SCCWRP Annual Report 2013 ## Nitrogen-fixing cyanobacteria (free-living and diatom endosymbionts): Their use in southern California stream bioassessment Rosalina Stancheva¹, Robert G. Sheath¹, Betsy A. Read¹, Kimberly D. McArthur¹, Chrystal Schroepfer¹, J. Patrick Kociolek² and A. Elizabeth Fetscher³ ## **ABSTRACT** A weight-of-evidence approach was used to examine how nutrient availability influences stream benthic algal community structure and to validate nutrient-response thresholds in assessing nutrient limitation. Data from 104 southern California streams spanning broad nutrient gradients revealed that relative abundance of N₂-fixing heterocystous cyanobacteria (*Nostoc*, *Calothrix*), and diatoms (*Epithemia*, *Rhopalodia*) containing cyanobacterial endosymbionts, decreased with increasing ambient inorganic N concentrations within the low end of the N gradient. Response thresholds for these N₂ fixers were 0.075 mg L⁻¹ NO₃-N, 0.04 mg L⁻¹ NH₄-N, and an N:P ratio (by weight) of 15:1. The NO₃-N threshold was independently validated by observing nitrogenase gene expression using real-time reverse transcriptase PCR. Morphometric analysis of cyanobacterial endosymbionts in *Epithemia* and *Rhopalodia* indicated that endosymbiont biovolume per diatom cell decreased with increasing NO₃-N (for levels <0.02 mg L⁻¹). Our findings indicate that abundance of heterocyst-containing cyanobacteria and endosymbiont-containing diatom cells are good indicators for rapid nutrient biomonitoring. Because heterocystous cyanobacteria and *Epithemia/Rhopalodia* were not always recorded together at N-limited sites, examining both assemblages jointly may provide a more comprehensive assessment of stream nutrient limitation than using either assemblage alone. ## **Full Text** http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2013AnnualReport/ar13_205_222.pdf ¹California State University, Department of Biological Sciences, San Marcos, CA ²University of Colorado Boulder, University of Colorado Museum, Boulder, CO ³Southern California Coastal Water Research Project, Costa Mesa, CA