
ABSTRACT
Library-based microbial source tracking (MST)

can assist in efforts to reduce or eliminate fecal pol-
lution in waters by predicting sources of fecal-asso-
ciated bacteria.  Library-based MST relies on an
assembly of genetic or phenotypic "fingerprints"
from pollution-indicative bacteria cultivated from
known sources to compare with and identify finger-
prints of unknown origin.  The success of the library-
based approach depends on how well each source
candidate is represented in the library and which sta-
tistical algorithm or matching criterion is used to
match unknown sources.  Because known source
libraries are often built based on convenience or
cost, some library sources may contain more repre-
sentation than others.  Depending on the statistical
algorithm or matching criteria, predictions may
become severely biased toward classifying unknown
sources into the library's dominant source category.
We examined prediction bias for three of the most
commonly used statistical matching algorithms in
library-based MST when applied to disproportionate-
ly represented known source libraries.  These include
maximum similarity (MS), average similarity (AS),
and discriminant analyses (DA).  We found that MS
was particularly sensitive to disproportional source
representation, while AS and DA were more robust.
We discovered that nearest neighbor (NN) analyses
provides a compromise between correct prediction
and sensitivity to disproportional libraries among the
three statistical procedures.  This includes increased
matching success and stability that should be considered
when matching to disproportionally represented libraries.

INTRODUCTION
Predicting sources of fecal contamination is

important for managing a healthy water body and
protecting against disease.  By predicting the
source(s) of fecal-associated bacteria, microbial

sourcetracking (MST) allows scientists and regula-
tors to prioritize and more effectively respond to
health and environmental hazards associated with
fecal-contaminated waters (Scott et al. 2002,
Simpson et al. 2002, Stewart et al. 2003).
Commonly used library-based MST methods  rely on
the assembly of genetic or phenotypic "fingerprints"
from pollution-indicative bacteria cultivated from
known sources of fecal contamination (Harwood et
al. 2003,Scott et al. 2002, Simpson et al. 2002).
Scientists predict unknown sources of pollution
using computer-based statistical analysis to match
unknown source fingerprints to those from the
known-source library (Bower 2001, Dombek et al.
2000, Hagedorn et al. 1999, Harwood et al. 2000,
Whitlock et al. 2002, Wiggins 1996).  The success of
the library-based approach depends on: 1) the distri-
bution of fingerprint patterns among source candi-
dates, 2) how well each source candidate is repre-
sented in the library, and 3) which statistical algo-
rithm or matching criterion is used to match
unknown sources.  

Construction of known-source libraries is often
limited by the availability of known-source samples
and our ability to collect and process those samples
(Robinson 2004).  As a result, libraries may contain
disproportional representation of isolates among the
source candidates.  For example, collecting large
numbers of samples from a wastewater treatment
plant may be relatively easy while collecting an
equivalent number of individual dog samples may
require much more effort and may not be feasible.
The concern is that libraries that are heavily "loaded"
toward a particular source may bias predictions
toward the dominant library source.  

The potential bias resulting from disproportional
libraries may be particularly problematic, depending
on the statistical matching algorithm used to match
unknown source isolates.  Library-based methods
employ a variety of statistical methods to match 
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fingerprints of unknown origin to the known-source
library (Bower 2001, Carson et al. 2003, Dombek 
et al. 2000, Hagedorn et al. 1999, Harwood et al.
2000, Hassan et al. 2005, Ritter et al. 2003,
Whitlock et al. 2002, Wiggins 1996, Wiggins et al.
2003).  Because each method relies on a different
strategy for matching, some algorithms may be more
sensitive than others to disproportional source repre-
sentation in the library.  Maximum similarity (MS),
commonly used in MST data analysis, is a statistical
matching algorithm that classifies an unknown
sources into the source group to which its most simi-
lar known member belongs (Applied Maths 2004).
Consequently, using MS may result in increased 
predictions to the dominant source category simply
because there are more "opportunities" to match to
the dominant source.   

Average similarity (AS) and discriminant analy-
sis (DA) provide alternative matching strategies to
MS, where isolates are matched to known sources
based on proximities to the center of each source
group, rather than on the proximity to a single
library isolate.  AS assigns unknown source finger-
prints to the source group based on the average simi-
larity of that fingerprint to all fingerprints within
each known source group in the library (Applied
Maths 2004).  DA classifies unknown sources into
source groups based on a "rule" developed from a
calibration data set, e.g., library.  This "rule" is based
on the distribution of distances between library fin-
gerprints and the centroid of each source group 
in order to estimate the relative likelihood of belong-
ing to each source group (SAS Institute 2004,
Johnson 1998).  With both AS and DA, dispropor-
tional libraries may create unstable estimates for the
center of each group by allowing for a greater num-
ber of outliers that may skew the estimated probabil-
ities leading to incorrect prediction.  

