
ABSTRACT

Maps are useful tools for understanding, manag-
ing, and protecting the marine environment, yet few
useful and statistically defensible maps of environ-
mental quality and aquatic resources have been
developed in near-coastal regions.  Current environ-
mental management efforts, such as ocean monitor-
ing by sewage dischargers, routinely sample areas of
potential impact using sparse sampling grids.
Heterogeneous oceanic conditions often make
extrapolation from these grids to non-sampled loca-
tions questionable.  Although rarely applied in
coastal monitoring, kriging offers a more rigorous
statistical approach to mapping and allows confi-
dence intervals to be estimated for predictions.  Its
usefulness relies on accurate models of the spatial
variability through estimating the semivariogram.
Many optimal designs for estimating the semivari-
ogram have been proposed, but these designs are
often difficult to implement in practice.  In this
paper, we present simple design strategies for aug-
menting existing monitoring designs with the goal of
estimating the semivariogram.  In particular, we
investigate a multi-lag cluster design strategy, in
which clusters of sites, spaced at various lag dis-
tances, are placed around fixed stations on an exist-
ing sampling grid.  We find that these multi-lag clus-
ter designs provide improved accuracy in estimating
the parameters of the semivariogram.  Based on sim-
ulation study findings, we apply a multi-lag cluster
enhancement to the monitoring grid for the City of
San Diego’s Point Loma Wastewater Treatment Plant
as part of a special study to map chemical contami-
nants in sediments around its sewage outfall.  

INTRODUCTION

Maps are useful tools for understanding and
managing the marine environment.  Because spatial
patterns are recognized more easily with visual dis-

plays, maps provide scientists with valuable sum-
maries of changing ecological conditions. Using
maps, resource managers can quickly locate distur-
bance, assess its relative magnitude and spatial extent,
and weigh risks to neighboring areas.  In addition,
cumulative effects resulting from multiple sources and
types of disturbance can be determined.  Perhaps most
importantly, maps are effective and efficient media for
communicating information to the public.

Despite the benefits, few useful and statistically
defensible maps of environmental quality and aquat-
ic resources have been developed in the near-coastal
regions.   Current environmental management
efforts, such as ocean monitoring by sewage dis-
chargers, routinely sample areas of potential impact
using fixed grids of relatively few sample sites (e.g.,
<30).  Typically, simple interpolation methods, such
as linear interpolation or triangulation, are applied to
data collected from these sparse grids.  However,
these few samples are inadequate to capture the het-
erogeneous oceanic conditions and lack the spatial
intensity to predict reliably at unsampled locations.
Further, these simple interpolation methods do not
provide estimates of precision.  Kriging offers a
more sophisticated statistical alternative for creating
maps that provides predictions as well as estimates
of prediction errors and is available in many statisti-
cal or mapping software packages.  The usefulness
of kriging, however, requires an adequate under-
standing of the spatial variability of the data.  In
many cases, this information is unavailable. 

With kriging, spatial variability is estimated
through modeling the semivariogram.  The semivari-
ogram is equal to one-half the variance of paired
sample differences taken at some fixed or “lag” dis-
tance apart.  By measuring the variability of sample
differences as a function of distance, the semivari-
ogram provides a measure of the strength of the spa-
tial autocorrelation that determines the weights asso-
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ciated with kriging predictions.  In addition, the
semivariogram can be used to assess the errors asso-
ciated with those predictions so that, in conjunction
with a cost or objective function, one can estimate
the optimal grid spacing for future designs.  (Burgess
et al. 1981, McBratney et al. 1981).

Our ability to model the semivariogram accu-
rately depends on the sample design.  Many optimal
sampling schemes have been proposed in the litera-
ture for estimating the semivariogram.  These meth-
ods rely on optimization with respect to some com-
plex objective function.  For example, Muller and
Zimmerman (1999) suggest maximizing the determi-
nant of the information matrix using a method of
moments.  Lark (2002) uses spatial simulated
annealing and maximum likelihood to maximize the
precision of the kriging variance.  Others suggest
approaches including minimization of the dispersion
of distances between sites (Russo 1984), fitting of
lags to a distribution (Warrick and Myers 1987), and
maximization of the equivalent uncorrelated pairs
(Morris 1991).  While these designs are optimal with
regard to their particular objective function, their
sophistication and difficulty of implementation often
make them prohibitive for use by many coastal mon-
itoring agencies.

In this study, we investigate simple design strate-
gies that can be implemented easily by coastal moni-
toring agencies to build upon their existing monitor-
ing grid for the purpose of estimating the semivari-
ogram.  In particular, we introduce multi-lag cluster
designs, where clusters of sites, spaced at various lag
distances, are placed around fixed locations on an
existing grid.  We examine different strategies for
allocating sampling resources within the mult-lag
clusters, including replication at particular lag dis-
tances, spatial coverage, and sample configuration
(i.e., the way in which samples are placed around
grid sites). We use our findings to develop a special
mapping study for the City of San Diego’s Point
Loma Wastewater Treatment Plant (PLWTP) moni-
toring program to estimate the semivariogram for a
host of chemical contaminants found in sediments
around their sewage outfall.  The estimated semivari-
ogram will then be used to determine appropriate
grid spacing for more cost-efficient surveys. 

