SCCWRP Annual Report 2013

Terrestrial nutrient loads and fluxes to the Southern California Bight, USA

Ashmita Sengupta¹, Martha A. Sutula¹, Karen McLaughlin¹, Meredith Howard¹, Leisl Tiefenthaler¹ and Theodore Von Bitner²

¹Southern California Coastal Water Research Project, Costa Mesa, CA ²Orange County Public Works, OCWatersheds, Orange, CA

ABSTRACT

This study presents the first comprehensive regional estimates of terrestrial total nitrogen (TN) and total phosphorus (TP) loads and fluxes, from point sources (PS), non-point sources (NPS), and natural sources to the Southern California Bight (SCB), based on an extensive dataset collected across SCB watersheds in 2008-2009. The study estimated the net increase in anthropogenic nutrient inputs for 2008-2009 compared to loads prior to urbanization (c. 1850) by modeling the contribution of natural undeveloped land-use. Anthropogenic activities have increased terrestrial nutrient loads to the SCB by 47.32 Gg TN yr⁻¹ and 2.88 Gg TP yr⁻¹, representing a 52-fold TN increase and a 30-fold TP increase from the pre-urbanization scenario. The average annual nutrient fluxes from SCB watersheds are amongst the highest fluxes observed in an urbanized coastal setting (3,157 kg TN km⁻² and 210 kg TP km⁻²). At a sub-regional scale, fluxes range from 15,988 kg TN km⁻² and 1,038 kg TP km⁻² in the highly urbanized and PS-dominated Santa Monica Bay to 44 kg TN km⁻² and 19 kg TP km⁻² in the relatively undeveloped Santa Barbara sub-region. Point sources contribute 92% of TN and 76% of TP loads to the SCB, with less than 1% of the loads attributed to the natural background sources. PS is a chronic source of nutrient loads to the SCB at a magnitude and timing atypical in Mediterranean ecosystems.

Full Text

http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2013AnnualReport/ar13 245 258.pdf