Use of an exogenous plasmid standard and quantitative PCR to monitor spatial and temporal distribution of *Enterococcus* spp. in beach sands

Elizabeth Halliday, John F. Griffith and Rebecca J. Gast

ABSTRACT

Studies using culture dependent methods have indicated that enterococci, the fecal indicator used to monitor marine waters for the potential of enteric disease risk to swimmers, can be abundant in beach sands and may contribute to water column indicator exceedances. A quantitative Polymerase Chain Reaction (qPCR) method for the Enterococcus genus was tested and applied to more rapidly determine the amount of enterococci in beach sands and study their distribution over space and time. The qPCR method amplified a 23S rDNA sequence specific to Enterococcus (Ludwig and Schliefer 2000), and was used to examine subsamples and composite samples of wet and dry beach sand from Avalon Bay, CA. The differences in efficiency of DNA recovery and inhibition in qPCR reactions were accounted for by spiking pairs of duplicate subsamples with a known amount of pGEM® plasmid before or after extraction, respectively (Coyne et al. 2005). This study revealed levels of environmental inhibition that were similar in wet and dry sands, and efficiency of DNA recovery that was observably lower for wet beach sands and varied between years. Using the correction factors generated by this method to estimate the abundance of Enterococcus, we show that wet and dry beach sands both have *Enterococcus* spp. populations that can vary dramatically from day to day, and often are potentially higher than the equivalent health standards mandated for recreational waters.

INTRODUCTION

Coastal managers in the United States (US) measure the microbiological quality of water by culturing fecal indicator bacteria (FIB), which are considered proxies for the possible presence of disease-causing pathogens. Epidemiological studies have shown that the density of enterococci in marine waters predicts relative risk of swimming-associated illness (Cabelli et al. 1979, 1982; Haile et al. 1999) and so *Enterococcus* spp. are monitored weekly during the bathing season as mandated by the federal government (USEPA 2000). Although it is well known that sands naturally accumulate cells and organic matter from the overlying water, the contribution of beach sands to ambient water quality is not well understood and no FIB standards exist for beach sands. On lake beaches, sands have been shown to sustain populations of indicator bacteria and act as a diffuse non-point source of FIB to the lake (Whitman and Nevers 2003), indicating sands may not act as a net sink for FIB as previously assumed. Along the California coast, Yamahara et al. (2007) show that beaches are a diffuse source of FIB to marine water, and that seawater can mobilize the loosely attached FIB from sands. Enterococci can also be resuspended by stream and storm water, thereby impacting beach water quality (Le Fevre and Lewis 2003). Furthermore, in the tropics, favorable nutrient concentrations and temperature within sediments allow fecal bacteria to multiply and become a minor population of the sediment microbiome (Roll and Fujioka 1997). Because the abundance of FIB, including those from humans, varies greatly in coastal waters spatially and temporally (Boehm et al. 2003, Boehm 2007), understanding the potentially dynamic relationship between sedimentary cells and the populations measured weekly in the water column may further characterize the variation observed in fecal indicator bacteria in coastal waters.

Many of the studies that have recently addressed the microbial communities of marine recreational

1 Woods Hole Oceanographic Institution, Woods Hole, MA
beach sands have utilized culture-based methods (e.g., Elmanama et al. 2005, Ferguson et al. 2005, de Oliveira et al. 2008). However, culture-based monitoring in beach sands may not adequately characterize populations of Enterococcus spp. in sediments because these methods exclude organisms that are dormant or in the viable but nonculturable state. Studies of the viability of E. faecalis in artificial seawater microcosms show that at least 80% of the cells are still viable when no colonies are observed (del Mar Lleo et al. 2006). By using a molecular method, we seek to include viable but non culturable organisms in our description of the Enterococcus population in beach sands.

