
ABSTRACT

As the use of bioassessment techniques expands,
the demand for tools that can score biological condi-
tion from aquatic community data has spurred the
creation of a large number of predictive models (e.g.,
observed over expected (O/E) indices) and multimet-
ric indices (MMIs).  The geographic and environ-
mental scopes of these indices vary widely and cov-
erages often overlap.  If indices developed for large,
environmentally heterogeneous regions provide
results that are equivalent to those developed for
smaller regions, then regulatory entities could adopt
indices developed for larger regions rather than fund
the development of multiple local indices.  This
potential was evaluated by comparing the perform-
ance (precision, bias, responsiveness, and sensitivity)
of benthic macroinvertebrate O/E and MMIs devel-
oped for California (CA) with indices developed for
two large-scale condition assessments of United
States (US) streams: the US Environmental
Protection Agency’s Western Environmental
Monitoring and Assessment Program’s (WEMAP)
stream project and the western portion of the nation-
al Wadeable Streams Assessment (WSA-West).
Both WSA-West and WEMAP O/E scores were
weakly correlated with CA O/E index scores, had
lower precision than the CA index, were influenced
by two related natural gradients (percent slope and
percent fast water habitat) for which the CA index
was not, and disagreed with 21 - 22% of impairment
decisions derived from the CA index.  The WSA-
West O/E index produced many fewer impairment
decisions than the CA index.  In the MMI compar-

isons, both WEMAP and WSA-West MMI scores
were much more strongly associated with CA MMI
scores than those found in the O/E comparisons.
However, the WSA-West and WEMAP MMIs pro-
duced many fewer impairment determinations than
the CA MMI.  Because the WEMAP and WSA-West
indices were biased and differed in responsiveness
compared with CA indices, they could produce dif-
ferent estimates of regional condition compared with
indices that are calibrated to local conditions.
Furthermore, the lower precision of the WEMAP and
WSA-West indices compromises their use in site-
specific assessments where both precision and accu-
racy are important.  However, because the magnitude
of differences in impairment decisions was very sen-
sitive to the thresholds used to define impaired con-
ditions, it may be possible to adjust for some of the
systematic differences among the models, thus ren-
dering the larger models more suitable for local
application.  Future work should focus on identifying
the geographic and environmental scale that opti-
mizes index performance, determining the factors
that most strongly influence index performance, and
identifying ways of more accurately specifying refer-
ence condition from geographically extensive sets of
reference site data.

INTRODUCTION

The widespread adoption of bioassessment tech-
niques for assessing the ecological condition of
waterbodies has generated an abundance of indices
available to water resource managers (Reynoldson et
al. 1997, Hughes et al. 1998, Barbour and Yoder
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2000, Hawkins et al 2000a, Van Sickle et al. 2005,
Bonada et al. 2006).  Because these tools were gen-
erated to meet different needs, their geographic
scopes differ widely and often overlap. 

As the proliferation of new indices continues,
end-users (e.g., regulatory entities developing
numeric biocriteria, Yoder and Rankin 1995) will
need guidance for selecting among these different
indices and evaluating how many different indices a
region needs for effective bioassessment.  If local
and regional assessments based on indices developed
for broad geographical areas are equivalent to assess-
ments based on indices developed for smaller areas,
then regulatory entities could profit by adopting the
large-scale indices and abandoning the development
and maintenance of multiple, smaller-scale indices.
This potential is attractive because indices that apply
to large geographic areas have already been devel-
oped for many regions of the world, including: Great
Britain (Moss et al. 1987), Australia (Simpson and
Norris 2000), Europe (Statzner et al. 2001), and the
United States (Stoddard et al. 2006, 2008; Yuan et
al. 2008).  Widespread use of common indices would
facilitate consistency in data interpretation among the
variety of users of ecological condition indices
(Bonada et al. 2006, Hawkins 2006). 

However, indices developed for large geographic
regions may have limitations that could restrict their
value for both site and regional assessments.  Most
notably, such indices must account for natural varia-
tion that occurs within large regions.  Performance
characteristics of both multimetric and predictive
model indices are limited by their capacity to
account for variability among the reference sites
used to develop indices (Moss et al. 1987, Hughes
1995, Reynoldson et al. 1997, Karr and Chu 1999,
Hawkins et al. 2000a, Bailey et al. 2004, Bonada 
et al. 2006).  

It is a central principle of ecology that biological
assemblages naturally vary along many environmen-
tal gradients (Andrewartha and Birch 1954,
Hutchinson 1959, Hynes 1970).  The precision and
accuracy of any index will therefore depend on how
well the mechanics of index calculation account for
the effects of these natural gradients on assemblage
structure (Johnson et al. 2004, Johnson et al. 2007,
Van Sickle et al. 2005, Hawkins 2006, Heino et al.
2007, Mykrä et al. 2007, 2008).  If biological varia-
tion associated with local environmental gradients
(e.g., reach slope or substrate size) is masked by
environmental factors that vary over large spatial

scales (e.g., climatic factors and geology), then indices
developed from more spatially restricted datasets may
be required for site-specific assessments.

Recently derived biological indices developed
for the EPA’s national WSA and the WEMAP project
(Stoddard et al. 2005, 2006; EPA 2006) presented an
opportunity to evaluate this idea by comparing per-
formance metrics (precision, bias, responsiveness,
and sensitivity) of these indices with those of indices
developed specifically for California (Ode et al.
2005, Rehn et al. 2005). The comparability of both
site-specific and regionally aggregated biological
assessments, where CA indices <WEMAP indices
<WSA-West indices in geographic extent and geocli-
matic heterogeneity, were evaluated.  For these com-
parisons, assessments of an independent set of evalu-
ation (test) sites that had not been used in developing
any of the indices were conducted.  To the extent
that the test dataset permitted, parallel analyses for
both MMI and O/E indices of benthic macroinverte-
brate (BMI) assemblage condition were performed.

