
ABSTRACT

Accurate quantification of stormwater pollutant
levels is essential for estimating discharges to receiv-
ing waters as required by many monitoring pro-
grams.  Numerous sampling approaches exist that
attempt to balance accuracy against level of effort
(i.e., cost) required to collect the samples.  This
study employs a novel approach by evaluating the
accuracy of different stormwater monitoring method-
ologies via the output from a continuous simulation
watershed model.  Seventy eight distinct methodolo-
gies were evaluated by “virtual sampling” of four-
teen years of model output for Ballona Creek near
Los Angeles, California.  The 78 methods can be
grouped into four general sampling strategies (with
numerous permutations): volume-paced compositing,
time-paced compositing, pollutograph sampling, and
microsampling.  The performance of each sampling
strategy was evaluated by comparing the median rel-
ative error (bias) between the virtually sampled and
the  true modeled event mean concentration (EMC)
of each storm.  As a combined measure of bias and
precision, the percentage of storms where sampling
methods yielded estimates within acceptable levels
of accuracy (i.e., 10% of true EMC) were computed
across various categories of storm sizes.  Finally,
costs associated with site setup, personnel costs
while sampling and laboratory costs were estimated
for each of the methods.  Pollutograph sampling con-
sistently outperformed the other three methods both
in terms of bias and accuracy.  However, polluto-
graph sampling was the most costly method evaluat-
ed.  Time-paced sampling consistently underestimat-
ed while volume-paced sampling over estimated the
storm EMCs.  Microsampling performance
approached that of pollutograph sampling at a sub-
stantial cost savings.  The most efficient method for
routine stormwater monitoring in terms of a balance
between performance and cost was volume-paced
composite sampling, with variable sample pacing to

ensure that the entirety of the storm was captured.
Pollutograph sampling is recommended if the data
are to be used for detailed analysis of runoff dynamics.

INTRODUCTION

Accurate measurement of stormwater pollutant
concentrations is essential for assessing regulatory
discharge permit compliance and evaluating the
effectiveness of management actions.  Decisions
based on these data may have human health, ecologi-
cal and cost implications in terms of development of
total maximum daily loads (TMDLs), installation
and maintenance of stormwater best management
practices (BMPs), or design and implementation of
environmental restoration projects.  

The inherent variability of stormwater makes
consistently accurate measurements of pollutant con-
centrations challenging.  Constituent concentrations
can vary within and between storms as a function of
watershed characteristics, rainfall, and antecedent
dry conditions (Tiefenthaler et al. 2001, King et al.
2005, Stein et al. 2005).  Strategies used to account
for this variability differ based on sampling objec-
tives, regulatory requirements, cost and logistic con-
siderations.  However, most programs’ stated goal is
to collect the most accurate data possible given tech-
nical and resource constraints.  

Previous studies have evaluated the effect of var-
ious sampling strategies on estimates of pollutant
concentration and load (Izuno et al. 1998, Robertson
and Roerish 1999, Stone et al. 2000, Ma et al. 2009).
Leecaster et al. (2002)  evaluated sampling
approaches based on over 1,700 total suspended
solid samples collected at 15-minute intervals from
the Santa Ana River, California.  They determined
that a volume-interval sampling design is the most
effective method, and a volume-weighted estimator
is best for determining constituent event mean con-
centrations.  Furthermore, Leecaster et al. (2002)
found that 12 samples per storm were preferable
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over 4 or 8 samples to avoid excessive variability in
estimation results.  Ma et al. (2009) came to a simi-
lar conclusion based on a statistical simulation of
various sampling strategies to estimate EMC of
chemical oxygen demand (COD).  They concluded
that volume-paced sampling was superior to time-
paced sampling and that approximately 20 samples
are required to estimate the EMCs within 20% error
for volume-paced sampling. Stone et al. (2000) com-
pared four methods for calculating water quality
from a 2,050-ha watershed located in North
Carolina.  Their study concluded that volume-paced
sampling provided significantly different and more
accurate loads of nitrate- N, ammonia-N, and total
Kjeldahl nitrogen when compared with time-paced
composite and grab sampling techniques.  Other
studies have attempted to evaluate a broader set of
conditions by using available flow data from numer-
ous stream gauges over multiple watersheds.  King
and Harmel (2003) evaluated 45 commonly used
sampling strategies using 300 storm hydrographs
from 87 different watersheds in the United States
and provided a set of recommendations based on the
goals of specific sampling programs.  In general,
King and Harmel (2003) concluded that volume-
stratified sampling had less absolute error than time-
based approaches.  However, a major limitation of
their study was a lack of concentration data, which
required them to base their analysis on hypothetical
time vs. concentration relationships ranging from
100% positive to 100% negative correlation with
flow.