A study was performed in 2003 on a coastal
watershed in Mississippi that consistently displayed
elevated levels of fecal bacteria in the water, forcing
closure of the area by the state to recreational uses
(Robinson 2004).  Three potential sources of fecal
contamination source (dog, gull, and sewer) were
identified in this urban, mostly residential, water-
shed.  These samples were collected and processed,
based on availability, for enterococci by rep-PCR
using BOX sequence (5'-CTA CGG CAA GGC GAC
GCT GAC G-3') primers (BOX-PCR).  Although an
attempt was made to build a library from equal num-
bers of isolates within each source, the variable rates

of isolation, confirmation, and the selection of
unique fingerprint patterns led to disproportional rep-
resentation among source candidates.  The resulting
library contained approximately five times as many
human isolates as dog and gull isolates.  Analysis of
the data raised concerns that having a greater number
of sewerage representatives in the library may have
biased identification toward the sewer source.  

This paper examines the use of library-based
rep-PCR data and three common statistical methods
(MS, AS, and DA) in the presence of disproportional
source representation.  The results are based on sim-
ulation studies using the enterococcal fingerprints
from the study described above, where we estimate
probabilities of correct and incorrect prediction for
identifying three sources (sewer, gull, and dog) using
disproportional libraries.  In addition, we suggest an
alternative statistical method, k-nearest neighbor 
(k-NN) as a valuable compromise among the other
three matching strategies.

METHODS
To examine how disproportional source repre-

sentation affects source identification, simulation
studies estimated correct and incorrect prediction
probabilities for MS, AS, and DA across various
libraries.  These libraries differed in terms of the
number and the relative proportion of sewer isolates
that were represented within each source group.  

The isolates used in this study contained 242
samples collected from animals and lift stations
along the Mississippi gulf coast during the 2003 
calendar year (Robinson 2004).  From these samples,
1,666 sewer, 343 dog, and 221 gull enterococci were
isolated and confirmed biochemically (USEPA
2000).  These isolates were analyzed by BOX-PCR,
visualized by gel electrophoresis to create individual
isolate fingerprints, and assessed using BioNumerics
v3.5 (Applied Maths, Sint-Martens-Latem, Belgium).
Band-based binary data (presence/absence) were
imported into SAS (SAS Institute 2004) for statisti-
cal evaluation.  Clones were removed prior to analysis.  

For each simulation, isolates from each source
category were randomly selected, without replace-
ment, from the isolate archive using the SAS proce-
dure PROC SURVEYSELEC (SAS Institute 2004),
and placed into a library.  The first simulation library
construction consisted of sampling an equal number
of isolates from each source group in the archive
(100 dog, 100 gull, and 100 sewer).  One hundred
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isolates were chosen from each group because of
limiting pools of dog (n = 343) and gull (n = 221)
isolates.  In the second set of simulations, libraries
were constructed by sampling increasing numbers of
sewer isolates (e.g., 200, 300, 400, and 800), while
keeping the remaining number of dog and gull iso-
lates the same (e.g., 100).

The jaccard similarity coefficient was used as the
similarity measure for both MS and AS, while
Mahalanobis distance was used for DA, and
Euclidean distance was used for NN.  Ties were
excluded from analysis if the isolate tied to more than
one source during assignment.  If an isolate tied to two
different isolates within the same source, then ties were
kept and matched to that source.  No thresholds of fin-
gerprint similarity were applied. 

Simulations were repeated using k-NN as a sta-
tistical alternative to MS, AS, and DA.  Using k-NN,
source prediction is based on the unknown finger-
print's proximity to k of the most similar known indi-
viduals, rather than proximity to a single known
individual or to the source group as a whole.  We
applied k = 1, 2, 3, 30, and 100 NN strategy using
the SAS procedure PROC DISCRIM and Euclidean
distance (SAS Institute 2004).  