METHODS

O/E Development
Three sets of predictive models were used to

produce the O/E index values for comparison.  All
the O/E models were developed following a stan-
dardized process (Clarke et al. 2003, Hawkins et al.
2000a, Moss et al. 1987) described in the EMAP
Western Streams and Rivers Statistical Summary
(Stoddard et al. 2006).  The process included: 
1) sampling a set of environmentally diverse sites for
BMIs, 2) specifying which of these sites would be
used as reference sites, 3) applying a standard taxon-
omy (operational taxonomic units; OTUs) to all sam-
ples, 4) clustering of reference sites according to
their similarity in BMI assemblage composition, 
5) calculating and screening candidate predictor vari-
ables, and 6) calibrating linear discriminant functions
models for predicting assemblage composition at
new sites.  All models were developed with map-
level predictor variables (with the exception that
field measured reach slope was used in one model)
to allow more universal applicability of models
(Table 1).  Aside from the specific combination of
predictor variables used in the models, the major dif-
ference among models was the range of environmen-
tal heterogeneity or geographic extent encompassed
by the reference sites used in each model.  Models
were based on data from either targeted-riffle benthic
samples (CA models) or a combination of targeted-
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riffle and reach-wide, multiple-habitat samples
(WEMAP and WSA-West models).  These two types
of samples appear to be generally comparable for
CA streams (Rehn et al. 2007).  Other aspects of
model development were similar (Table 2).  

WSA-West model 
A single western US model (WSA-West) devel-

oped during the national wadeable streams assess-
ment (Yuan et al. 2008) encompassed the most het-
erogeneous environmental conditions and the largest
geographic scope (~2,500,000 km2; Figure 1). The
WSA-West model was developed for all mountain-
ous and xeric regions of the western United States and
excluded only plains ecoregions (Figure 1; see
Environmental Protection Agency 2006).  To pro-
duce the WSA-West O/E index, 519 reference sites
were clustered into 31 groups, and 7 predictor vari-
ables were selected to predict group membership
(Table 1). 

WEMAP models
The same data used to construct the WSA-West

model had been previously used to develop five sep-
arate ecotype-specific submodels (Stoddard et al.
2006, 2008).  All sampled sites (reference and non-
reference) were assigned to one out of five broad
ecotypes based on a k-means classification
(MacQueen 1967) of long-term climatic (temperature
and precipitation), geographic variables (latitude,
longitude and elevation), and topographic variables
(watershed area and channel slope).  This pre-classi-
fication of sites was mainly designed to reduce the
range of environmental heterogeneity encompassed
by each model.  The geographic scope of the result-
ing submodels ranged from ~200,000 km2 to
~1,800,000 km2 (Figure 2).  Of the five submodels
developed for the WEMAP study area (Stoddard et
al. 2005, 2006), four submodels applied to geocli-
matic conditions found in California.  One model
used predictor variables, whereas the other three
were null models that predicted the same biota at all

Table 1.  Predictor variables used for all predictive models. 

Table 2.  Comparison of BMI collection method, taxonomic effort levels and organism counts used both to build
models and score test sites.  See methods for definitions.



sites within a geoclimatic region (Van Sickle et al.
2005; Table 1).

CA models 
The third model set included three submodels

that were developed for three types of climatic con-
ditions in CA: cool-wet sites (mean monthly temper-
ature (MMT) >9.9ºC and mean monthly precipitation
(MMP) >895 mm), warm-dry sites (MMT >9.9ºC
and MMP <895 mm), and cold-mesic sites
(MMT <9.9ºC; Figure 3).  The three CA submodels
were calibrated from data collected at 209 reference
sites, 179 of which were also used in calibrating
WEMAP and WSA-West models (the other 30 sites
were used as validation samples in the WEMAP and
WSA projects).  The spatial extent of the reference
sites for these submodels was ~150,000 km2 each
(Figure 3).  These three submodels also used unique
combinations of predictor variables (Table 1).

MMI Development 
The WSA, WEMAP, and CA MMIs were devel-

oped following similar methods as first developed by
Karr (1981) and extended by others (Kerans and
Karr 1994, Hughes et al. 1998, McCormick et al.
2001, Klemm et al. 2003): 1) assignment of a large
pool of sites to either reference or test sets based on

their degree of anthropogenic stress, 2) division of
the site pool into calibration and validation sets, 
3) using the calibration set to screen biological
response metrics based on their responsiveness to
important stressor gradients, their signal-to-noise
ratios, and their non-redundancy with other metrics,

Biological indices and geographic scope - 126

Figure 1.  Location of reference sites used to create the three WSA predictive sub-models.  Only the western sub-
model applies to California sites.  Each symbol represents a different sub-model.

Figure 2.  Location of reference sites used to create the
five WEMAP predictive sub-models.  Note that four of
the five sub-models apply to California. 



4) establishing scoring ranges for selected metrics, 
5) assembling a composite MMI from the component
metrics, 6) establishing impairment thresholds for
the index, and 7) evaluating index performance
against the validation dataset (Herlihy et al. 2008,
Stoddard et al. 2008).  

These MMIs differed in a few important respects
(Tables 2 and 3).  The CA indices were based on sub-
samples of 500 organisms collected from targeted-riffle
habitats (TRB) and identified primarily to genus
level, but the WSA-West and WEMAP indices were
based on subsamples of 300 organisms collected
from multiple reach-wide composite habitats (RWB)
with some individuals identified to species level (see
text below for details on field and lab methods).  

WSA-West MMIs 
The EPA’s WSA program developed two MMIs

(xeric and western mountain ecoregions; Omernik
1987) to support its assessments of western streams
using a calibration dataset of 775 sites (235 xeric and
540 mountain; Stoddard et al. 2008, EPA 2006).
Both indices used six metrics, five of which were in
common (Table 3).  Scoring ranges for both 
WSA-West MMIs were scaled from 0 to 100 (Van
Sickle and Paulsen 2008).