A limitation of most previous studies is the diffi-
culty in compiling concentration data over the dura-
tion of storms for a variety of watershed and climatic
conditions.  Previous approaches include analyzing
data from multiple independent watersheds
(Robertson and Roerish 1999) using numerical
approaches (Shih et al. 1994), Monte Carlo simula-
tions (Richards and Holloway 1987), or statistical
approaches (King and Harmel 2004, King et al.
2005, Ma et al. 2009).  

Watershed models provide a previously un-
utilized, yet innovative tool for comparing the ability
of various stormwater sampling approaches to esti-
mate constituent concentrations and loads.  Models
can simulate a large number of storms for character-
izing multiple sampling strategies over a broad range
of conditions in a given watershed.  In this way, the
effect of watershed characteristics noted by King et
al. (2005) and others can be eliminated.  Model out-

put can be used to produce numerous “virtual” sam-
pling schemes and compare them to “true” event
mean concentrations and loads based on model out-
put at very short time-steps.  

The goals of this study were to use a calibrated
and validated watershed model developed for south-
ern California to evaluate multiple stormwater sam-
pling approaches to answer the following questions:
1) What is the relative bias of estimates associated
with various stormwater sampling strategies?  2)
What percentage of storms for each  sampling strate-
gy provide estimates falling within acceptable levels
of accuracy?  3) How does bias and percent of
storms meeting pre-defined accuracy criterion vary
as a function of storm size?  4) What is the tradeoff
between performance and cost among the various
stormwater sampling strategies? 

METHODS

Seventy eight distinct stormwater sampling
approaches were evaluated using output from a vali-
dated watershed model, which was used to generate
166 storms over a ten year simulation.  For each
simulated storm, an EMC was calculated for total
suspended solids (TSS), fecal coliform and total cop-
per using five-minute model output for the entire
storm duration.  This was considered the “true value”
for the purpose of our analysis as it represents a
comprehensive and highly temporally resolved esti-
mate of the EMC.  The true value was then com-
pared to a series of EMCs generated by subsampling
the model output to represent each of the 78 sam-
pling strategies being evaluated.  In all cases, storm
EMCs were calculated as: 

where Vi is the volume that flowed past
between sampling times i and i+1, Ci is the
sample concentration at time i, and V is the
total sampled volume. 

The performance of each method was evaluated
based on its bias and the percentage of storms meet-
ing acceptable levels of accuracy, relative to the true
EMC.  Cost were estimated for each of the 78 strate-
gies and compared to the various performance meas-
ures to support a “benefit-cost” comparison.
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Setting
The 330-km2 Ballona Creek watershed in the

greater Los Angeles, CA, area is an excellent repre-
sentative urban watershed for analysis.
Approximately 85% of the watershed is developed
and receives urban runoff.  The watershed averages
20 storms and 34 cm (13.4 in) of precipitation per
year (Ackerman and Weisberg 2003).  Portions of
the upper watershed receive as much as 53 cm of
percipitation annually, mostly due to orographic
effects on south facing slopes of the coastal foothills
(Daly and Taylor 1998).  Seventy percent of the
annual rainfall occurs between January and March,
with virtually no rain from May through October
(Ackerman and Weisberg 2003).  There are no sig-
nificant point source discharges, stormwater diver-
sion, or detention facilities in the watershed.

Model Calibration and Validation
The analysis relied on a previously calibrated

and validated hydrologic and water quality model
developed for the Ballona Creek watershed and the
nearby, less developed, Malibu Creek watershed
(Ackerman et al. 2005, Ackerman and Weisberg
2006).  The Hydrological Simulation Program—
FORTRAN (HSPF; Bicknell et al. 2001) was used,
which predicts flow based on rainfall, land cover,
and stream geometry.  Hourly rainfall data for the
Ballona Creek watershed was obtained from Los
Angeles County Department of Public Works
(LACDPW) Gage 10A, Los Angeles International
Airport (LAX), and the University of Southern
California (USC; Los Angeles County Department of
Public Works 2003, NCDC 2004).  All gages meas-
ured rainfall in 0.25 mm (0.01 in) increments.  Land
use data were obtained from the Southern California
Association of Governments (SCAG 2004; Table 1).  