Our primary objective in this study was the development of a flexible qPCR method that can be used for rapid and sensitive quantification of microbes, including Enterococcus, in wet and dry beach sands. Expanding upon a method developed by Coyne et al. (2005), we incorporated an external plasmid standard to estimate the efficiency of the DNA recovery process after extraction, as well as the impact of sample-specific inhibition of the qPCR assay; in doing this, we address and attempt to correct biases associated with a molecular-based method of detection. A further objective was the application of this method, using the sands of Avalon Bay, CA, USA as a case study, to describe the scale of significant spatial heterogeneity of the Enterococcus population in sands over time. By applying our method to individual subsamples and composite samples, we hope to guide future choices for sampling and compositing efforts.

Study Site

The sands from the recreational beach at Avalon Bay, Catalina Island, California were sampled for this study (Figure 1). Avalon Bay has a history of bacteriological exceedances. In 2006, the year prior to this study’s sampling regime, waters at Avalon Bay violated public health standards 53% of the times sampled (NRDC 2007). Storm drains and storm water runoff are not considered to be major contributors to pollution at this location (Boehm et al. 2003), and in the summer of 2007 Avalon Bay had the worst dry-weather water quality in the entire state of California (Heal the Bay 2008).

METHODS

Beach Sand Sampling

Sand samples were collected at 8 a.m. on Thursdays, Fridays, Saturdays, and Sundays beginning on 26 July and ending on 9 September, 2007, and at the same sites at 12 p.m. on Fridays, Saturdays, and Sundays during August, 2008. The beach sand was sampled above and below the water line at sites designated A, B, and C along the beach (Figure 1). Triplicate sand cores from wet sand, collected under approximately 10 cm water, and dry sands, collected from the high-tide line, were taken at each site. The sand was cored with sterile 50-ml polypropylene Falcon tubes. Cores were flash frozen in liquid nitrogen and shipped to the Woods Hole Oceanographic Institute, Woods Hole, where they were subsequently stored at -80°C until extraction.

DNA Extraction of Environmental Samples

Nucleic acids were extracted from 0.25 g of sand using the MoBio PowerSoil DNA Kit (MoBio Laboratories, Carlsbad CA, USA). The subsamples selected for extraction were taken from the surface sand of the triplicate sand cores, which were then pooled before extraction. To generate a whole-beach composite sample, surface sand from the triplicates from all three sites along the beach was combined and 0.25 g removed for extraction.

Quantitative Real-Time PCR Detection of Enterococcus

The Enterococcus assay uses the forward primer ECST748F (5’-AGAAATTCCAAACGAACTTG) targeting enterococci, lactococci, and some clostridia, and the reverse primer ENC854R (5’-CAGTGCTCTACCTCCATCATT), specific for the...
genus Enterococcus (Ludwig and Schliefer 2000). The qPCR reactions were run in triplicate for every environmental extract. Each 25-µl reaction contained 1 µl of environmental template DNA, 100 ng ECST748F, 100 ng ENC854R, 12.5 µl SYBR Green Master Mix, and 9.5 µl sterile milliQ water. The cycling parameters began with a 95°C hold for 3 minutes, then proceeded through 50 cycles of 95°C (10 seconds), 52°C (30 seconds, after which real-time fluorescence detection was enabled) and 72°C (10 seconds), with additional denaturing (95°C for 1 minute) and extended annealing (52°C for 1 minute). A final melt curve cycle began at 52°C and ended at 95°C, with a temperature change of +0.5°C every 30 seconds. Duplicate dilution series of purified E. faecalis DNA were used to construct the standard curve and negative duplicates (reactions without template) were run on each plate. Standard curves were based on reactions with starting quantities of 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, and 10 fg of E. faecalis DNA. The qPCR reactions were run with a Biorad myIQ thermal cycler in plates sealed with optically clear flat caps. Plates were prepared on the bench or on ice, for qPCR comparison as discussed later.

Melt curves were used as a quality control measure, with E. faecalis DNA having a melting point of 80.5°C. Among triplicate qPCR reactions, occasionally there would be a reaction whose amplification was not exponential and whose melt curve did not conform to the profile. In these cases, the particular reaction would be excluded from the analysis and the environmental sample quantified from the mean of two, rather than three, qPCR reactions.