WEMAP MMIs 
WEMAP developed three MMIs (xeric, plains

and mountain ecoregions) for its analyses (Stoddard
et al. 2005, 2006), two of which (xeric and moun-
tain) applied to CA sites.  The calibration dataset
was comprised of 244 xeric and 565 mountain sites,
nearly all of which (754 of 809) were used in WSA-
West MMI development.  As in the WSA-West
index, the xeric and mountain versions of the
WEMAP MMI consisted of six metrics, but shared
fewer metrics in common (Table 3).  Index values
for both WEMAP MMIs were scaled from 0 to 100
(Stoddard et al. 2005).

CA MMIs  
Two MMIs were developed for use in coastal

California: the Southern Coastal California Index of
Biotic Integrity or SCIBI (Ode et al. 2005) and the
Northern Coastal California Index of Biotic Integrity
or NCIBI (Rehn et al. 2005).  The two CA MMIs
included both the mountain and xeric aggregate
ecoregions used for the WSA and WEMAP MMIs,
and separate metric scoring ranges were established
for the Omernik Level III (1987) ecoregions within
each CA MMI development area (Figure 4).  Of the
502 sites used to develop the CA MMIs, 119 were
also used in WEMAP and WSA-West MMI develop-
ment.  The NCIBI consisted of eight metrics, where-
as the SCIBI consisted of seven metrics, with four
metrics in common (Table 3).  The CA MMIs were
also scaled from 0 to 100 (Ode et al. 2005, Rehn 
et al. 2005).

Test Site Data
These analyses incorporate BMI data collected for

two large-scale probability surveys of CA streams.
For clarity, use of the term “test sites” was restricted
to refer only to these probabilistic samples of evalua-
tion sites and not to non-reference sites used to cali-
brate MMIs, which are sometimes referred to as “test
sites” in MMI development.  For the O/E compar-
isons, data collected from 127 sites during the
WEMAP 2000-2003 survey were used.  For the
MMI comparisons, data from 68 sites sampled by
the California State Monitoring and Assessment
Program (CMAP) between 2004 and 2006 were
used.  It was necessary to use different test sets for
the O/E and MMI analyses because: 1) the restricted
geographic boundaries of the CA MMI models limit-
ed the number of sites shared between O/E and MMI
data sets, and 2) the MMI calibration datasets were
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Figure 3.  Location of reference sites used to create
the three CA predictive sub-models. Each symbol
represents a different sub-model.



partially comprised of sites used for the O/E test set.
The 127 sites used to evaluate predictive models
were distributed throughout California (Figure 4a),
whereas the 68 sites used to evaluate MMI models
were restricted to coastal watersheds (Figure 4b).
Most MMI test sites were concentrated in the north-
ern half of the state (61 sites north of Monterey
Bay), and the majority of these sites (40) were locat-
ed within the boundaries of the NCIBI calibration
sites (Figure 4b).  The remaining 21 northern
California sites were concentrated in the San
Francisco Bay and Santa Cruz Mountains regions,
which lie between the development regions of the
two CA MMIs (Figure 4b).  We used the NCIBI to
score sites located between the NCIBI and SCIBI
regions for the cross-index comparisons because this
region is ecologically more similar to the North
Coast than the South Coast and because reference
conditions for this area were better represented in the
NCIBI (Rehn et al. 2005).  SCIBI scores were used
for another 14 sites located within the region defined
by the SCIBI calibration sites.  Although the differ-
ent geographic distributions in test sites may affect
comparisons between MMIs and O/E indices, they

do not affect comparisons of the performance of each
type of index among the three geoclimatic scales.

Test site, field, and laboratory methods  
All test sites were sampled in accordance with

standard WEMAP field methods (Peck et al. 2006).
A sampling reach was defined as 40 times the aver-
age stream width at the center of the reach, with a
minimum reach length of 150 m.  Two BMI samples
were collected from each reach with standard
500-µm D-frame nets: 1) a RWB sample consisting
of eleven 0.09-m2 samples taken from equally spaced
locations throughout the reach and 2) a TRB sample
consisting of eight 0.09-m2 samples taken from 
fast water habitat units within the reach (Hawkins 
et al. 2003).  

All BMI samples used for the test datasets were
processed at the California Department of Fish and
Game’s Aquatic Bioassessment Laboratory in Chico,
CA.  At least 500 individuals were identified to the
standard taxonomic resolution targets described in
Richards and Rogers (2006), i.e., those levels of tax-
onomic resolution that can be consistently achieved.
A true, fixed 500-count random subsample was then
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Table 3.  BMI metrics comprising the multimetric indices. EPT = Ephemeroptera, Plecoptera, and Trichoptera. 



obtained by computer resampling the sample data.
Samples with between 450 and 500 individuals were
retained in analyses.  These raw data were then used
to produce the standardized taxa lists and metrics
needed for the various indices (Table 3).  All analy-
ses were based on the field methods, sample sizes
and taxonomic levels used to develop each index (as
indicated in Table 2).

Scoring Sites: Predictive Models
BMI taxonomic data 

The raw subsample count data were further
processed for use with the predictive models by: 
1) converting the original identifications to the tax-
onomic levels used in the models (e.g., OTUs), 
2) eliminating individuals that could not be assigned
to an OTU (i.e., ambiguous individuals), and 
3) resampling the remaining non-ambiguous individ-
uals to 300-count samples.  Samples with <300 indi-
viduals were retained in analyses. 

Predictor variables 
Geographic coordinates (latitude and longitude)

were obtained via GPS measurements taken during
sample collection. Watershed area were calculated
after delineating upstream watershed boundaries for
each site with automated GIS scripts or manual
delineation where necessary.  Long-term MMP, MMT,
and MMA values for each site were estimated from
GIS grids of (1961-1990) obtained from the Oregon
Climate Center (http://www.ocs.orst.edu/prism).  Site
elevations were derived from 30-meter digital eleva-
tion models (http://ned.usgs.gov).  Channel (reach)
slope was measured in the field (as it was in model
development).

