problem of systematic sampling by maintaining a 
random distance between adjacent points ( Stevens 
and Olsen 2004, Deegan and Aunan 2006).
	 Closely related to selection method is 
stratification, which can be utilized to improve 
the accuracy and precision of sample estimates 
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for heterogeneous areas (Jongman et al. 2006).  
Conceptually, stratification improves the accuracy 
and precision of sample estimates by dividing the 
population into homogeneous subsets, in effect 
minimizing within-stratum variability and increasing 
between-stratum variability.  The expectation is 
that the homogeneous units will be better described 
if sampled and analyzed separately.  These more 
precise and accurate stratum-level estimates can be 
aggregated to produce a more precise and accurate 
estimate of the whole population.  However, 
stratification can also reduce flexibility in sampling 
execution and analysis.  For instance, complex 
re-weighting procedures are required if sample 
estimates are required for subsets other than the 
sampling strata (Brus and Knotters 2008, Chen 
and Wei 2009).  Other methods, such as spatially 
balanced sampling, may more easily and reliably 
increase the accuracy and precision of the overall 
estimate.  Finally, stratification to improve overall 
precision relies heavily on accurate prior knowledge 
of the population, which is not always available 
(Kozak and Zielinski 2007).  Therefore, stratification 
may not be necessary or appropriate if results are 
not required for certain subpopulations or if there is 
insufficient pre-existing knowledge of the population 
to support the stratum allocations.
	 This study used simulated sampling to provide 
empirical statistical support for probabilistic 
monitoring of aquatic resource extent.  Simulations 
focused on California, explicitly explored 
differences between streams and wetlands, and 
considered the impact of design decisions on state-
level program needs.  Specifically, we evaluated the 
following questions: Can a sample design balance 
measurement of wetlands, which have a patchy 
distribution, with measurement of streams, which 
are more evenly distributed? Can a probabilistic 
design adequately monitor rare wetland and stream 
types? Can the resulting sample be analyzed for 
all subpopulations and regions of interest? This 
study used multiple-iteration modeling to simulate 
various design options and produce a statistically 
based evaluation that can form the basis for a 
recommendation to the State of California.  Although 
the study focused on California, the approach and 
results should apply for any program attempting to 
evaluate both streams and wetlands across large, 
diverse areas.

Methods

General Approach
	 We utilized simulated sampling to evaluate 
sampling design elements because of its ability 
to provide empirical distributions of sample point 
estimates such as mean wetland and stream density.  
We used the empirical distributions to evaluate the 
statistical accuracy and precision of design options 
such as SRS vs. GRTS and stratified vs. unstratified 
sampling.

Geographic Databases
	 We based simulations on digital stream and 
wetland maps in California, available for 100 and 
78% of the state, respectively (Figure 1).  For the 
purposes of this study, we assumed each geodatabase 
represented the “true” population of wetlands 
and streams in California.  For streams, we used 
the National Hydrography Dataset (NHD-Plus), 
produced by the US Geological Survey (USGS) 
and the US Environmental Protection Agency 
(USEPA).  For wetlands, we utilized the NWI, split 
into two subsets for analysis because of a change 
in mapping methodology in the mid-1990s.  A key 
step in NWI wetland mapping is production of a 
map of streamline position.  Prior to the 1990s, 
one-dimensional features representing streamline 
position were kept separate from two-dimensional 
maps of wetland extent.  However, beginning in the 
1990s, one-dimensional streamlines were buffered 
and combined with two-dimensional wetlands into 
a single map of wetland and stream extent.  This 
change in procedure significantly increased total area 

Figure 1.  Level-III ecoregion boundaries and availability 
of NHD and NWI digital maps in California; mapping 
methodology divides the NWI into maps without (NWI) 
and maps with (NWIb) buffered streamlines.
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and altered the spatial distribution of the mapped 
polygons.  Therefore, we considered NWI maps 
with buffered streamlines (NWIb), covering 10% of 
California, separately from maps without buffered 
streamlines (NWI), covering 78% of California.  