The water quality component of HSPF was cali-
brated against runoff water quality data collected at
sub-hourly intervals from 24 homogenous land use
sites distributed across the greater Los Angeles area
over a 5-year period from 2001 to 2006
(Tiefenthaler et al. 2008).  The homogenous land
use catchments ranged from 0.02 to 9.49 km2.
Approximately 10 samples were collected per storm
event at 30- to 60-minute intervals for each site-
event depending on the size and timing of the storm.
Samples were collected more frequently when flow
rates were high or rapidly changing and less fre-
quently during lower flow periods.  This allowed for
characterization of concentration changes over the

course of each storm and incorporation of this tem-
poral resolution into the model calibration.
Calibration samples were analyzed for TSS, metals,
nutrients, and bacteria.  The calibrated model was
then applied at the watershed scale in Ballona Creek
and validated  using data from seven storms collect-
ed at the bottom of the watershed in the same man-
ner (and analyzed for the same constituents) as that
collected from the land use sites.  Predicted EMCs
from the Ballona Creek model for TSS, total copper,
and fecal coliform were within 28, 8, and 12% of
measured values, respectively (Ackerman and
Weisberg unpublished data).

Application of Model to Evaluate Sampling
Strategies

The model was used to simulate all storms
between water years 1990 and 2004.  This fourteen
year period contained four years in each of  the
upper and lower quartiles of annual rainfall (based
on data from 1948 to 2004) making it a good repre-
sentative time period for analysis.  There were 166
sampleable storms in the fourteen year simulation
with sizes ranging from 0.25 to 13.1 cm (0.1 to 5.17
in).  Sampleable storms in the model output were
defined based on criteria typically used in stormwa-
ter sampling.  For a storm to be sampleable, it must
have been associated with rainfall events of 0.24 cm
(0.1 in) or greater and have occurred following at
least three antecedent days with no measurable rain.
These criteria reflect those used to trigger compli-
ance sampling under most municipal stormwater per-
mits. The beginning of a storm was defined as a 30%
increase in baseflow, based on review of historical
flow data for Ballona Creek. The end of a storm was
defined in one of two ways: 1) flow increased due to
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Table 1.  Land use area and Rational Method runoff
coefficient for the Ballona Creek watershed model.
Note that Transportation Land Use is included as part of
the other land use categories and not as an independ-
ent category.
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a subsequent rainfall event, or 2) flow receded to a
set fraction of the storm peak flow.  

The point in the storm where the simulated sam-
pling was terminated has the potential to affect the
accuracy of the EMC.  Therefore, we evaluated the
effect of different “end of storm criteria” for each
sampling strategy by calculating the median error
between the true storm EMCs based on model output
for the entire storm and the EMC resulting from a
subset of the model output based on termination of
sampling at points ranging from 10 to 99% below
the peak flow.  

Stormwater Sampling Methods Evaluated
The 78 individual sampling methods analyzed

can be categorized into five general strategies; vol-
ume-paced composite sampling, time-paced compos-
ite sampling, pollutograph sampling, volume-paced
microsampling, and time-paced microsampling
(Table 2).  For each sampling method the five-
minute model output was subsampled in a manner
that replicates the actual field-based sampling.  The
EMCs resulting from each virtual sampling was
compared to the modeled storm EMC based on the
entire five-minute output to assess performance (see
Statistical Analysis).  Results were compared across
all storm sizes as well for small (<6.4 mm; <0.25 in),
medium (6.4 to 28mm; 0.25 to1.1 in) and large (>28
mm; >1.1 in) storms.  The thresholds between the
storm size classes were based on the distribution of
storms over the 14-year modeling period.  

Volume-paced composite sampling
Volume-paced sampling was designed to mimic

the sampling strategy used by many stormwater
agencies.  In practice, the volume-paced method uses
an automated flow meter and sampler. When flow at
a given site reaches a specified level above baseline
during a storm (here it was 30% above baseflow),
the automated sampler is triggered to draw a sample
(an aliquot) at pre-set runoff volume intervals.  The
samples are composited into a single sample jar and
analyzed to produce an EMC for that storm.  

To replicate the volume-paced sampling in
Ballona Creek, past sampling efforts were reviewed
and a series of assumptions made about the sam-
pling.  Volume pacing in Ballona Creek was set to
draw an aliquot at intervals ranging from every
1,400 to 120,000 m3 (50,000 to 4,250,000 ft3; Table 2)
with a total of 48 aliquots (Table 3).  Volume-paced

sampling of the model output was defined to mimic
the actual field sampling.  Based on field experience,
we assumed that a maximum of two samples could
be drawn in five minutes which incorporated time to
draw the sample and back-purge the line.  A mini-
mum of 24 samples (half of the targeted) were
required to provide adequate volume for analysis.
Any storm without 24 samples was assumed to have
insufficient sample for laboratory analysis.