Evaluating Efficiency of DNA Recovery and Environmental Inhibition

For samples collected on days representing the course of the summer sampling period (28 July, 11 August, 25 August, and 8 September in 2007 and 2, 18 and 30 August in 2008), an exogenous DNA standard (pGEM Vector, Promega) was added to the MoBio kit’s initial extraction buffer (“C1”, an SDS-based lysis buffer) during the first step of the extraction. The 500-µl extraction buffer was prepared using 1 μg pGEM plasmid, then 60 µl was added to each 0.25-g sand sample. From these samples, 100% recovery efficiency would be equivalent to recovery, via qPCR, of 1.2 ng pGEM/µl template (extraction product) DNA. This use of the vector as an exogenous reference standard expands on a method developed (Coyne et al. 2005) for qPCR detection of

harmful algal bloom species in water samples, but relies on SYBR green for target detection.

The eluted DNA of unspiked extracted duplicate samples had an equivalent amount of pGEM (1.2 ng pGEM/µL extraction product) added in order to achieve the same idealized concentration as the samples extracted with pGEM. Rate of pGEM recovery from these samples via qPCR yielded an estimate of environmental inhibition. The pGEM plasmid primers m13F and pGEMR were used in triplicate qPCR reactions and compared to standard curves constructed with known amounts of pGEM (dilution series of 1 ng to 1*10^{-6} ng plasmid) in order to determine the recovery rates of pGEM from samples. Negative duplicate reactions lacking pGEM were run on each plate. The thermal cycler parameters began with a 95°C hold for 3 minutes, then proceeded through 50 cycles of 95°C for 15 seconds and 60°C for 1 minute, followed by a melt cycle beginning at 60°C and ending at 95°C, with a temperature change of +0.5°C every 30 seconds.

Estimation of Enterococcus Cell Density Based on qPCR Results

To calculate the total enterococcal DNA (T_{DNA}) in 0.25 g of sand, the starting quantity (s_q) of Enterococcus DNA (fg/µl) reported by qPCR was multiplied by 100, to correct for the fact that only 1 of 100 µl eluted DNA was quantified. This adjusted reaction s_q is then corrected for inhibition of PCR (I) and efficiency of DNA recovery by the extraction protocol (E). The fraction of pGEM recovered after adding to eluted DNA is I, and the fraction of pGEM recovered after addition at the beginning of the extraction protocol is E. It was important to individually quantify I and E, rather than simply observe total pGEM loss, because of the potential variability of I and E in wet and dry sands in the environment and over time. We considered an understanding of the differences critical for further optimization and application of the protocol. The correction can be described as:

\[
T_{DNA} = 100s_q *(1/I)*(1/E)
\]

Equation 1

Total DNA was converted to cell equivalents by dividing by the approximate DNA/enterococcal cell. The approximate amount of DNA per cell was calculated using the results of a completed E. faecalis

Exogenous plasmid standard and qPCR to monitor Enterococcus in beach sands - 105
Exogenous plasmid standard and qPCR to monitor Enterococcus in beach sands

Exogenous plasmid standard and qPCR to monitor Enterococcus in beach sands

Statistical Analysis

Because the data is not normally distributed, but is similarly distributed between sites (skewed right), nonparametric statistical tests (Kruskal-Wallis, Mann-Whitney, and the Wilcoxon signed-rank test) were chosen for data analysis, using p = 0.05 for the α-level of significance.

RESULTS

Reliability of pGEM as a Measurement of Efficiency of DNA Recovery and PCR Inhibition

The effect of temperature during plate preparation was evaluated. The abundances of pGEM and Enterococcus in sand samples were quantified by qPCR using plates that were prepared at room temperature and on ice. For pGEM, a clear difference was observed in the efficiency of recovery for wet sand in comparison to dry sand, with dry sand having about 10% better extraction efficiency than wet sand (Table 1). However, preparing the plates on ice yielded substantially less-inhibited PCR reactions (Table 1). The environmental inhibition did not significantly differ between wet and dry sand in either case.