Sampling Approaches
	 We considered four sampling conditions: 1) 
unstratified SRS, 2) stratified SRS, 3) unstratified 
GRTS, and 4) stratified GRTS.  Numerous other 
sampling methods exist, but we chose to focus 
on SRS and GRTS and the effect of stratification.  
We considered spatially balanced sampling a 
potentially powerful mechanism for improving 
sample performance, as discussed earlier.  However, 
we did not evaluate systematic sampling, another 
spatially balanced method and used by the NILS 
program, because a systematic sample of a study 
area cannot be easily modified for future needs.  Any 
such modifications would require a completely new 
sample frame and sample draw.  Other commonly 
employed methods, such as probability proportional 
to size or cluster sampling, require significant prior 
knowledge about the population which we could 
not supply (Kozak and Zielinski 2007, Smith et al. 
2003).  Alternative, more technical options, such as 
poisson sampling, were not included because they 
are computationally intensive without significant 
probability of improving sample performance 
(Williams et al. 2009).
	 We stratified along the Level-III ecoregion 
boundaries shown in Figure 1 (Omernik 2010).  We 
chose ecoregions for stratification for two primary 
reasons.  First, ecoregions represent relatively 
homogenous ecological units, consistent with 
the assumptions of and motivations for statistical 
stratification.  Second, aquatic resource density 
varied substantially between ecoregions.  For 
example, streamline density ranges from 0.5 km 
km-2 in the Cascades to 1.2 km km-2 in the Southern 
California Mountains and wetland density ranges 
from 0.01 km2 km-2 in the Southern California 
Mountains to 0.21 km2 km-2 in the Northern Basin 
& Range.  In areas covered by the NWIb maps, 
wetland density ranges from 0.01 km2 km-2 in the 
Sierra Nevada to 0.59 km2 km-2 in the Sonoran Basin 
& Range.  Additionally, ecoregions are a convenient 
combination of numerous physical, climatological, 
and biological variables.  These variables could be 
used individually for stratification, but we did not 
expect them to be as powerful as ecoregions.  In 

addition, any attempt to combine variables would 
quickly complicate sampling and analysis.  Finally, 
ecoregions coincide with many of the environmental 
management boundaries and subunits used by the 
State.  
	 When stratifying, we performed optimum 
allocation for variance minimization to allocate the 
total sample between individual strata (ni):

for i in 1, 2, …, k   	 Eq. 1

	 Under optimum allocation, total sample size 
(n) is allocated based on the population size (Ni) 
and population standard deviation (σi) for each 
stratum i.  As optimum allocation is based on the 
presumption of a normally distributed population, 
we used the standard deviation of log-transformed 
streamline density for NHD allocation and the 
standard deviation of arcsine-transformed wetland 
density for the NWI and NWIb allocations.  These 
transformations were selected based on the properties 
of the two types of variables: range from 0 to positive 
infinity with a right-tailed distribution for NHD and 
range from 0 to 1 for the NWI and NWIb.

Dataset Preparation
	 We began by placing a continuous, 16 km2 grid 
over the entire state of California using the fishnet 
tool in ArcInfo (ESRI 2010).  All grid cells were 
considered part of the population and the presence or 
extent of aquatic resources within a cell did not affect 
the inclusion probability.  We applied a random offset 
(between 0 and 4,000 m) to the bottom-left corner 
of the grid in both the x and the y direction.  We 
utilized the offset to reduce the probability that the 
fishnet tool would align grid cells with the California 
boundaries.
	 Next, we clipped the grid to the boundaries of 
the three geographic datasets: the state boundary for 
the NHD; mapped areas without buffered streamlines 
for the NWI; and mapped areas with buffered 
streamlines for the NWIb (Figure 1).  The result was 
a separate grid for each dataset.  In addition, the area 
of each grid cell now represented the portion of that 
cell that overlapped with the mapped area.  Ecoregion 
was defined for each grid cell based on the location 
of the cell centroid.  
	 Then, we intersected the grids with NHD 
streamlines and NWI and NWIb polygons.  
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Intersection split streamlines and polygons according 
to plot boundaries and assigned the grid cell number 
to each streamline and wetland segment.  The 
numbers were then used as an index for determining 
the total stream length and wetland area for each grid 
cell for each stream and wetland subtype (defined 
below).  Finally, we computed streamline and 
wetland density for each grid cell by dividing the 
summed lengths and areas by the cell area.
	 For the NHD, we considered all streamlines and 
five subtypes: stream order (SO) greater than 4; SO 
equal to 3 or 4; SO equal to 1 or 2; SO not provided; 
and SO equal to 1 or 2 with intermittent flow.  For 
the NWI and NWIb, we considered all wetlands and 
six wetland subtypes: esutuarine, lacustrine, marine, 
palustrine, riverine, and palustrine, unconsolidated 
shore, seasonally flooded (PUSC).  By including 
stream and wetland subtypes, we could explore 
sample design performance for a range of resource 
densities, geographic distributions, and spatial 
heterogeneities.  In addition, these subtypes are 
aquatic resource groups of interest for management 
and research purposes in California and accurate 
estimate of their extent is one of the objectives of 
the California S&T program.  The PUSC wetland 
subtype was used as a surrogate for rare wetland 
types in order to further test sampling performance 
(Cowardin et al. 1979).  PUSC has also been used 
by the San Francisco Bay Area, Wetlands Regional 
Monitoring Program as a “classification cross-walk” 
to vernal pools, a unique and ecologically important 
wetland type in California (Holland and Jain 1981, 
Duffy and Kahara 2011).  