Geographic and environmental attributes were
used to assign each site to the appropriate WEMAP
and CA models.  Assignment of sites to the five
WEMAP models was based on latitude, longitude,
elevation, MMP, MMT, watershed area, and chan-
nel slope.  These assignments were made prior to
model building during the k-means analysis
(MacQueen 1967).  Assignment of test sites to the
appropriate CA model was conducted after model
development.  This study used a simple classifica-
tion and regression tree model based on long-term
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Figure 4.  Location of test sites used for comparative analyses: 127 test sites used in O/E comparisons (a) and 68
test sites used in IBI comparisons (b). The three solid shaded regions correspond to mountain ecoregions used
in the western and national models, whereas the three hatched regions correspond to the xeric ecoregions used
in the western and national models. The two solid shaded regions in the northwest part of the state circumscribe
the region for which the North Coast IBI was developed. The hatched regions and the continuously shaded region
in southwestern part of the state circumscribe the region for which the South Coast IBI was developed. The inset
shows the location of California in the United States.

a) b)



precipitation and air temperature to assign sites to
the CA submodels. 

O/E values were calculated based on just those
taxa with site probabilities of capture ≥0.5 because
these values result in more precise O/E values that
are also usually more sensitive to stress (Hawkins et
al. 2000a, Ostermiller and Hawkins 2004, Van Sickle
et al. 2007) than O/E values based on all taxa in the
reference calibration data set.  When reporting
impairment decisions for the test sites, impairment
thresholds were set at two standard deviations below
the mean value of reference sites for all O/E models
(Table 4).

Scoring Sites: MMIs
BMI taxonomic data

Because the MMIs differed with respect to
organism count and taxonomic resolution, MMI
scores were calculated based on the sample counts
and taxonomy used when developing each index
(Table 2).  MMI values were then calculated for test
samples that had been collected in a standard manner
to avoid confounding comparisons with inter-method
variability. All sites were assigned to either the xeric
or mountain aggregate ecoregions, with mountain
ecoregions being further divided into Southern
California Mountains, Klamath Mountains, Coast
Ranges, and Southern and Central California
Chaparral and Oak Woodlands for the CA MMIs
(Omernik 1987).  MMI values were then calculated
based on the specific scoring ranges developed for
each individual metric and region and rescaled these

MMI values from 0 to 100.  As for O/E models,
impairment thresholds for all MMIs were set at two
standard deviations below the mean value at refer-
ence sites (Table 4). 

TRB was used as the default sample type,
although RWB samples were used at six sites where
TRB samples were unavailable or had low sample
counts (<450 organisms).  Because it was found
elsewhere that RWB samples on average scored 
7.8 points lower on the CA IBIs than TRB samples
(Rehn et al. 2007), 7.8 points were added to CA IBI
scores for these RWB samples.  To evaluate the
potential effect of using TRB samples instead of
RWB samples (the method used in national and
western model development; Table 2) in compar-
isons, an additional analysis was performed in which
both the TRB and RWB data from 21 sites with all
three MMIs were scored.  If paired t-tests indicated
significant differences between methods, RWB
scores were adjusted by a correction factor corre-
sponding to the difference between mean site scores.

Comparison of Index Scores 
The CA index values were used as a benchmark

for comparing the performance of the WSA-West
and WEMAP indices.  Comparisons were based on
index precision, bias, responsiveness, and sensitivity.

O/E comparisons 
Precision was measured as the standard devia-

tion (sd) of reference site O/E values.  Bias was
measured as the tendency for reference site O/E val-
ues to vary systematically with one or more of four
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Table 4.  Standard deviation (sd) values and impairment thresholds (IT) for each predictive model (O/E) and coef-
ficients of variation (CV) and impairment thresholds (IT) for MMIs.  Note that only WEMAP sub-models 2 through
5 apply to California.



natural gradients (reach slope, elevation, watershed
area, and percent of reach with fast water habitats).
The study also assessed relative bias between pairs
of O/E indices using linear regression; slopes were
tested for significant differences from 1, and inter-
cepts were were tested for significant differences
from 0. The consequences of these types of biases
were illustrated by plotting the pair-wise differences
in index scores against these natural gradients.
Responsiveness was measured as the mean differ-
ence between reference and test sites in O/E values.
Sensitivity was measured as the proportion of test
sites assessed as impaired by the models.  This meas-
ure of sensitivity is a joint function of precision,
bias, and responsiveness.  For these assessments, the
threshold values for inferring impairment were
defined as 2 sds below the reference (calibration)
means (Table 4).  Binomial tests (Zar 1999) were
used on sites with disagreeing impairment decisions
to determine if the indices were equally likely to
detect impairment.  This test was performed within
each of the three CA submodels, as well as on all
sites combined.  In addition to comparison of impair-
ment determinations based on 2 sds thresholds, two
different threshold corrections for ecoregional differ-
ences were also evaluated.  In the WSA, impairment
thresholds were established separately for xeric and
mountain ecoregions at the 5th percentile of the cali-
bration reference population (estimated as 1.64 stan-
dard deviations below the reference mean; Herlihy et
al. 2008).  We also estimated separate thresholds for
mountain and xeric regions at 2 sd below the mean
for each ecoregion, an approach consistent with pre-
vious comparisons.  For all relevant analyses,
Bonferroni adjustments were applied for multiple
comparisons when the correction was conservative.
That is, the correction was not applied when we
were screening natural gradients as potential drivers
of bias, but was applied for hypothesis tests of index
agreement (e.g., impairment decisions, responsive-
ness tests).

Multimetric index comparisons  
MMI analyses paralleled the O/E comparisons.

However, raw MMI scores were not directly compa-
rable because the scores at calibration reference sites
differed among the MMIs.  Therefore, MMI scores
were rescaled by dividing the raw score by the
index’s reference mean.  These adjusted scores were
then used as a “common currency” in all analyses in
which scores were compared directly. Thus, the
MMI scaling in these analyses was similar to the

~1.0 reference mean in O/Es.  Only the comparisons
of impairment decisions were based directly on the
raw MMI scores.  