The accuracy of each volume pacing was evalu-
ated on a storm-by-storm basis as a function of a tar-
geted storm volume.  That is, how does the relation-
ship between actual storm size and the anticipated
storm size used to set the interval between collecting
successive samples affect accuracy (Table 3).  In an
operational, field sense, a targeted storm volume is
the total runoff of an anticipated storm.  Targeted
storm volumes were calculated by using a simple
model of rainfall and land use via the Rational
Method (Ackerman and Schiff 2003; Table 1): 

Volume = A x i x c

where: A = Land use drainage area (km2);
i = Rainfall (mm); and c = Runoff coeffi-
cient (unitless).

Time-paced composite sampling
An alternative to volume-paced sampling is

time-paced sampling, where an aliquot is collected
based on equally spaced time increments.  The onset
of sampling and sample collection is the same as
detailed in the volume-paced sampling, but with time
setting the pacing of the sample collection.  Time-
paced sampling was set to capture a range of storm
durations.  Time-paced samples ranged from every 5
minutes to 1 every hour with a total of 48 samples
(Table 2).  The pacings corresponded to a total sam-
pling duration ranging from 4 to 48 hours. 

Pollutograph sampling
Pollutograph sampling is a more intensive sam-

pling approach than either the volume- or time-
paced sampling, and consists of collecting multiple
discrete samples throughout a storm.  In practice, a
large number (often 20) of samples are collected
throughout the storm hydrograph.  When storm flows
return to near base flow and field sampling discon-
tinues;  a subset of the larger number of samples are
selected for analysis based on the portion of the
hydrograph that is targeted for sampling.
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Table 2.  Sample pacing for the different virtual methodologies simulated from the model output.  Pollutograph and
volume-paced microsampling are defined as a percent of the total sampleable storm volume.



Eight different pollutograph strategies were
simulated. Pollutograph sampling was evaluated
with four different pacings (i.e., the interval at
which a sample is collected) and for collection of
either four or ten discrete samples.  The various
pollutograph sampling strategies weighted the first
part of the storm to capture higher concentration
typically observed early in the hydrograph.
Because field crews can often have a time limita-
tion on their sampling, a 24-hour cutoff was evalu-
ated relative to values which would result from
sampling the entire storm.  

Volume-paced microsampling 
Volume-paced microsampling is a combination

of volume-paced and pollutograph sampling.  With
microsampling, numerous small aliquots are drawn
at a given volume pacing, depending on the storm
size targeted, and composited into between one and
eight bottles.  For this analysis, we assumed that
each bottle was comprised of ten microsample
aliquots.  Unlike pollutograph sampling, which must
be done manually, microsampling allows the use of
autosamplers yet still allows samples to be collected
across the entire hydrograph for calculation of a vol-
ume-paced EMC.  We assumed back-purging was
not critical in the microsampling, and as such one
aliquot could be collected each minute.  

Several volume-pacing strategies were evalu-
ated as well as strategies that involved composit-
ing samples into one, two, four, or eight bottles
(Table 2).  These permutations were targeted based
on field experience with autosampler configura-
tion.  For example one, two, or four samples could

be collected in a single autosampler while eight
samples would require two autosamplers to be
used in series.

Volume-paced microsampling was evaluated
based on targeted storms volumes corresponding to
the 25th, 50th, 75th and 90th percentile of all sam-
pleable storms for the 14-year modeling period.

Time-paced microsampling
Time-paced microsampling is analogous to vol-

ume-paced microsampling, except that aliquots are
drawn at pre-defined time intervals instead of at vol-
ume intervals.  A variety of permutations were evalu-
ated for storm durations from 5 to 61 hours.  Pacings
between aliquots varied from 10 to 60 minutes, with
the interval between microsamples typically occur-
ring more frequently during the early portions of the
storm (Table 2).  We assumed that each bottle was
comprised of 10 aliquots, as in the volume-paced
microsampling strategy.  Strategies evaluated included
sampling into one, two, four, or eight bottles, as was
done for the volume-paced microsampling evaluation.  

Threshold for Inclusion of Storms in Analysis
For each method analyzed we included a mini-

mum threshold of storm volume that needed to be
captured by the simulated autosampling in order to
produce a storm EMC.  Below this level, insufficient
storm was sampled to calculate a meaningful EMC.
For the volume and time-paced composite sampling,
at least half of the number of samples targeted by the
method needed to be collected.  The pollutograph
sampling is done manually, which allows sufficient
samples to be collected for every storm; hence the
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Table 3.  Targeted storm volumes for the different volumetric pacings that were evaluated.



threshold analysis is not relevant.  Both volume and
time weighted microsampling assumed ten aliquots
would be collected for each individual sample; there-
fore, if 50% of the target (i.e., 5 aliquots) could not
be collected, the sample was considered not usable.  

