SCCWRP Annual Report 2013

Passive sampling methods for contaminated sediments: Practical guidance for selection, calibration and implementation

Upal Ghosh¹, Susan Kane Driscoll², Robert M. Burgess³, Michiel T. O. Jonker⁴, Danny Reible⁵, Frank Gobas⁶, Yongju Choi⁷, Sabine E. Apitz⁸, Keith A. Maruya⁹, William R. Gala¹⁰, Munro Mortimer¹¹ and Chris Beegan¹²

ABSTRACT

This paper provides practical guidance on the use of passive sampling methods (PSMs) that target the freely dissolved concentration (C_{free}) for improved exposure assessment of hydrophobic organic chemicals in sediments. Primary considerations for selecting a PSM for a specific application include clear delineation of measurement goals for Cfree, whether laboratory-based "ex-situ" and/ or field-based "in-situ" application is desired, and ultimately which PSM is best suited to fulfill the measurement objectives. Guidelines for proper calibration and validation of PSMs, including use of provisional values for polymer-water partition coefficients, determination of equilibrium status, and confirmation of non-depletive measurement conditions are defined. A case study is described to illustrate how the measurement of C_{free} afforded by PSMs reduces uncertainty in assessing narcotic toxicity for sediments contaminated with polycyclic aromatic hydrocarbons. The paper concludes with a discussion of future research that will improve the quality and robustness of C_{free} measurements using PSMs, providing a sound scientific basis to support risk assessment and contaminated sediment management decisions.

Full Text

http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/2013AnnualReport/ar13 095 114.pdf

¹University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD

²Exponent, Maynard, MA

³US Environmental Protection Agency, Office of Research and Development, Narragansett, RI

⁴Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands

⁵University of Texas, Austin, TX

⁶Simon Fraser University, School of Resource and Environmental Management, Burnaby, Canada

⁷Stanford University, Department of Civil & Environmental Engineering, Stanford, CA

⁸SEA Environmental Decisions, Ltd., Hertfordshire, UK

⁹Southern California Coastal Water Research Project, Costa Mesa, CA

¹⁰Chevron Energy Technology Company, San Ramon, CA

¹¹The University of Queensland, National Research Centre for Environmental Toxicology, Brisbane, Australia

¹²California State Water Resources Control Board, Sacramento, CA