RESULTS

O/E Comparisons 
Precision

The predictions of the WSA-West and WEMAP
models were less precise (reference site O/E sd =
0.17 to 0.20) than those of the CA models (sd = 0.13
to 0.17; Table 4).  Imprecision in model predictions
contributed, in part, to weak relationships between
the CA O/E indices and the WSA-West and WEMAP
O/E indices (CA vs. WSA-West r2 = 0.32, CA vs.
WEMAP r2 = 0.35; Figure 5).  However, the stronger
agreement between the less precise WSA-West and
WEMAP O/E indices (WSA-West vs. WEMAP r2 =
0.58) indicates that factors other than precision (e.g.,
bias) must also be affecting differences in agreement
(Figure 5). 

Bias 
The WSA-West and WEMAP O/E values were

biased predictors of the CA O/E values and each
other, with slopes and y-intercepts significantly dif-
ferent (p <0.001) than 1 and 0, respectively, for all
comparisons (Figure 5).  Differences were large, with
slopes as low as 0.58 and intercepts as high as 0.36.
These results showed that the nature of the bias was
not constant across all sites. Instead, differences in
index scores depended on the site-specific differences
among models in how they either over- or under-esti-
mated E (the expected number of predicted taxa) rela-
tive to one another. The reason that the O/E indices
were biased predictors of one another occurred, at
least in part, because the WSA-West and WEMAP
models failed to adjust predictions of E for the effects
of at least one natural gradient.  This failure is illus-
trated by systematic variation in reference site O/E
values produced by the WSA-West and WEMAP
models across percent slope (WSA-West score =
0.025% slope + 0.80, p = 0.001; WEMAP score =
0.023% slope + 0.67, p = 0.002) and percent fast
water habitat gradients (WSA-West score = 0.0051%
fast water + 0.747, p <0.001; WEMAP score =
0.0045% fast water + 0.63, p <0.001).  No such rela-
tionships were evident for CA O/E values (CA score
= 0.0086% slope + 0.78, p = 0.259; CA score =
0.0016% fast water + 0.77, p = 0.205).  The reason
the CA O/E indices were unrelated to reach slope is
probably related to the fact that, within CA, channel
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slope was associated with watershed area (Area), a
predictor in all three CA models (square root slope =
4.11 -0.531*log Area – 0.040*latitude across all ref-
erence sites, n = 209, r2 = 0.14, model 
p <0.001).  It is therefore possible that watershed area
was a surrogate predictor of reach slope within CA.
Percent fast water was measured at too few sites to
determine its relationship with watershed area within
CA.  As a consequence of the bias between the WSA-
West and WEMAP model predictions, pair-wise dif-
ferences between O/E values for both the WSA-West
and WEMAP indices and the CA indices were signif-
icantly related to channel slope and percent fast-water
habitat (Figure 6).  Similar biased predictions associ-
ated with either elevation or watershed area were not
observed, nor were any of these relationships
observed for pair-wise differences in values between
WSA-West and WEMAP (Figure 6; Table 5).
Furthermore, correlation coefficients were low for all
of these relationships (Table 5), indicating that very
little variance in differences between the indices was
explained by these natural gradients.  Although not
related to the four natural gradients we examined,
there was a tendency for the WSA-West model to
produce higher O/E scores than the WEMAP sub-
models, especially at lower O/E values (p <0.005;
Table 5; Figures 5 and 6).  

Responsiveness 
The WEMAP models tended to produce the low-

est O/E values and the WSA-West models the high-
est O/E values at the test sites (Table 6).  O/E values
based on the CA models tended to be intermediate in
magnitude.  This pattern generally occurred for both
mountain and xeric ecoregions, although differences

were not always statistically significant.  However,
the magnitude of difference in mean test site O/E
values between mountain and xeric test sites varied
with the models used.  The CA models resulted in
lower average O/E values for xeric than for moun-
tain sites (Table 6), whereas both the WEMAP and
WSA-West models produced statistically similar
mean O/E values at xeric and mountain test sites. 

Index sensitivity and concordance among
assessments 

The WSA-West O/E was much less likely to lead
to inferences of impairment (16 of 127 sites; Table 7)
than either the WEMAP O/E (43 of 127 sites) or the
CA O/E (35 of 127 sites, binomial tests, p <0.001).
When an ecoregion correction based on 2 sds (con-
sistent with primary analyses) was applied, there was
no effect on any impairment decision (16 out of 127
sites impaired) because the separate xeric and moun-
tain thresholds were within 2 points on a 100 point
scale of their combined threshold.  However, when
an ecoregion correction based on the 5th percentile
threshold used for the national wadeable streams
assessment (Herlihy et al. 2008) was applied, the
number of sites determined to be impaired by the
WSA-West index (27 of 127 sites) was not signifi-
cantly different from the 35 impairment decisions
produced by the CA O/E index (binomial test, 
p = 0.081; Table 7). 

Multimetric Index Comparisons: Comparison
of TRB vs. RWB for WSA and WEMAP MMIs

MMI scores derived from the TRB and RWB
sampling methods were highly correlated for both
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Figure 5.  Regressions between O/E scores at CA test sites for all combinations of models. The dotted diagonal
lines represent perfect 1:1 relationship between the models, and the thick solid lines indicate linear best-fit rela-
tionships.  Significance tests are for y-intercept (y-int) = 0 and slope = 1.



WSA and WEMAP indices (WSA r2 = 0.75,
WEMAP r2 = 0.73), as has been shown elsewhere for
CA MMIs (Rehn et al. 2007).  For WEMAP MMIs,
RWB samples collected in the mountain ecoregion
scored on average 7.2 points lower than TRB sam-
ples (paired t test, p <0.001), but samples based on
the two methods collected in the xeric ecoregion pro-
duced statistically indistinguishable scores (p = 0.65).
Mountain WSA MMI values were also lower for
RWB samples (4 points, p = 0.02), but RWB MMI
values from the xeric region were higher than TRB
samples by 6 points (p = 0.002).  For the purpose of
inter-index comparisons, these scoring biases were
corrected by adding 7.2 points to the MMI values for
those mountain WEMAP RWB samples used in
comparisons (three sites), adding 4 points to values
for the mountain WSA RWB samples, and subtract-
ing 6 points from values for xeric WSA RWB sam-
ples (three sites).  However, only TRB samples were
used in remaining MMI analyses.