Statistical Analysis
Evaluating performance among sampling meth-

ods across storms relied on robust alternatives to the
usual measures of bias.  Robust measures were used
because distributions of errors were often truncated
or skewed and one or two extreme values were com-
mon. Therefore, measures based on medians rather
than means were a better representation the central
tendencies of errors.  For example, the “mean” in the
relative bias was replaced by the “median” to give
the median relative error (MRE),

where: xi is the parameter estimate for the
ith storm and is the true value of the
parameter being estimated. 

As a combined performance measure of both the
bias and precision inherent among the different sam-
pling methods, we tallied the percentage of evaluated
storms within each storm size category that were
within acceptable error ranges (within 10% of target
EMC value).  This percentage is consistent with the
threshold recommend by Harmel et al. (2003).

All performance measures were computed across
all sampled storms within each storm size category
(small, medium, and large).  Finally, we computed
the median percent of the true volume captured by
each sampling method storms as a possible correlate
to error.  

Costs
Sampling decisions are often affected by cost

considerations.  Therefore, we estimated the cost
associated with each sampling strategy relative to its
associated level of performance.  Costs were based
on typical labor and laboratory analytical expenses
for the Los Angeles area (Table 4).  Estimated costs
for each sampling method were conservative because
of multiple assumptions.  Cost estimates include an
assumption that each station would need to be set up
prior to sampling; in reality these costs would not

occur if an existing station were to be used.
Personnel costs include equipment rental, installa-
tion, maintenance of the sampling site, personnel
training and data management.  We also assumed
that all of the bottles collected would be analyzed.
This is an overestimation at times because some of
the microsampling strategies either had insufficient
volume to analyze, or not all of the targeted bottles
were analyzed.  To estimate the storm length of the
pollutograph samplings exceeding 24 hours (for
labor costs), we averaged the duration of the ten
modeled storms that were longer than 24 hours (40
hours average).

RESULTS

Ability of Methods to Adequately Sample a
Range of Storms

Pollutograph sampling was successfully applied
to nearly all storms regardless of size. The volume
and time-paced microsampling approached the per-
formance of the pollutograph sampling (Figure 1),
with both volume and time pacings consistently
characterized more than 95% of the storm EMCs.
The ability of volume-paced composite sampling to
adequately capture storms (at least half of the 48
aliquots taken) varied based on the sample pacing
used.  Only storms with pacings at or below 14,000
m3 (500,000 ft3) were able to characterize more than
half of the small storms.  For medium storms greater
than 50% of the storms were captured for pacings
less than 57,000 m3 (2,000,000 ft3; Figure 1).  For
time-paced composite sampling, less than half of the
small and medium storms were captured when pac-
ings exceeded five minutes.  Of the 6 time pacings
tested, a 15-minute time pacing resulted in the high-
est percentage storm capture for all 3 storm sizes. 

Effect of “End of Storm” Definition
Stormwater sampling typically extends at least

through the peak flow. The decision of how far
beyond peak flow to continue sampling affects the
error in the EMC.  For TSS, copper and bacteria
continuing sampling until the flow reached 50% of
peak flow resulted in approximately 10% median
error (between EMC defined by the peak flow termi-
nation criteria and the true EMC).  The one excep-
tion was for bacteria during large storms, where the
error at 50% of peak flow was greater than 15%.
Extending sampling until flow was 75% below peak
flow reduced the median error to around 5%; beyond
that the incremental decreases in error were small.  

Stormwater sampling approaches using a dynamic watershed model - 201



Stormwater sampling approaches using a dynamic watershed model - 202

Table 4.  Costs associated with each sampling strategy.  Assumptions include:  the site is set-up; the equipment
is installed and programmed; travel time is less than 2 hours; all permits and site access are complete; siting and
design is complete; extended sampling at rates are $200/hr/team and general chemistry costs are $800/bottle.
Pollutograph sampling assumes staff remain on-site to conduct manual collection of samples.