Jackknife estimates of correct and incorrect pre-
diction probabilities were calculated for each of the
three sources in the library and for each of the four
statistical matching procedures.  The standard jack-
knife analysis, also known as "cross-validation" or
"leave-one-out" analysis, calculates the bias of an
estimator by deleting one isolate each time from the
original data set and examining the similarity of that
isolate to the remainder of the isolates in the library.
Jackknife estimates of correct and incorrect predic-
tion probabilities for each source group are based on
calculating the percentage of correct and incorrect
source assignment across all (deleted) isolates within
each source group (Wiggins 1996, Shao and Tu 1995).
This emulates assignment of an unknown isolate to a
library unit and provides an estimate of source group
bias (correct versus incorrect assignment).  Under
simple random sampling, these jackknife estimates
provide nearly unbiased estimates of library accuracy
(and inaccuracy) for classifying unknown isolates for
each source.

Final estimates of percent correct and incorrect pre-
diction probabilities (%CP and %IP) for each library
construction were based on averaging jackknife esti-
mates across 1,000 simulations.  Overall rates of %CP
and %IP were based on averaging prediction probabili-
ties across the sources for each statistical method.  

RESULTS
The first set of 1,000 simulations involved ran-

domly selecting 100 isolates from each of the three
source groups and classifying those isolates using
jackknife analysis of MS, AS, DA, and 3-NN match-
ing algorithms.  The percent of correctly identified
isolates for each source group varied depending on
the statistical algorithm used to match isolates (Table 1).
The 3-NN method resulted in the highest %CP for dog

(67%) and sewer (58%) isolates.  Gull isolates were
best matched by AS (93%).  For all source groups, AS
showed the lowest (49%) average %CP while 3-NN
showed the highest (62%).  MS and DA exhibited sim-
ilar average %CP at 58% and 54%, respectively. 

The second set of simulations involved randomly
selecting 100 isolates from dog and gull (as in the
first simulation) and increasing the number of sewer
isolates in the library (200 up to 800).  Jackknife
analyses were performed on each library to deter-
mine the disproportional effect on %CP and %IP.
MS exhibited a maximum increase in correct predic-
tion for sewer isolates (+38%) and a maximum
decrease in correct prediction for dog (-25%) and gull
(-17%) isolates as the number of  sewer isolates repre-
sented in the library increased to n = 800 (Figure 1).
These increases in %CP for sewer were followed by
an increase in %IP for dog (+42) and gull (+30%)
(Figure 2).  AS exhibited a stable (~0% change)
%CP across the three sources as sewer isolates were
added to the library (Figure 1).  DA also exhibited a
moderately stable %CP for sewer (+16%), dog (-7%),
and gull (-2%) sources upon addition of sewer iso-
lates to the library.  Although changes in AS %IP
were negligible across the three sources, DA resulted
in modest increases in %IP for dog (+10%) and gull
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Table 1.  The percent correct prediction (%CP) for dog,
gull, and sewer sources against maximum 
similarity (MS), average similarity (AS), discriminant
analysis (DA), and 3-nearest neighbor (3-NN) using a
proportional group size library (e.g., n = 100 isolates
from each source).

 Matching 
Algorithm

Average 
%CP

Dog Gull Sewer
MS 55% 67% 53% 58%
AS 29% 93% 27% 49%
DA 53% 61% 48% 54%
3-NN 67% 62% 58% 62%

Source



(+6%) as sewer source with the addition of sewer
isolates to the library (n = 800).  As sewer isolates
were added to the library, 3-NN exhibited relatively
higher and more stable %CP than MS, AS, and DA
(Figure 1).  The 3-NN method misclassified an addi-
tional 7% of dog and 4% of gull isolates as sewer
source when comparing proportional and dispropor-
tional libraries (Figure 2).  

Additional simulations of nearest neighbors were
performed (k = 1, 2, 10, 30, 100) (data not shown).  For
1-NN exhibited results similar to MS.  For k greater than
or equal to 2, a substantial increase in %CP was
observed, followed by a decrease in %IP for gull and

dog isolates in disproportional library conditions.
Nearest neighbor k = 30 and k = 100 exhibited simi-
lar stability to that of AS.  However, with this data
set, k = 3 seemed the most stable and best choice for
classification in disproportional conditions.  In gen-
eral, analysis using the nearest neighbor algorithm
was comparable with MS’s higher %CP without the
instability associated with increased disproportional
sewer source representation in the library.