When the plates were set up in a similar manner for Enterococcus quantification, similar results were observed; that is, significantly more enterococcal DNA was detected when the plate had been prepared on ice, indicated by Wilcoxon signed-rank test for correlated samples (W = 36, n = 8, with an approximate two-sided p-value of 0.01 (α0.05 = 30)). However, by using the pGEM efficiency and inhibition correction factors appropriate to experimental conditions to calculate cell equivalencies from the DNA recovered, we arrived at similar cell equivalencies for each sample. The Wilcoxon signed-rank test showed no significant difference between cell equivalencies from the different treatments after correction (W = 2, n = 8, α0.05 = 30). These results indicated that pGEM accurately reflected PCR reaction conditions, that extraction efficiency was consistently different for wet and dry sands, and that PCR inhibition was relatively constant in these beach sands over time. This result may not apply to all environmental matrices, but increased our confidence in the use of pGEM as a standard for this system.

The Reliability of the Standard Curve and Error Associated with Environmental Samples

Over the course of many individual runs (n > 20), the standard curve dilution series of both pGEM and E. faecalis DNA amplified consistently and each dilution had low standard error in the threshold cycle (Figure 2). We noted that as the amount of E. faecalis DNA in the qPCR reaction decreased, the standard deviation between qPCR replicates increased. Our environmental samples, which usually fell near the low end of our standard curve dilution series (femtograms), also reflect this observa-

Table 1. Assessment of standard deviation (σ) related to pGEM recovery, efficiency, and inhibition in wet and dry sand.

<table>
<thead>
<tr>
<th>Sand Type</th>
<th>On Bench</th>
<th></th>
<th>On Ice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average Recovery (%)</td>
<td>σ</td>
<td>Average Recovery (%)</td>
</tr>
<tr>
<td>pGEM Spiked Before Extraction</td>
<td></td>
<td>4.10</td>
<td>0.36</td>
<td>55.50</td>
</tr>
<tr>
<td>(Efficiency)</td>
<td>Wet Sand</td>
<td>(n = 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry Sand</td>
<td>(n = 4)</td>
<td>13.30</td>
<td>1.11</td>
</tr>
<tr>
<td>pGEM Added to Eluted DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Inhibition)</td>
<td>All Samples</td>
<td>(n = 8)</td>
<td>63.50</td>
<td>5.20</td>
</tr>
</tbody>
</table>
Maximizing the amount of starting quantity DNA, and maximizing the reaction efficiency, therefore minimizes the error associated with regression on the standard curve.

Composite vs. Grab and Pooled Sampling at Avalon Bay Beach in 2007

Duplicate whole-beach composite subsamples that were extracted for the pGEM experiments were compared to an average daily value calculated from sites A, B and C (Figure 1). Additionally, on August 11 and September 8, subsamples from each of the triplicate samples from site C were extracted and analyzed to determine the variability within a pooled triplicate site sample. Results indicated a high level reproducibility between composite samples. The Wilcoxon signed-rank test showed no significant difference between the amount of Enterococcus at sites when calculated by averaging triplicate values or by composite sampling (W = 6.0, n = 4, Wilcoxon sign-ranked z-score = 0.365, two-sided p = 0.715).

Spatial Differences in Enterococcus in Wet Sand at Avalon Bay Beach

The pooled triplicates for wet sites A, B and C (Figure 1) were extracted and quantified for every day of the study. The amount of Enterococcus in wet sand by site is shown in Figure 3. Though sites did show some individual variation over the summer, no significant difference was observed in the average amount of Enterococcus between sites A, B and C (Kruskal-Wallis test, H = 1.03, p = 0.5975).

Wet Sands Compared to Dry Sands

For samples collected in 2007, the daily amount of Enterococcus in wet sand was estimated by averaging the site values, and because no significant differences were observed spatially, the daily amount of Enterococcus in dry sand was measured from whole-beach composite samples. In 2008 all samples were whole-beach composites. In 2007, the wet sand daily averages showed distinct peaks in the amount Enterococcus DNA recovered, which occurred roughly every two weeks over the entire course of the summer (Figure 4). In the dry sands, there were consistently low levels of enterococci until August 11. The amount of Enterococcus DNA recovered from the dry sand exceeds the amount of Enterococcus DNA in the wet sand for the rest of the summer. However, the conversion of DNA to cell equivalents (Figure 5) highlights the importance of measuring the difference in efficiency of recovery because a slightly different, and interesting, pattern emerges.