Figure 1.  Percent of total storms that were sampleable for various permutations of the volume-paced (top) and
time-paced samplings (bottom).  Small = <6.4 mm; Medium = 6.4 - 28 mm; Large = >28 mm.
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Sampling Bias
Pollutograph and volume-paced microsampling

produced estimates with the smallest bias (as meas-
ured by MRE) among all sampling methods.  In both
cases the MRE was within +10% for most pacing
variations, with bias being slightly higher for larger
storms than for smaller storms (Figure 2).  There was
no significant increase in bias when a 24-hour cutoff
was imposed on the sampling.  Time-paced
microsampling for small and medium storms had
slightly negative bias for copper and slightly positive
bias for bacteria.  Volume-paced composite sampling

resulted in the largest overestimates of EMC, partic-
ularly for large storms.  As the pacing increased, and
thus the target storm size, to the break in storm size
definitions, the magnitude of bias decreased for both
constituents, becoming negative as the pacing
increased past target volume.  Time-paced composite
sampling resulted in the largest negative bias with
MRE values up to -20%.  Bias was substantially
higher for each sampling strategy when estimating
EMCs for fecal coliform than for copper (and TSS;
Figure 2), with bias up to +50% for small and medi-
um storms and up to +150% for large storms.
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Figure 2.  Bias of each general method grouping for copper and bacteria for small medium and large storms.  Each
point represents a distinct permutation within each general group.
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Sampling Accuracy
Sampling accuracy was measured by quantifying

storms within ten percent of the true EMC for a
given strategy, pacing, and storm size (Figure 3).
The general patterns for accuracy were similar to
those for bias, with pollutograph sampling having
the highest accuracy and the volume and time-paced
compositing methods having the lowest.  Unlike the
bias results, there was a greater difference based on
pacings within a given sampling strategy and the
results varied less as a function of storm size.  Also,
unlike bias, accuracy results were much more com-
parable for copper and bacteria sampling.

Pollutograph sampling consistently had higher
accuracy than the composite sampling (Figure 3).
The 10-bottle pollutograph sampling with evenly dis-
tributed bottles (Poll 10.2), with and without a 24-
hour cutoff, resulted in more than 97% of copper
EMCs within 10% of the true EMC and 70% of the
bacteria EMCs.  The comparable 4-bottle sampling
(Poll 4.2) resulted in greater than 65% of copper
EMCs and 76% of the bacteria EMCs within 10% of
the true EMC for medium and small storm events.  

Volume-paced microsampling resulted in the
most consistent accuracy of any method evaluated
(i.e., there was the least variability in performance as
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Figure 3.  Percent of storms within each general method grouping that were within 10% of the true EMC for small
medium and large storms.  Each point represents a distinct permutation within each general group.
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a function of storm size or sample pacing).  Volume-
paced microsampling performed best during medium
storms with accuracy generally within 10% of the
true EMC 90% of the time for both copper and bac-
teria.  Accuracy was slightly less for copper in the
large and small storms and considerably less, but com-
parable to the pollutograph sampling, for the largest
storms.  Time-paced microsampling was generally
less accurate than volume-paced microsampling,
with performance decreasing for the largest events.

Volume-based composite sampling resulted in
the greatest variability in accuracy as a function of
sample pacing.  For some of the volume pacings
(e.g., pacing greater than 28,000 m3/1,000,000 ft3 per
sample) greater than 88% of the sampled storms
characterize the storm EMC within 10% of the true
EMC.  However, those high pacings were unable to
characterize more than half of the storm events,
making their implementation unlikely. As with bias,
accuracy was greater for copper than for bacteria,
particularly as pacings increased to be close to the
target storm volume.  The accuracy of time-based
composite sampling was substantially lower than that
of volume-based composite sampling.  In most cases,
less than half of the pacing variations for time-based
composite sampling were within 10% of the true
EMC, with performance being lower for bacteria
than for copper.

By using an adaptive, targeted sampling, where
volumetric pacings are adjusted based on the antici-
pated storm size, the performance of volume weight-
ed composite sampling can approach that of polluto-
graph sampling.  Figure 4 shows that if the volume
of an incoming storm is correctly estimated, nearly
100% of the samplings would have their EMCs with-
in 10% of the true EMC.  If the storm volume is
lower than expected, the performance is equally
high.  If, however, the storm volume is higher than
expected, performance decreases to nearly 40% of
samples within 10% of the true EMC when the actu-
al storm volume is nearly double the anticipated (and
hence targeted) volume.

Bias and Accuracy vs. Cost
Sampling strategies that resulted in the lowest

bias and the highest accuracy (i.e., pollutograph sam-
pling) were the most expensive ($11,000 - $20,000
per storm; Figures 5 and 6).  However, the cost of
pollutograph sampling can be reduced by reducing
the number of bottles from ten to four, with a moder-
ate reduction in performance.  Ending sampling after

24 hours resulted in cost savings of up to $4,800
per storm, with little decrease in performance.
Volume and time based composite sampling had the
lowest costs ($5,800 to $6,300), but also the lowest
accuracy and highest bias.  Costs for microsam-
pling strategies were intermediate between polluto-
graph and composite sampling ($8,000 to $12,000
per storm).  Similarly, bias and accuracy were close
to, but slightly poorer than those obtained for
pollutograph sampling.