Simulations
	 We conducted all sampling simulations in R 
version 2.13.1 (R Development Core Team 2011).  
Each of the four sampling designs was simulated 
5,000 times for each dataset, a replication count 
used by Miller and Ambrose (2000) to give an 
adequate estimate of variability in the dataset.  For 
each repetition, we recorded sample estimates of 
mean density of each feature type.  GRTS samples 
were drawn using the grts function in the spsurvey 
package (version 2.2), developed for R and available 
the Comprehensive R Archive Network (CRAN; 
Kincaid and Olsen 2011).  SRS samples using the 
sample function in the base R package.  We utilized 
random number seeds for reproducibility of GRTS 
and SRS sample draws.  

Bias and Precision of the Sample Mean
	 Simulations produced empirical distributions 
of the mean density for each feature type and 
combination of sampling parameters.  We utilized 
these empirical distributions to compare the 
performance of the different sampling designs.  This 
section will describe the methods used to evaluate 
the empirical distribution of the mean, first to detect 
potential bias and second to determine the relative 
precision of each sampling design.  Bias in the 
sample mean could indicate a systematic error in 
the sampling methodology, which over-samples a 
subset of the population and then fails to correct for 
this oversample during analysis.  Improved precision 
(a smaller value as defined here) could indicate that 
the particular sample design is more reliable and a 
smaller sample size may be possible.
We measured bias in the sample mean by subtracting 
the true population value (μ) from the mean of the 
empirical distribution of the simulated sample means 
(mux) and dividing by the standard deviation of the 
empirical distribution (sx):

	 Eq. 2

	 We calculated true population values by 
taking the mean of all grid cells.  The relationship 
in Equation 2 (dCx) is known as Cohen’s d and 
is an alternative to a t-test for the difference of 
means (Cohen 1988).  Because our replication 
rate was so large (5,000), a t-test would conclude 
that very small differences between mux and μ 
were significant.  However, Cohen’s d does not 
consider the number of replications.  Instead, the 
difference between the empirical distribution and 
the true value is only compared to the variability 
in the empirical distribution.  Cohen’s d cannot 
produce p-values for difference between means.  
However, traditional cutoffs for Cohen’s d for 
small, medium, and large effect sizes are 0.2 to 
0.5, 0.5 to 0.8, and greater than 0.8, respectively 
(Cohen 1988).  These cutoffs indicate that a 
large difference between two values is one that is 
close to or exceeds the variability, while a small 
difference is less than half of the magnitude of the 
variability.
	 We computed the precision (px) of each 
sampling design as the ratio of the standard 
deviation and the mean (sx and mux) of the empirical 
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distribution of the sample mean, otherwise known 
as the coefficient of variation:

	 Eq. 3

	 We compared px values between sampling 
conditions using an f-test for the ratio of variances.  
This test typically has a null hypothesis that the ratio 
of sample variances is equal to one (i.e., sx1

2 sx2
-2 = 

1).  However, 1 can be replaced by any value and we 
chose the squared ratio of the mean of the sampling 
distributions (mux):

	 Eq. 4

	 Equation 4 can be re-arranged and, using 
Equation 3, reduces to equality px1 px2

-1 = 1.