For example some local maximums in dry sand, Enterococcus DNA are, after correction, no longer so different from the wet sand (e.g., 215 cells and 243 cells in wet and dry sand, respectively, on September 2). Most interestingly, the biggest spike recorded for the summer in the wet sands (1935 cells/0.25 g on August 24) was followed by a precipitous decrease in the Enterococcus population in the wet sand, and only two days later we observed the summer peak for dry sands (1519 cells/0.25 g on August 26). We saw a similar pattern again in 2008 (Figure 6), when a tremendous spike was observed in the enterococcal population of the wet sand on August 29, followed...
thenextdaybyaprecipitousdeclineofcellsinthewet
sandandcorrespondingincreaseofcellsinthedry
sand. Overtheentire2007samplingperiod,wetsand
hadahigheramountofenterococci
(Mann-Whitney test, U = 268.5, z = 1.65, p = 0.0989)
thand dry sand. In2008, therewasnosignificantdif-
ferenceintheamountof
Enterococcus
inthewetand
dry sands (Mann-Whitney test, U = 90, z = 0.34, p =
0.7339), thoughthewet sand had the highest numbers
recorded allsummeronAugust15and17.

Tidal Impact

All of the daily composite dry sand samples and
the daily average wet sand samples were ranked by

amount of Enterococcus DNA recovered. One sig-
ificant tidally-associated difference emerged, in that
the average rank of samples taken in 2007 on days
when the tide was high (sampled within 1.5 hours of
truetide, n = 18) were of greater ranking than
the average of samples taken on days when the tide
was at a low or flood stage (n = 36; Mann-Whitney
test, U = 194.5, z = 2.37, p = 0.0178). A similar
analysis for 2008 was untenable because overall
there were fewer data points, and all samples were
taken during the ebb or flood tide and none at the
high or low tide marks. However, it is worth noting
that in 2008, the largest peak in enterococci concen-
tration in the wet sand occurred during the spring
tidal period (August 15 and 16; full moon on

Figure 3. Recovery of Enterococcus spp. DNA in wet
sand at Avalon Bay sampling sites.

Figure 4. Enterococcus spp. DNA recovered from
beach sand at Avalon Bay.

Figure 5. Enterococcus spp. in Avalon Bay beach

Figure 6. Enterococcus spp. in Avalon Bay beach
sand, 2008.
August 16, 2008; new moon on August 1 and 30, 2008). Likewise, in 2007 the peaks in enterococci occur during spring tidal periods, directly prior to new (August 12 and September 11) and full (July 30 and August 28) moons. This is purely observational, as there were no statistically significant correlations between the amount of enterococci in the sand and the tidal range of that day or with the height of the water when sampled.

Discrepancy in Detection of *Enterococcus* via QPCR vs. MPN

The Most Probable Number (MPN) method of *Enterococcus* detection using the Enterolert® 96-well tray, a common monitoring method, was used by Southern California Coastal Water Research Project on sediments collected at the same sites at the same time. There was no correlation between the number of cells detected using qPCR and the number of cells detected from the sediments using MPN. The wet sand MPN measurements taken at sites A, B and C (Figure 1) collectively averaged 3.1 cells/g and ranged from 0 to 42 cells, whereas all the wet sand qPCR measurements had an average detection of 612 cells/gram, with a range of 1 to 4880 cells/gram.

There was some agreement between peaks in both data sets (peaks around August 11/12, and September 8/9). The ratio of the averages for MPN versus qPCR in this study is 0.005, which is on the lower end of those reported by other studies (Haugland et al. 2005, He and Jiang 2005, Yamahara et al. 2009).