DISCUSSION

The goal of stormwater sampling is to obtain an
accurate representation of the concentrations and
loads of pollutants of concern being discharged from
catchments or watersheds of interest.  The dynamic
and somewhat unpredictable nature of storms makes
it challenging to obtain accurate estimates of concen-
tration in a cost-effective manner.  Because the
results of stormwater sampling are often used to
assess regulatory compliance and/or make manage-
ment decisions that affect human and ecological
health, there is a strong need to maximize the accu-
racy of estimates.  The results of this study show that
the choice of sampling strategy affects how well
EMC measurements estimate the actual concentra-
tions being discharged.  The 10-bottle pollutograph
strategy produces the most accurate EMC estimates
and has the least bias.  Because pollutograph sam-
pling involves having people in the field for the
duration of the storm, it also affords the greatest
flexibility and ability to adapt to changing conditions
over the course of a storm.  The time-variable con-
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Figure 4.  Accuracy of targeted volume-paced sampling
for various storm size targeting. 

Actual Storm Size Compared to Target Size

P
er

ce
nt

w
ith

in
10

%
of

Tr
ue

E
M

C

100

80

60

40

20

0
50-75% 75-100% 100-125% 125-150% 150-200% >200%



centrations obtained by pollutograph sampling are
useful and sometimes necessary for detailed charac-
terization of runoff patterns or for model calibration
(Stein et al. 2005, Tiefenthaler et al. 2008).
However, pollutograph sampling is the most costly
approach and may not be warranted for stormwater
sampling associated with routine monitoring or regu-
latory compliance.

The most commonly applied (and least costly)
sampling strategies are time and volume-paced com-
posite sampling.  These approaches are the least
accurate and have the highest bias.  Consequently,
they may result in erroneous results that lead to inap-
propriate conclusions regarding concentrations and
annual loads being discharged to receiving waters.  

Volume-paced microsampling and targeted vol-
ume-paced sampling with analysis of discrete sam-
ples provide alternatives that improve accuracy with-
out costing as much as pollutograph sampling
(Figure 7).  The common features of both these
approaches are: 1) use of volume pacing, not time

pacings, 2) their ability to capture a range of differ-
ent storm types (i.e., sizes and timing), and 3) their
inclusion of multiple discrete samples.  Numerous
authors have previously documented that volume-
based sampling is more accurate than time-based
because it provides better representation of the over-
all storm (Leecaster et al. 2002, King et al. 2005, Ma
et al. 2009).  By targeting the volumetric pacings
based on anticipated storm size, sampling is better
able to capture a representative portion of the storm.
Given the error inherent in weather predictions, it is
preferable to overestimate (i.e., storm is smaller than
expected) than to underestimate when setting the
sample pacings (Figure 4).  Although more costly,
analyzing discrete samples as opposed to composit-
ing into a single sample allows for better representa-
tion of changing concentrations over the course of a
storm, results in more accurate EMCs and provides
greatest flexibility if the storm does not materialize
as predicted.  

Costs can be partially reduced by shortening the
duration of sampling or reducing the number of dis-
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Figure 5.  Copper and bacteria bias as a function of cost by storm size.  Only storms with greater than half of the
captured storms are shown.  Each point represents a different sampling pacing for a given method.
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crete samples analyzed from ten to four.  Because
concentrations are typically higher during the early
portion of storms (Stein et al. 2005, Tiefenthaler et
al. 2008), ending sampling when flow is 50% of
peak flow can reduce costs with little overall effect
on accuracy of the EMCs because at that point, the
majority of the pollutant mass and storm volume
have flowed past the station.  However, this requires
accurate assessment of the timing of peak flow in the
field; inaccurate determination of peak flow may
introduce additional bias.  If the goal of sampling is
to produce an overall storm EMC, reducing the
number of discrete samples from ten to four results
withevenly distributed sampling medium storms,
resulted in a decrease in accuracy from 94 to 85%.

Automated bacteria sampling is complicated by
the need to transport samples to the lab within six
hours.  Consequently, bacteria concentrations are
often estimated based on a single grab sample.  We
simulated this approach by randomly selecting a bac-
teria sample during the first, second, or third hour of
each of the 166 storms modeled.  The accuracy of

this approach varied from less than 10% of samples
being within 10% of the actual EMC for large storms
to 30% of samples being within 10% of the actual
EMC for small storms.  The accuracy of EMC esti-
mates can be improved if the grab samples are taken
from one of the composited bottles, each containing
an aggregate a portion of the storm (assuming the
bottles have been pre-sterilized).  If the sample is
taken relatively early in the storm, the accuracy can
improve to up to 50% of samples being within 10%
of the actual EMC, although results are better for
small storms than for large (Figure 7).  However, to
obtain accuracies similar to those of TSS and copper,
multiple composite samples must be collected and
delivered to the lab several times during the course
of a storm.  