Results

SRS vs. GRTS
	 GRTS sample selection significantly improved 
precision over SRS (Figure 2).  This effect was 
observed for all resource types and was not affected 
by stratification.  No method exhibited substantial 
bias (dCx between -0.04 and 0.02).  The observed 
decrease in px was not significantly associated with 
the expected spatial distribution of the resource.  
While the patchy NWI wetland resource had the 
largest percent decrease in px, 19% for unstratified 
and 20% for stratified designs, the evenly distributed 
NHD streamline resource had the second largest, 
19% for unstratified and 16% for stratified, and the 
NWIb, which contains both streams and wetlands, 
had the smallest, 8% for unstratified and 5% for 
stratified.  All differences between SRS and GRTS 
were statistically significant.

Stratification
	 The effect of stratification on sample precision 
was mixed (Figure 3).  Overall, stratification 
tended to reduce sample variance and decrease 
estimate sample costs; however, stratification both 
significantly increased and significantly decreased px 
for individual ecoregions and aquatic resources.  For 
the NHD, stratification reduced the sample variance 
for all streamlines by 2.6% under a SRS design and 
increased sample variance by 1.5% under a GRTS 

design.  For NWI and NWIb, stratification always 
decreased sample variance but the difference was 
smaller for GRTS than for SRS: 7.8 and 18.9% 
reductions for the NWI and NWIb, respectively, for 
an SRS design and 9.5 and 15.9% reductions for a 
GRTS design.
	 The NHD and SRS sample selection illustrates 
the more variable effect of stratification on individual 
ecoregions and aquatic resources.  For the NHD 
and SRS, the effect of stratification ranged from 
an 11% decrease in px for high-order streams in 
Ecoregion 9 (the Northern Basin and Range) to a 3% 
increase for high-order streams in Ecoregion 7 (the 
Klamath Mountains/California High North Coast 
Range).  For the NHD and GRTS, the range was 
from a 11% decrease for streams without a recorded 
stream order in Ecoregion 6 (the Eastern Cascades 
Slopes and Foothills) to a 10% increase for streams 
without a recorded stream order in Ecoregion 7.  
Similar variability was observed for the NWI and 
NWIb.  Stratification was slightly more likely to 
improve precision, and decrease px for SRS than 
for GRTS, but this effect was slight.  Stratification 
was also slightly less likely to improve precision 
for less common resource types, such as high-order 
streams in the NHD or lacustrine wetlands in the 
NWI, although this relationship was also highly 
inconsistent.

Figure 2.  Percent change in px between SRS and GRTS 
for unstratified and stratified designs for the NHD, 
NWI, and NWIb; values below zero indicate GRTS has 
a smaller px value and is more-precise than SRS; aster-
isks indicate significance level (*p-value <0.05; **p-value 
<0.01; ***p-value <0.001).
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Figure 3.  Percent change in px with stratification for SRS and GRTS designs for NHD (top), NWI (middle) and 
NWIb (bottom); cell color indicates the direction and magnitude of the differences; values below zero indicate the 
stratified design had a smaller px and was more precise than the unstratified design; asterisks indicate significance 
level (*p-value <0.05; **p-value <0.01; ***p-value <0.001); values in parentheses indicate the percent of the sample 
allocated to each of the thirteen ecoregions, defined as: Cascades (1); Central Basin and Range (2); Central Cali-
fornia Foothills and Coastal Mountains (3); Central California Valley (4); Coast Range (5); Eastern Cascades Slopes 
and Foothills (6); Klamath Mountains/California High North Coast Range (7); Mojave Basin and Range (8); Northern 
Basin and Range (9); Sierra Nevada (10); Sonoran Basin and Range (11); Southern California Mountains (12); and 
Southern California/Northern Baja Coast (13).
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Discussion