METHODS

In this section, we present the multi-lag cluster
design as a simple strategy for augmenting fixed grids

for modeling the semivariogram.  We focus on esti-
mating three parameters typically used to describe
semivariogram models: the nugget, sill, and range.   

• The nugget measures the variability 
between paired sample differences taken at 
very close proximities.  The nugget represents
laboratory measurement error plus small-scale
spatial variability.  
• The sill measures the variability
achieved between sample differences that are
spaced sufficiently far apart so that there is
no spatial autocorrelation.  
• The range is the lag distance at which
the sill is achieved and provides the extent 
of the spatial autocorrelation between 
sample locations.  
• For a more technical description of kriging
and the semivariogram, see Cressie (1993) or
Webster and Oliver (2001).

We perform two simulation studies that
assess the usefulness of multi-lag cluster designs for
estimating semivariogram parameters.  The first
study examines four different resource allocations
within the class of multi-lag cluster designs.  The
results of the study are used to design a survey for
the PLWTP for estimating the semivariogram of
chemical contaminants in sediment around their
sewage outfall.    The second simulation study
assesses the ability of this particular design to esti-
mate the semivariogram parameters under varying
degrees of spatial dependence.   In both simulation
studies, we assume the mean is constant and the
variability of paired sample differences does not
depend on their particular sample locations, but only
on the distance between them (i.e., first-order sta-
tionarity).   Further, we assume that the variability
does not depend on direction (i.e., isotropy).  In
practice we attempt to satisfy both assumptions by
applying a data transformation (e.g., log) and/or fit-
ting a linear model (eg., with latitude, longitude, and
depth as covariates) and using the residuals for vari-
ogram modeling.

Multi-lag cluster designs
Multi-lag cluster designs are enhancements to

fixed-grid designs for which clusters of sample sites
are placed around existing grid stations.  The multi-
lag component of the design allows for replication of
sample pairs at multiple spatial distances by placing
sites within each cluster at various lag distances from
the existing grid stations.  Clusters may be placed
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around all or a subset of existing grid stations. Thus,
multiple lag distances and spatial coverage can be
addressed in the design.  

The class of multi-lag cluster designs allows for
great flexibility in terms of the number of clusters
(the number of lags within a cluster), the number of
replicates within each lag class, and the size of each
lag class.  We present four multi-cluster alternatives
in our simulation studies that represent some of the
possibilities with these designs.  

We conducted two simulation studies to investi-
gate the utility of multi-lag cluster designs for esti-
mating the semivariogram.  The first simulation
study compared semivariogram parameter estimation
among four multi-lag cluster designs and two fixed
grids.  We chose designs that would allow explo-
ration of different strategies for allocating sampling
resources within the class of multi-lag cluster
designs for fixed cost (e.g., sample size).  The results
of the first simulation study were used to develop a
multi-lag cluster design to estimate semivariograms
of chemical contaminants for the PLWTP outfall
area.  Our second simulation study then assessed
how accurately this particular multi-lag cluster
design estimated the semivariogram parameters
under different degrees of spatial autocorrelation.  

Simulation study
Four multi-lag cluster enhancements to the 5x5
fixed grid

In the first simulation study, we compared the
accuracy of semivariogram parameter estimation
based on data simulated across four multi-lag cluster
designs (STAR, S, Short Lag Star, and Long Lag
Star) and two fixed-grid designs (FixGrid5 and
FixGrid10). Our first two designs, STAR and S,
explored the difference between the number of clus-
ters (sample coverage) and the number of sites with-
in a cluster (cluster size). Our second two designs,
Short Lag Star and Long Lag Star, had fewer lags
represented in each cluster and examined the differ-
ence between shorter and longer lag distances.  

The four multi-lag cluster designs were based on
enhancements to a fixed 5x5 sampling grid, FixGrid5
(Figure 1A).  The first multi-lag cluster design, STAR,
consisted of clusters of 16 sites arranged in a star-
shaped pattern around four fixed-grid stations (Figure
1B).  Within each cluster, we placed four samples at
each of four different lag distances from the grid sta-
tion. The four lags were 1, 3, 7, and 13 units (“units”

correspond to relative lag proportions for our PLWTP
application).  The S multi-lag cluster design consisted
of clusters of eight sites arranged in an s-shaped pat-
tern around eight fixed-grid stations (Figure 1C).  The
s-clusters in the S design were formed by splitting in
half each star-cluster in the STAR design.  We placed
two samples within each of the s-clusters at each of
four different lag distances from the grid station. The
Short Lag Star multi-lag cluster design consisted of
clusters of eight sites arranged in a star-shaped pattern
around eight fixed-grid stations. Within each cluster,
four samples were placed at each of the two shorter
lag distances, 1 and 3 units, from the grid station
(Figure 1D).  The Long Lag Star multi-lag cluster
design also consisted of clusters of eight sites
arranged in a star-shaped pattern around eight fixed-
grid stations.  For this design, we placed samples at
each of the longer two lag distances, 7 and 13 units
(Figure 1E).  Finally, a 10x10 grid (FixGrid10) design
was included for comparison (Figure 1F).  All multi-
lag cluster designs had 89 sample locations.  The
FixGrid5 had 25 sample locations and was included
simply as a reference for improvement with increased
sampling density.  The FixGrid10 with 100 sample
locations was used to compare the multi-lag cluster
designs with a fixed grid of similar sample size.  A
summary of sample allocations for each of the multi-
lag cluster designs is given in Table 1.