DISCUSSION
This study showed that unequal source represen-

tation in the library may substantially bias source
prediction toward the more dominant library source.
The magnitude of bias is affected both by the
amount of disproportionality among source candi-
dates and by the choice of statistical algorithm used
to match unknown sources.  Of the three commonly
used statistical algorithms (MS, AS, and DA) investi-
gated in this paper, MS was the most sensitive to dis-
proportional source representation.  While AS and
DA were more robust to disproportional libraries,
they were not always the best for correctly matching
unknown sources.  This may be due, in part, to the
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Figure 1.  Estimated probability of correctly predicted
isolates into each source, sewer (a), dog (b), and 
gull (c), as a function of increasing numbers of library
sewer isolates for maximum similarity (MS), average
similarity (AS), discriminant analyses (DA), and 
3-nearest neighbor (3-NN) analysis.
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Figure 2.  Estimated probability of incorrectly predicted
dog (a) and gull (b) isolates as sewer as a function of
increasing numbers of library sewer isolates for 
maximum similarity (MS), average similarity (AS), 
discriminant analyses (DA), and 3-nearest neighbor 
(3-NN) analysis.
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high degree of overlap among the distribution of fin-
gerprint patterns, multimodality, and the presence of
subtypes within each sources (Ritter et al. 2003.
Such patterns have been noted by others and were
confirmed by cluster analyses of the original library
in the 2003 study.  

The k-NN method allows for the identification
of subtypes in the library (a strength of MS), and is
robust to increases in prediction bias associated with
using disproportional libraries (a strength of
AS/DA).  The choice of k allows the researcher the
flexibility to address each issue: subtype identifica-
tion, and library-based bias as the situation demands.
At k = 1, k-NN is equivalent to MS.  As k increases,
k-NN takes on more characteristics of AS/DA.  In
this study, discrepancies among the k-NN and MS
and AS resulted from the choice of distance measure;
Euclidean distance was used for NN instead of
Jaccard that was used with MS and AS.  the k-NN 
(k = 3) method tended to perform as well as MS
when proportional libraries were used, and correct
and incorrect prediction rates were nearly as stable
as with DA and AS when disproportional libraries
were tested.  The success and stability of k-NN
matching strategy is a compromise between the
matching to a single isolate and matching to the
group as a whole.  

Bias within an MST library may be caused by
additional measures such as fingerprint overlap
between the sources.  The data set exhibited some
overlap of rep-PCR fingerprints between sources,
data not shown (Robinson 2004).  This introduces
bias and difficulty of correctly predicting fecal
sources completely unrelated to disproportional
library size.  The biological characterization method
specificity, rep-PCR in this case, can be used to
access the fidelity of a source tracking library.  Other
options may include omitting overlapping/homolo-
gous fingerprints from the library or applying simi-
larity thresholds, which may increase the accuracy of
library matches.

MST researchers frequently evaluate the effective-
ness of their source library and the reliability of their
statistical matching algorithm by estimating probabili-
ties of correct prediction.  However, little, if any, atten-
tion is given to prediction bias among the various
source categories.  Bias during analysis can lead to
incorrect prediction of the true pollution sources and
funds may be spent to remediate the wrong source(s)
of pollution.  These types of situations are particularly
problematic for water resource managers.

When analyzing library-based MST data, it is
important not only to consider the %CP of sources
groups, but also the %IP and the proportional library
size.  Disproportional library conditions arise fre-
quently due to sampling and processing limitations.
However, it is not necessary to eliminate samples
from a data set simply to create a proportional
library.  When disproportional libraries arise, it is
necessary to survey the data statistically and com-
pare results using different statistical algorithms as
well as consider the possible bias associated with
disproportional libraries and some matching algorithms.  

Our results suggest that k-NN offers a valuable
compromise when working with disproportional
libraries, incorporating the strengths of both MS and
AS/DA.  We suggest applying k-NN strategy  for
those cases where disproportionate libraries are used
and where MS typically performs better than AS or
DA using proportional libraries.  In choosing k, we
suggest calculating jackknife estimates of both 
correct and incorrect classification rates for various
levels of k.  In this way, the researcher can weigh the
trade-offs associated with increased correct classifi-
cation probabilities and prediction bias.  We found
that for the 2003 study, k = 3 provided an optimum
balance.  We believe that k-NN offers a promising
statistical matching algorithm that should be consid-
ered when using disproportional libraries.  These
findings could be applicable to any disproportional
source tracking library multivariate data including
rep-PCR, multiple antibiotic resistance, antibiotic
resistance analysis, and ribotyping data sets.
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