	 Evaluation of design based approaches for 
estimating extent of streams and wetlands showed: 
1) design-based sampling balanced measurement 
of wetlands, which have a patchy distribution, 
with measurement of streams, which are more 
evenly distributed; 2) the GRTS approach produced 
less biased estimates than SRS and provided 
representation of all subpopulations and regions 
of interest; 3) there was no clear and consistent 
advantage of stratification over an unstratified design; 
and 4) the design-based approaches used may not 
adequately sample rare or spatially restricted aquatic 
resources.
	 The observed benefits from GRTS sampling 
are consistent with the theoretical basis of the 
sampling methodology and provide substantial 
benefits over SRS.  By increasing the diversity and 
balance of sampled landscapes, spatially balanced 
sampling is expected to minimize the potential 
impacts of small-scale autocorrelation on sample 
variance (Stevens and Olsen 2003, 2004).  Our 
results also suggest GRTS sampling may be a more 
effective approach, in some contexts, for reducing 
sample variance than use of stratification with 
optimum allocation.  Optimum allocation reduces 
sample variance by allocating sample locations to 
individual stratum according to both the size and 
the variance of the population within each stratum 
(Bosch and Wildner 2003).  This approach, used 
by the NWI-S&T program, can produce a spatially 
representative sample and reduce sample variance, 
but requires accurate information about the spatial 
variability in the population (Dahl 2011).  Stratum 
size and variability drive stratification with optimum 
allocation (Bosch and Wildner 2003); therefore, 
stratification is most likely to reduce variance for 
large strata or subpopulations, and is less likely to 
reduce variance, or may even increase variance, for 
small strata or rare subpopulations.  In contrast, the 
size and variability of individual strata do not drive 
allocation for spatially balanced sampling methods, 
such as GRTS, and therefore may be more likely to 
decrease variance, as was observed here, for all strata 
and subpopulations.
	 Other simulated sampling studies have shown 
that stratification can be employed to reduce 
overall sample variance and to guarantee minimum 
sample sizes for subpopulations of interest (Miller 
and Ambrose 2000, Jongman et al. 2006).  While 
stratification is commonly viewed as a significant 

improvement for many sampling approaches, we do 
not believe it is appropriate for the California S&T 
program.  The mixed results for different regions 
and resource types do not, by themselves, provide 
consistent support for or against stratification.  In 
addition, stratification may pose other limitations 
for implementation of an S&T program.  First, 
ecoregions are not the only subregions the State may 
want to use for reporting results.  Reporting may 
be required by geopolitical units such as counties 
or congressional districts.  Unstratified sampling 
preserves the ability to conduct post-hoc analysis 
using a variety of groups or categories, thereby 
maintaining flexibility in the overall program design.  
Second, the allocations used in simulations were 
based on the stream and wetland distribution in 
the NWI and NHD.  These allocations most likely 
do not represent the ideal allocation due to the 
incompleteness of the datasets and changes in stream 
and wetland extent since creation of the NHD and 
NWI data layers.  Therefore, these allocations are 
unlikely to be accurate for the implemented S&T 
program.  The simulations represent a best-case 
scenario where the information used for allocation 
is accurate and complete.  If this best-case scenario 
cannot provide clear and consistent support for 
stratified over unstratified GRTS sampling, it seems 
less likely that an actual implementation, where the 
allocation information is incomplete and possibly 
inaccurate, will be successful.
	 While estimates of overall aquatic resource 
density are potentially achievable with acceptable 
levels of precision, estimates for rare or spatially 
limited aquatic resource types had significantly lower 
precision in this study.  Sample variance improved 
for GRTS compared to SRS, but was not reliably or 
significantly improved by stratification.  Accurate 
estimates for rare populations are a challenge for all 
probabilistic sampling designs.  Options to address 
this issue typically lead to substantially different 
designs, such as adaptive sampling, stratification with 
regional intensification, or modification of basemaps 
and target regions (Smith et al. 2003, Guisan et al. 
2006).  Each of these designs requires assumptions 
about the distribution of the rare population.  
However, these assumptions can potentially bias 
the resulting estimates if based on incomplete 
information or if applied imperfectly (Thompson and 
Seber 1994).  Therefore, modification of the sampling 
design to address limitations in rare population 
measurement should only be pursued if monitoring 
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objectives specifically emphasize accurate estimates 
for rare populations over other objectives.  In the 
case of the California S&T program, the emphasis 
is on accurately monitoring total aquatic resource 
extent; therefore, modification of the design to 
possibly increase accuracy for a rare subtype would 
be inappropriate.  If information about rare wetlands 
or streams becomes more important at a later point 
in time, the results from the S&T observations could 
possibly provide the information necessary to target 
rare subtypes.
	 Our results suggest GRTS provides both spatial 
balance and precision for the monitoring of aquatic 
resource extent and distribution.  This result agrees 
with analysis conducted by the MN-S&T program, 
which also uses unstratified GRTS sampling (Kloiber 
2010).  The MN-S&T program also specifically 
evaluated the benefits of stratification according to 
ecoregion, but determined it did not offer statistical 
advantages (Deegan and Aunan 2006).  In contrast, 
the NWI-S&T and the NILS use stratification and 
systematic sampling, respectively (Ståhl et al. 2010, 
Dahl 2011).  However, both of those programs chose 
their respective approaches in order to increase the 
spatial balance and improve the precision of the 
resulting sample.  It is also important to note that the 
GRTS sampling methodology was developed after 
the NWI-S&T program was designed.
	 Inclusion of both streams and wetlands is 
a substantial difference between the objectives 
of the California S&T program design and the 
objectives of existing S&T programs, which focus on 
monitoring wetland extent.  In addition to hydrologic 
connections, California streams provide valuable 
aquatic habitat for a number of species that may also 
utilize wetland habitats (Riley et al. 2005, Collins et 
al. 2008).  Accurate stream extent and distribution 
information is also relevant for many of the same 
scientific and management applications as wetland 
extent information.  Our analysis shows that aquatic 
resources with very different spatial distributions -- 
evidenced in California by patchy wetlands and more 
evenly distributed streams -- can be simultaneously 
accommodated by a GRTS based design.  
	 Probabilistic monitoring clearly cannot replace 
comprehensive maps, which are essential for site-
specific actions.  However, this study supports the 
use of probability-based monitoring of wetland and 
stream density as part of a coordinated strategy for 
monitoring wetland and stream extent and condition.  
In addition to providing estimates of wetland 