Precision 
The northern and southern CA MMIs were more

precise (reference site CVs = 0.14 and 0.19) than the
WSA-West mountain and xeric MMIs (CVs = 0.26,
0.25), but comparable to those of the WEMAP moun-

tain and xeric MMIs (CVs = 0.13, 0.23; Table 4).
Associations among the rescaled MMI indices 
(CA vs. WSA-West r2 = 0.70, CA vs. WEMAP
r2 = 0.76, and WSA-West vs. WEMAP r2 = 0.75;
Figure 7) were much stronger than we observed 
for the O/E indices (Figure 5). 

Bias 
The rescaled WSA-West MMI was a biased pre-

dictor of both the CA and WEMAP MMIs, with
slopes significantly different (p <0.001) from 1
(Figure 7).  In addition, the WEMAP MMI on aver-
age produced higher scores at test sites than the CA
MMI (Table 6).  The WEMAP MMI rated low-scor-
ing sites higher than the WSA-West MMI and high-
scoring sites lower than the WSA-West MMI 
(Figure 7).  However, most of these differences in
MMI values were not associated with the natural
gradients we considered, except for the significant
relationships between CA and WEMAP pairwise dif-
ferences and both elevation and watershed area
(Figure 8).

Responsiveness 
On average, the rescaled CA MMIs scored test

sites lower than the rescaled WEMAP MMIs, which
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Figure 6.  Scatterplots and regressions between the pair-wise differences in O/E values for three different O/E
indices and four environmental gradients at CA test sites. The dashed horizontal lines represent zero difference.
Thick solid lines denote regressions with r2 and slopes significantly different from 0; thin solid lines denote
those with intercepts significantly different from 0 but non-significant slope.  



in turn scored test sites lower than rescaled WSA-
West MMIs (Table 6).  This trend generally held for
both mountain and xeric ecoregions, although the
WSA-West vs. WEMAP mountain contrast was not
significantly different.  All MMIs tended to score test
sites in the xeric ecoregion lower than test sites in
the mountain ecoregion, although the difference in
mean values based on the WSA-West MMI was not
significant (Table 6). 

Index sensitivity and concordance among
assessments 

As with the O/E indices, impairment decisions
differed considerably among the rescaled MMI
indices (Table 8).  The number of sites assessed as
impaired was far fewer for the WSA-West and
WEMAP MMIs (21 and 17 sites of 68 total sites,
respectively) than the CA MMI (39 of 68 sites, bino-

mial tests, p <0.001).  This pattern occurred in both
xeric and mountain ecoregions but was only signifi-
cant in the xeric ecoregions (binomial tests: moun-
tain p = 0.219, xeric p <0.001). 

Summary of WEMAP and WSA-WEST indices
performance relative to CA indices 

Differences in index precision, bias, and respon-
siveness can each contribute to differences in index
performance as measured by index sensitivity, the
likelihood that an assessment will identify impair-
ment.  In this study, assessment differences between
WEMAP or WSA-West indices and CA indices
depended on the type of index examined and specific
differences in index precision, bias, and responsive-
ness (Table 9).  Although the large-scale indices tend-
ed to lead to different inferences regarding biological
condition than the CA indices, the specific differences
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Table 5.  Regressions (y = a + bx) for relationships shown in Figures 6 and 10 where y is the difference between
the index scores of two models and x is a natural gradient variable.  Asterisks indicate significant slopes, y-inter-
cepts, or r2 values at p = 0.05 level (significance threshold not adjusted for multiple comparisons).
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Table 6.  Results of t-test comparisons for differences in index responsiveness between sets of mountainous and
xeric test sites, or between model pairs.  Mean 1 and Mean 2 indicate the mean scores of the first and second mem-
bers of each tested pair.  All MMI scores were rescaled by dividing scores by the appropriate reference mean.

Table 7.  Counts of CA sites declared impaired (I) and not impaired (NI) by CA O/E estimates and corresponding
WEMAP and WSA O/E estimates. WSA-Adjusted: Impairment thresholds set at 5th percentile for each ecoregion.



among indices were variable.  These differences lead
to the WEMAP O/E index having similar sensitivity
to the CA O/E indices, whereas the WSA-West O/E
index was less sensitive.  The difference between
these two large-scale indices appeared to be largely
associated with differences in their responsiveness.
The MMI comparisons showed the opposite response
in that the WEMAP MMI was slightly more sensitive
than the CA MMI in mountain regions while the
WSA-West MMI was less sensitive than the CA MMI

in xeric regions.  As we saw for the O/E comparisons,
the differences between the WEMAP and WSA-West
MMI sensitivities were also most clearly associated
with differences in their responsiveness. 

DISCUSSION

The multiple spatial scales over which environ-
mental gradients influence the taxonomic and func-
tional composition of freshwater assemblages has
been the focus of considerable interest in recent
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Figure 7.  Regressions between rescaled scores at CA test sites between rescaled index scores for different
combinations of the MMIs. The dashed diagonal lines represent perfect 1:1 relationship between the models, and
the thick and thin solid lines indicate linear best-fit relationships. Significance tests are for y-intercept (y-int) = 0
and slope = 1.

Figure 8.  Scatterplots and regressions between the pair-wise differences in rescaled MMI values for the three
different MMIs and four environmental gradients at CA test sites. The dashed horizontal lines represent zero
difference. Thick solid lines denote regressions with r2 and slopes significantly different from 0; thin solid lines
denote those with intercepts significantly different from 0 but non-significant slope.



years (Poff 1997, Johnson et al. 2004, Johnson et al.
2007, Heino et al. 2007, Hoeinghaus et al. 2007,
Mykrä et al. 2007, Mykrä et al. 2008).  At the heart
of all of these studies is a desire to clarify under-
standing of the factors that determine species distri-
bution limits, one of the central goals of ecological
theory (Levins 1966, Wiens 1989, Peters 1991,
Brown et al. 1996, Guisan and Zimmermann 2000).
This issue has significant implications for the utility
of biotic indices because their effectiveness depends
understanding how distribution patterns of individual
taxa are influenced by landscape and waterway envi-
ronmental heterogeneity, and how those effects are
expressed at different scales of observation.  

