SCCWRP Annual Report 2013

Genomics in marine monitoring: New opportunities for assessing marine health status

Sarah J. Bourlat¹, Ángel Borja², Jack Gilbert³, Martin I. Taylor⁴, Neil Davies^{5,6}, Stephen B. Weisberg⁷, John Griffith⁷, Teresa Lettieri⁸, Dawn Field^{6,9}, John Benzie^{10,11}, Frank Oliver Glöckner¹², Naiara Rodríguez- Ezpeleta², Daniel P Faith¹³, Tim P. Bean¹⁴ and Matthias Obst¹

ABSTRACT

This viewpoint paper explores the potential of genomics technology to provide accurate, rapid, and cost efficient observations of the marine environment. The use of such approaches in next generation marine monitoring programs will help achieve the goals of marine legislation implemented world-wide. Genomic methods can yield faster results from monitoring, easier and more reliable taxonomic identification, as well as quicker and better assessment of the environmental status of marine waters. A summary of genomic methods that are ready or show high potential for integration into existing monitoring programs is provided (e.g., qPCR, SNP based methods, DNA barcoding, microarrays, metagenetics, metagenomics, transcriptomics). These approaches are mapped to existing indicators and descriptors and a series of case studies is presented to assess the cost and added value of these molecular techniques in comparison with traditional monitoring systems. Finally, guidelines and recommendations are suggested for how such methods can enter marine monitoring programs in a standardized manner.

Full Text

http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2013AnnualReport/ar13 115 135.pdf

¹University of Gothenburg, Department of Biological and Environmental Sciences, Gothenburg, Sweden

²AZTI-Tecnalia, Marine Research Division, Pasaia, Spain

³University of Chicago and Argonne National Laboratory, Argonne, IL

⁴Bangor University, School of Biological Sciences, UK

⁵University of California Berkeley, Gump South Pacific Research Station, Moorea, French Polynesia

⁶University of Oxford, Biodiversity Institute, Department of Zoology, Oxford, UK

⁷Southern California Coastal Water Research Project, Costa Mesa, CA

⁸European Commission, Institute for Environment and Sustainability, DG Joint Research Centre, Ispra, Italy

⁹Centre for Ecology and Hydrology, Oxford, UK

¹⁰University College Cork, School of Biological Earth and Environmental Sciences, Cork, Ireland

¹¹WorldFish Centre, Jalan Batu Maung, Penang, Malaysia

¹²Jacobs University, Bremen and Max Planck Institute for Marine Microbiology, Bremen, Germany

¹³The Australian Museum, Sydney, Australia

¹⁴Cefas Weymouth Laboratory Centre for Environment Fisheries and Aquaculture Science, Weymouth, UK