and stream density, with unbiased measures of 
uncertainty, probabilistic maps can serve as a sample 
frame for ambient, field-based condition assessment 
using tools such as wetland rapid assessment and 
indices of biotic integrity.  At the time of this writing, 
less than ten percent of the State of California 
has wetland or stream maps produced within the 
previous ten years.  Absence of an appropriate 
basemap significantly handicaps probability based 
investigations of wetland or stream condition using 
field-based methods, performed outside of recently 
mapped areas.  Probabilistically mapped plots 
provide a cost-effective method for bridging this gap 
by providing spatially distributed, sampling units.  
Mapped S&T plots can provide a representative 
sample frame from which a subset of plots could 
be randomly selected and used for field-based 
assessments of condition or function.  
	 Results of this study clearly show the feasibility 
and promise of a probabilistic approach to estimating 
wetland status and trends.  By providing a spatially 
balanced sample, GRTS significantly and consistently 
reduced sample variance, thereby increasing power 
to detect change and reducing the necessary sample 
size.  GRTS sampling also provides additional 
statistical and practical advantages, not directly 
addressed here.  These advantages are a result of 
how the GRTS sample is drawn and analyzed.  First, 
GRTS samples can be analyzed using a local variance 
estimator which reduces sample variance and, 
therefore, the minimum sample size (Stevens and 
Olsen 2003, 2004).  Second, GRTS sample selection 
greatly simplifies the selection of an “over-sample” 
to provide additional locations for substitution in 
case locations in the original sample are unsuitable 
for study objectives (Larsen et al. 2008).  The 
over-sample, also known as a master sample, 
approach allows for local or regional intensification 
and removes the need to perform a supplementary 
sample draw for local mapping efforts, which would 
require GIS and statistical software expertise as well 
as access to the original sample frame.  Perhaps most 
importantly, the master sample ensures that additional 
sampling locations can be added over time while 
maintaining the spatial balance of the entire sample, 
as long as locations are used in order from the GRTS 
master sample list (Theobald et al. 2007).  
	 This study supports an unstratified, GRTS 
sampling design for monitoring aquatic resource 
extent in California.  Based on our simulated 
sampling results, this design consistently and 
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reliably decreases sample variance compared to 
stratified and SRS designs.  These gains are also 
consistent for both wetlands, which have a patchy 
distribution in California, and for streams, which 
have a more uniform distribution.  Our results 
provide the first rigorous evaluation of applying an 
unstratified, GRTS design to an S&T monitoring 
program.  These programs are a cost-effective 
mechanism for monitoring aquatic resource extent 
over large areas, which is necessary for scientific, 
management, and policy decision-making.  Finally, 
the approach we used can easily be extended to other 
states and natural resources to evaluate probabilistic 
design questions.
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