Insights from this study can be used in designing
stormwater sampling programs.  For example, if a
program is designed for compliance and only a sin-
gle EMC for a storm is desired, great gains can be
achieved in both accuracy and bias by targeting a
storm volume before sampling begins.  If the
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Figure 6.  Copper and bacteria EMCs that are within 10% of the true EMC by storm size.  Only methods with greater
than half of the captured storms are shown.  Each point represents a different sampling pacing for a given method.
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stormwater data is being collected for a more inten-
sive study where information on pollutant behavior
is desired (e.g., modeling, BMP design/testing),
using automated microsampling can have consider-
able cost savings while still obtaining high quality
data as would be collected in pollutograph sampling.

Stormwater sampling programs are often devel-
oped to comply with regulatory requirements, such
as Total Maximum Daily Loads (TMDLs).  Those
loads are typically calculated by estimating a storm
EMC and multiplying that by the total storm volume
to obtain a load.  The efforts in this paper have inten-
tionally not focused on load because methods to esti-
mate storm volumes and their uncertainties have
been addressed previously.  Another complication of
sampling to support TMDL compliance is that water
quality standards, such as the California Toxics Rule
(CTR), are based on dissolved concentrations;

whereas, stormwater samples are typically analyzed
for total concentrations.  To relate our analysis to this
discrepancy, we assumed a hardness of 100 mg/L,
and an associated CTR limit for copper of 13.4 µg/L
dissolved.  The percent dissolved copper in Ballona
Creek stormwater varies between 11 to 60%
(Buffleben et al. 2002).  Using these values, polluto-
graph and microsampling slightly over-predicted the
exceedence frequency and performed much better
than the general volume weighted sampling (Table 5)
but were consistently within 20% of the modeled
EMCs (Figures 3 and 6).  

Our results are consistent with, and build upon,
the findings of previous studies.  The accuracy we
found with the 10-bottle pollutograph sampling com-
pares well with the results of Leecaster et al. (2002).
Our assessment that volume-paced sampling was
superior to time-paced echoes the findings of King
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Figure 7.  Fecal coliform concentrations within 10% of the true EMC when samples are taken from the volume-paced
composite within the first one, two, and three hours.   Small = <6.4 mm; Medium = 6.4 - 28 mm; Large = >28 mm.
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and Harmel (2004).  The microsampling approach
introduced in this study has similar advantages to the
“extended grab sampling” recommended by Ma et
al. (2009), but does not require manual collection of
samples and allows for greater integration over por-
tions of the storm.  

This study builds on previous work by demon-
strating how a calibrated and validated watershed
model can be used to simulate sampling approaches
in a realistic manner for an extended duration (14
years in this study; Ackerman and Weisberg 2006).
A comparable empirical analysis would be cost and
time prohibitive. The model also allows for evalua-
tion of sampling methods over a variety of storm
types and produces a large enough sample size to
support robust statistical analysis.  Furthermore, the
model allows for more direct evaluation of the effect
of sampling strategies on the accuracy of EMCs for
pollutants of concern.  

The results of this study should be applicable for
many urban stormwater monitoring and assessment
programs.  Conclusions may differ in areas where
the hydrograph shape differs from the short, flashy
storms typical of southern California urban water-
sheds.  For example, sampling strategies for
snowmelt runoff dominated storms may have to be
modified to accommodate a longer, lower amplitude
hydrograph.  King and Harmel (2004) noted that vol-
ume based sampling was sensitive to watershed
parameters such as hydraulic length, slope, curve

number, and runoff coefficient.  The strength of
using a watershed model is that it provides a tool
that can be relatively easily adapted to investigate
the effect of various sampling strategies for specific
watershed types, sizes, or climatic conditions.  

Pollutograph sampling consistently outperformed
the other three methods both in terms of bias and
accuracy.  However, pollutograph sampling was the
most costly method evaluated.  Time-paced sampling
consistently underestimated while volume-paced
sampling over estimated the storm EMCs.
Microsampling performance approached that of pol-
lutograph sampling at a substantial cost savings. The
most efficient method for routine stormwater moni-
toring in terms of a balance between performance
and cost was volume-paced composite sampling,with
variable sample pacing to ensure that the entirety of
the storm was captured.  Pollutograph sampling is
recommended if the data are to be used for detailed
analysis of runoff dynamics, such as is required for
model calibration.  
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