Index Comparability
O/E indices

Matching test sites with appropriate reference
condition is a critical element of all bioassessments

(Moss et al. 1987, Hughes et al. 1995, Stoddard et
al. 2007).  Errors in specifying the correct reference
condition can lead to either under- or over-estimates
of the true biological condition at individual sites.
Our results show that the failure of the large-scale
predictive models to account for the effects of some
naturally occurring environmental factors caused
substantial systematic differences among the O/E
values derived from these models relative and those
derived from the CA models.  The fact that the most
spatially extensive models (WEMAP and WSA-West
models) did not adjust for the effects of local  envi-
ronmental heterogeneity (i.e., slope, percent fast-
water habitats) on E, and hence O/E, shows that such
spatially extensive models may have limited applica-
bility for site-specific assessments and use of these
assessments to generate regional assessments.  There
are several reasons the more spatially extensive mod-
els may have failed to account for the effects of
reach slope and percent fast water on assemblage
composition.  First, available map-derived variables
may not have been good surrogates for these vari-
ables when used at large scales.  For example, water-
shed area is likely related to one or more factors that
influence taxa presence at a site, including channel
slope and amount of fast-water habits (Hynes 1970,
Allan and Castillo 2007).  However, watershed area
might not be consistently associated with channel
slope across a region the size of the western United
States.  In the three sets of models we examined,
watershed area appeared to account for differences
among sites in channel reach for only the spatially
less extensive CA models.  Even in those models
that used direct measures of channel slope as a pre-
dictor variable (e.g., the WSA-West model), the rela-
tionship between invertebrate taxa and slope may be
obscured by strong relationships between inverte-
brate composition and predictors that vary markedly
across regions, such as temperature and precipitation.
Furthermore, a predictive model based on linear rela-
tionships between biotic composition and predictor
variables will fail to accurately describe any non-lin-
ear relationships and hence inaccurately predict the
taxa that should occur under specific states of that
variable.  In contrast, over a smaller range of envi-
ronmental conditions, surrogate predictors such as
watershed area, temperature, or precipitation may
adequately capture differences between sites in local
habitat features such as channel slope and type of
habitat.  In general, these problems of prediction bias
might be reduced in the future by both improving
how well reference site networks represent all
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Table 8.  Counts of CA sites declared impaired (I) and
not impaired (NI) by CA MMI estimates and correspon-
ding WEMAP and WSA MMI estimates.

Table 9.  Summary of differences in precision, bias,
responsiveness, and sensitivity of the WEMAP and WSA
indices relative to CA indices. M = mountain ecoregion, 
X = xeric ecoregion. The term “similar” indicates no
statistical difference; the terms “lower” and “higher”
indicate the direction of a significant difference.



streams of interest (in terms of both sample size and
types of streams) and by using robust predictors such
as Random Forests (Cutler et al. 2007) that do not
assume linear relationships.

The fact that the WSA-West model strongly
underestimated impairment relative to the CA model
has at least two possible explanations: 1) poorer pre-
cision in the WSA-West model resulted in lower
impairment thresholds and thus fewer impairment
decisions, and 2) WSA underestimated the probabil-
ities of capture of some of the taxa that contribute to
the O/E calculations.  The second result could have
arisen if the reference sites used to predict the fauna
in California streams were less rich on average than
the otherwise similar California sites assessed.
Vinson and Hawkins (1996) reported that inverte-
brate taxa richness in streams draining mountainous
regions of California (Coast Range Mountains and
Sierra Nevada) was higher than streams draining
other mountainous regions in the western USA.
Models based on a mix of reference sites from
across the western United States might therefore be
expected to under-predict richness at CA mountain
sites.  This explanation seems plausible for the
WSA-West model, because average WSA-West O/E
values for CA mountainous reference sites were
greater than 1 on average (Sierra Nevada = 1.04,
Southern Coastal Mountains = 1.11, and Klamath
Mountains = 1.04).  However, WEMAP reference
site O/E values did not exhibit this trend.  It seems
prudent that we should refine models to explicitly
account for the effects of biogeographic history on
taxa richness.  Such modeling might be accom-
plished through the use of categorical predictive
variables that classify sites by their relevant zoogeo-
graphic region rather than general purpose ecore-
gions (Hawkins and Vinson 2000, Hawkins et al.
2000b).  The contrasting result for the WEMAP
model (i.e., that WEMAP model did not underesti-
mate impairment relative to the CA model despite
precision values intermediate between the CA and
WSA models) is likely the consequence of the ten-
dency of the WEMAP model to score sites lower
than the WSA model.

Multimetric indices  
Although, agreement among the MMI scores

was considerably stronger than for the O/E indices,
the relationships between scores were not consistent
across the scoring range, indicating differences in
responsiveness of the indices at low vs. high biotic

condition sites.  Also, although the WEMAP and
WSA-West MMIs were derived from nearly identical
datasets, there were numerous differences in the per-
formance of the two larger MMIs, including preci-
sion, responsiveness and sensitivity.  These differ-
ences reflect the different approaches used to devel-
op the MMIs (Ode et al. 2005; Rehn et al. 2005;
Stoddard et al. 2005, 2008).  

Differences in MMI responsiveness were likely
caused by one or more of the following: 1) differ-
ences in how metrics were scaled in the separate
indices, 2) differences in the quality of sites used to
calibrate the indices, or 3) differences in how indi-
vidual metrics in each MMI respond to stress.
Because there was considerable overlap in metrics
among the indices, much of the difference among the
MMIs in their assessments probably lies in differ-
ences in the scoring ranges of specific metrics.  For
example, although the number of EPT taxa is a near-
ly ubiquitous metric in MMIs (Karr and Chu 1999),
the scoring range for this metric varies among
regions.  An EPT scoring range established from ref-
erence site data combined across a large spatial
extent will not necessarily reflect local reference
conditions.  In some regions, test sites will be under-
scored; in others they will be overscored.  We found
evidence of this effect in the number of disagree-
ments in impairment decisions made under the dif-
ferent MMIs.  Furthermore, the WSA-West MMI did
not indicate a difference in biotic condition between
mountain and xeric test sites, whereas the CA and
WEMAP MMI did.  This finding was echoed in the
way impairment decisions differed between
WEMAP and WSA-West indices in xeric and moun-
tain regions.  Both WEMAP and WSA-West MMIs
tended to overestimate impairment at mountain sites
relative to the CA MMI, whereas the WSA-West
MMI underestimated impairment at xeric sites rela-
tive to the CA MMI.