Sand Extract Exchange

To test the difference between our qPCR method and an alternative, that of Yamahara et al. (2009), we exchanged a total of six extracted samples: two from Yamahara and four from Halliday. Our extracts were run by Yamahara using his method; his extracts were run by us using our method. The results are given in Table 2.

While our method was consistently higher in estimating the number of enterococci, there is a clear relationship between our two methods of quantification (Figure 7). Furthermore, the standard deviation of the results generated with the different methods were within the range that we observe when comparing the results of different cycler runs for the same samples (between 20 and 83 cell equivalents) with the exception of one sample for which we had a very high result. If the highest outlier was removed from each comparison then the average standard deviation between detection methods would be reduced from 85.0 to 40.4 cell equivalents, and the average stan-

<table>
<thead>
<tr>
<th>Yamahara Method (cell equivalents)</th>
<th>Halliday Method (cell equivalents)</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamaha Sample 092807-EX-1</td>
<td>31.6</td>
<td>91.5</td>
</tr>
<tr>
<td>Yamaha Sample 102807-EX-1</td>
<td>11.2</td>
<td>48.3</td>
</tr>
<tr>
<td>Halliday Sample A080407DG</td>
<td>7.4</td>
<td>36.1</td>
</tr>
<tr>
<td>Halliday Sample A080407WG</td>
<td>10.0</td>
<td>52.5</td>
</tr>
<tr>
<td>Halliday Sample A082607DG</td>
<td>19.8</td>
<td>137.3</td>
</tr>
<tr>
<td>Halliday Sample A082607WG</td>
<td>32.1</td>
<td>467.8</td>
</tr>
</tbody>
</table>

Figure 7. Sand sample exchange results.

Exogenous plasmid standard and qPCR to monitor *Enterococcus* in beach sands - 109
standard deviation between two different runs would be reduced from 48.8 to 40.6 cell equivalents.

DISCUSSION

Efficiency of DNA recovery and inhibition of PCR are two biases that can differ between sample type and potentially skew qPCR results. In this study, the pGEM plasmid proved to be a reliable way to characterize and correct for these biases, and to reconcile differences in the methods different investigators may use in qPCR plate preparation.

There are multiple examples of different approaches that have been applied to account for inhibition in quantitative PCR. They generally use either non-target DNA or some version of the target sequence as the mechanism to judge whether inhibition is occurring in the samples. We will limit our comparison to several that have been used for the detection of indicator organisms in natural samples (Lebuhn et al. 2004, Siefring et al. 2008, Shanks et al. 2009, Yamahara et al. 2009). Lebuhn et al., Shanks et al., and Yamahara et al. all employ some aspect of the desired target sequence as an internal control, which is considered more likely to reflect the same amplification biases as the actual target. Shanks et al. (2009) took the innovative approach of creating an artificial sequence of a similar size to the target that contained the same primer sites, but a different TaqMan® probe target. In the case of Lebuhn et al. (2004), samples were spiked before extraction with known numbers of the cell type being detected. Yamahara et al. (2009) directly spiked their qPCR reactions with genomic DNA from their target organism. They also determined the extraction efficiencies for their samples by spiking with a known number of enterococci, and then correcting the qPCR values for inhibition. Siefring et al. (2008) has taken probably the most effective steps towards developing an extraction and inhibition standard for enterococcal qPCR. They have redesigned the forward primer for the Enterococcus TaqMan assay, and have designed a Lactococcus specific probe within that region. This allows the simultaneous detection of enterococci and correction for extraction efficiency and PCR inhibition by spiking with Lactococcus organisms. The fact that the amplification region is the same for both the control and the target significantly reduces the effect of amplification bias for different fragments.