A final potential explanation is that differences
in MMI performance were related to differences in
the calibration sets used to derive the metric scoring
ranges.  Because MMIs are calibrated with both ref-
erence and test data, any difference in the biological
quality of either set of calibration sites can affect a
site’s scoring, just as they can in O/E models
(Hawkins 2006).  Because of incomplete information
regarding the quality of reference and test sites used
to calibrate the different indices, how seriously such
differences affected index performance could not be
addressed at this time. 
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Effects of spatial scale on index performance 
It has been long known that taxonomic composi-

tion is influenced by natural environmental gradi-
ents.  How these relationships are expressed at dif-
ferent spatial scales, and hence affect biological
indices, is much less clear, but is of increasing inter-
est (Finn and Poff 2005, Heino et al. 2007, Cao et al.
2007, Mykrä et al. 2008).  MMIs and predictive
models use different methods for accounting or
adjusting for natural gradients.  Predictive models
are explicitly designed to describe how natural envi-
ronmental gradients affect the distribution of individ-
ual taxa (Wright et al. 1989, 2000).  However, some
natural gradients may be important at certain geo-
graphic scales, but cease to matter at other scales, as
shown in this study and elsewhere (Mykrä et al. 2008). 

In contrast to O/E indices, MMIs attempt to min-
imize the effects of natural gradients by a priori clas-
sification of reference sites into environmentally
homogeneous sets of sites.  In addition, metrics are
selected to be insensitive to natural gradients, or by
adding correction factors that adjust for scoring dif-
ferences along gradients (Karr and Chu 1999).  In
this study, for example, scoring ranges for the EPT
richness metric varied little across spatial scales
within ecoregions (Ode et al. 2005; Rehn et al. 2005;
Stoddard et al. 2005, 2008), and the CA MMI for the
North Coast explicitly corrects for watershed area in
affected metrics (Rehn et al. 2005).

In this study, the large-scale predictive models
were not completely successful in adjusting for two
of the gradients (percent slope and percent fastwater
habitats) we examined.  Likewise, the CA and WSA-
West MMIs were not completely effective at control-
ling for an elevation gradient. 

Index performance and model traits 
All the biological indices in our evaluations pro-

duce scores by comparing biological expectations to
observed biology.  Although E in O/E is explicitly
modeled (i.e., predicted), MMI expectations are
derived from a set of reference sites that are grouped
(by ecoregion, stream size, etc.) to maximize similar-
ity of the biological assemblages at reference sites.
Thus, both O/E and MMI are indices based on mod-
eled expectations.  Levins (1966) postulated that
there is an inherent tradeoff among three desirable
model traits: reality (i.e., accuracy, or lack of bias),
precision, and generality (see also Guisan and
Zimmermann 2000).  Although these model traits are
not necessarily mutually exclusive, we cannot expect

the models used to predict biotic conditions to opti-
mize each trait.  In creating standardized indices
applicable across a large range of geoclimatic condi-
tions, generality was improved at the expense of
both reality and precision.  This tradeoff points to the
need to develop more localized models for bioassess-
ment programs, especially those that use biocriteria
to infer if streams are supporting their designated
aquatic life uses.  However, the fact that impairment
decisions can be very sensitive to the thresholds used
to define impaired conditions (as seen when an
ecoregion-based correction was applied to the WSA-
West model for O/E comparisons), suggests that it
may be possible to adjust for some of the systematic
differences among the models.  Larger models could
be rendered more suitable for local application by
calibrating impairment thresholds to local reference
conditions.  In practice, a local regulatory entity
could recalculate the standard deviations for O/E or
MMI models based only on local reference sites and
use these to set locally relevant thresholds. 

Concluding Remarks
The answer to the central question of whether

indices developed from geoclimatically extensive
data can substitute for more locally produced indices
depends both on their intended use and the type of
indicator.  In regional condition assessments, accura-
cy (lack of bias) is more important than precision.
That is, for low precision can be compensated by
looking at large numbers of samples with the expec-
tation that the estimated average condition will still
be accurate.  For the purpose of regional assess-
ments, use of the WEMAP O/E index produced
results that were generally comparable to the CA
indices.  In contrast, because of its strong bias, the
WSA-West O/E index would probably underestimate
regional impairment. Likewise, lower precision and
differences in responsiveness across the scoring
range make the WSA-West MMIs less desirable for
regional condition assessments. 

For site-specific assessments, where both accura-
cy and precision are important, it seems clear that
locally derived indices should outperform large-scale
indices for both types of index (see also Mykrä et al.
2008).  Because most applications of bioassessment
tools are site-specific, there is a clear need to contin-
ue to develop regional models that explicitly take
locally important gradients into account (Heino et al.
2007).  However, because the WEMAP MMI had
similar precision and WEMAP MMI scores were
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highly correlated with CA MMI scores, the WEMAP
MMI might provide an acceptable substitute in
California (and potentially other regions in the west-
ern US) until local MMIs are developed, assuming
care is taken to adjust impairment thresholds to
reflect local reference conditions.

Finally, these results suggest three related
applied research needs: 1) identifying the geographic
or geoclimatic scale that optimizes index perform-
ance, 2) determining the factors that most strongly
influence index performance and identifying the geo-
graphic scales at which they vary, and 3) identifying
ways of more accurately specifying the reference
condition from geoclimatically extensive sets of ref-
erence site data.  It is not known much about which
factors influence the optimal geographic scale for
producing either predictive models or multimetric
indices, but the rapidly expanding field of bioassess-
ment would benefit greatly from the ability to predict
these factors. 
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