These methods have all taken different, but valid, approaches to deal with some of the inherent problems associated with qPCR. We believe that our approach also is valid, although there is the potential problem that the pGEM target would not reflect the same amplification efficiency as the target. In an effort to assess whether this was a problem, we participated in a small sample exchange with Yamahara. Although our values tended to be higher, the standard deviation between Yamahara’s method results and ours was within the standard deviation we observed for our method on different cycle runs of the same samples. While we are unable to say whether our method is equivalent to the others, we believe that this information does tell us that our method of correcting for DNA recovery and PCR inhibition is likely to have no more of an impact on estimation error than other issues associated with qPCR variation. These other issues include sample degradation due to multiple freeze/thaws, variability in pipetting accuracy and variability between and within qPCR machines. There is also the fact that we are using SYBR detection rather than the TaqMan probe method of Yamahara, which could contribute to our method giving slightly different values. At this point, we don’t have an absolute answer as to why our results differed in the sample exchange, but this is one of the first examples of such a comparison. We will continue to explore the reasons behind the difference, but based on the fact that there is apparently an inherent level of variability for qPCR, we argue that in our hands pGEM has been an appropriate and flexible method for estimating and correcting for DNA recovery and PCR inhibition of environmental samples.

The results of this study show that beach sands have significant Enterococcus spp. populations that are patchy spatially and temporally, and appear to be influenced by tidal stage. Although the wet sands at Avalon Bay had, overall, higher levels of enterococci, it is interesting to note that the sampling days that took place during higher (i.e., overall drier) tidal stages also had higher amounts of enterococci. At a beach like the one at Avalon Bay, which is narrow and does not have a large tidal range, this observation of wet and dry sand taken at higher tidal stages having more enterococci may correspond to common reports of dry beach sands having elevated levels of enterococci, because the sands sampled at high tide represent overall “drier” sands over the course of a day than the sands sampled at low tide. Yamahara et al. 2009 also showed that wetted sands in mesocosm experiments showed an initial decrease in enterococci numbers, but that over time, the numbers increased.
due to regrowth. The increase in enterococcal abundance in the dry sand over time at Avalon Bay suggests that after tidal wetting, the environmental populations may have regrown. We showed that at Avalon Bay composite samples effectively integrated spatial variability, thereby giving a good estimate of Enterococcus prevalence in the sand from day to day. The fact that no significant variability was observed in the Enterococcus spp. populations between the three sites may be due to the fact that Avalon Bay is a small beach, making it ideal for composite sampling. This is valuable information because whenever composite samples can be analyzed in lieu of multiple site samples, costs of supplies and time associated with molecular monitoring are drastically reduced.

When our data is converted to equivalent monitoring volumes and analyzed for bacteriological compliance (using the health current health standard of 104 CFU/100 ml, assuming one cell is equivalent to one colony forming unit (CFU) and that 1 g = 1 ml), the sand would rarely be in compliance with the health standard. Only one day (August 2, 2007) had compliance in both wet and dry sand. There were two other days when the wet sand would have been in compliance, and three other days when the dry sand would have been in compliance. In contrast, many days would exceed the health standard by several orders of magnitude. Perhaps the discrepancy between CFU detection and DNA-based detection can partially be explained by the large amounts of siliciclate minerals normally found in beach sand, which concentrate DNA from the overlying seawater (Naviaux et al. 2005). Environmental enterococcal DNA and dead cells may contribute a background signal in our monitoring. Further research is needed to understand the relative contributions of active, viable but non-culturual, and dead cells and environmental DNA in the beach sand environment. The presence of viable but non-culturual indicator organisms in sediments could be a significant part of this population, and therefore the degree to which viable but non-culturual indicator organisms are indicative of health risk, as well as the conditions that may resuscitate them in the environment, are both questions worthy of further investigation.

From a human health perspective, the sanitary quality of beach sand may be important because beach sand is a common interface of interaction between beachgoers and the marine environment. FIB in beach sands may or may not be correlated to human pathogen presence in sands, but our data suggest that monitoring programs designed to protect human health, as well as studies analyzing the fate and transport of FIB in coastal waters, should consider the potential role of sedimentary Enterococcus spp. populations.

Literature Cited

Acknowledgements

This project is supported by grants from NSF (OCE-0430742) and NIEHS (P50ES012742) to the Woods Hole Center for Ocean and Human Health. Additional funding was provided by a grant from the California State Water Quality Control Board to the Southern California Coastal Water Research Project.

Exogenous plasmid standard and qPCR to monitor Enterococcus in beach sands - 112