The differences among designs can be seen in their
distribution of the lag distances representing the replica-
tion of pairwise distances between sample sites (Figures
2A - E).  Lag distributions for the fixed-grid designs are
characterized by replication at only a few lag distances,
revealing “holes” where lag distances were not repre-
sented.  The multi-lag cluster designs resulted in a
much greater representation across lag distances.

Simulations proceeded with the fitting of a semi-
variogram model to sample data generated from the
various sample designs. With each iteration of the
simulation, spatially correlated data were generated
across all six designs using rfsim in the Splus
S+Spatial Statistics module (Kaluzny et. al. 1998).
We chose the spherical model to represent the under-
lying variability of the data with three different range
values (10, 30, and 60 units), two different nuggets
(0.0 and 0.2), and one sill value (1).  For this model,
the range values were chosen to represent small,
medium, and large ranges relative to the lag distribu-
tion covered by each of the designs.  Each nugget is
represented as a proportion of the sill (scaled to 1).   
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The fitting algorithm for estimating the semivari-
ogram model parameters was accomplished using var-
iogram.fit in Splus S+Spatial Statistics module
(Kaluzny et al. 1998).  This automated procedure is
based on minimizing the weighted least squares objec-
tive function given by Cressie (1985).  Specifications
for the variogram.fit procedure were the same for

each design (semivariogram model = spherical, num-
ber of lag classes = 50, maximum lag distance = 100).
We determined these specifications by fitting the
semivariogram manually to data simulated for each of
the sampling designs and selecting those specifica-
tions that generally gave the most reliable results with
the automated semivariogram fitting procedure.
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Figure 1.  Schematic sampling locations for fixed-grid and multi-lag cluster designs. Distances in both the X and
Y directions are unit less, but may be rescaled to fit any square length. FixGrid5 (A) has 25 samples arranged in
an equally spaced grid pattern.  The multi-lag cluster designs: Star (B), S (C), Short Lag Star (D), and Long Lag
Star (E) consist of 64 additional sites placed around various grid points of FixGrid5 for a total of 89 sampling loca-
tions.  The Star design adds 4 clusters of 16 sites, arranged in a star-shaped cluster representing 4 distinct lag
classes.  The S design is formed by dividing each star-shaped cluster into two s-shaped clusters such that the 8
s-shaped clusters of 8 sites represent each of the 4 lag classes in each cluster.  Short Lag Star adds 8 star-shaped
clusters of 8 sites, representing only the two shorter lag clusters in each cluster.  Long Lag Star adds 8 star-
shaped clusters of 8 sites representing only the two longer lag classes.  The FixGrid10 (F) is a fixed-grid design
of 100 samples.

Design Number of Lags 
(lag distances)* 

Number of Clusters 
(number of sites in 

each cluster) 

Total 
Sample Size 

Star 4 (1, 3, 7, 13) 4 (16) 89

S 4 (1, 3, 7, 13) 8 (8) 89

Short Lag Star 2 (1, 3) 8 (8) 89

Long Lag Star 2 (7, 13) 8 (8) 89

*Lag distances are unit less

Table 1. Summary of sampling allocations for multi-lag cluster designs (Simulation 1).



We assessed performance among the six designs
for estimating the semivariogram parameters using
two measures. First, we calculated the median devia-
tion from the true parameter value for each design.
Second, we computed the percentage of times (simu-
lated runs) that each design yielded estimates closest
to the true parameter value, across all other designs.
In cases for which more than one design gave an esti-
mate that was closest to the true value (i.e., ties), each
of the “winners” received credit for being closest.
Consequently, percentages may sum to greater than
100%.  We also computed percentages for all design
pairs in order to verify that a particular resource allo-
cation was preferred (e.g., shorter lags vs. longer lags,
more clusters vs. more sites within a cluster).  Our
results were based on 1,000 simulations.

Application of the multi-lag cluster enhancement
to the city of San Diego’s PLWTP montoring grid 

As part of its regulatory requirements govern-
ing sewage effluent discharge offshore, the City of
San Diego agreed to participate in a special study to
improve the estimation of sediment contaminants
surrounding the Point Loma Ocean Outfall

(National Pollutant Discharge Elimination System
Permit No. CA0107409, Order No. R9-2002-0025,
Addendum No. 1).  Because regular monitoring of
ocean sediments off Point Loma relies primarily on
a fixed grid of only 22 sites, little information that
could be used to reliably estimate the semivari-
ogram was available.  Therefore, efforts were
directed toward building upon the existing monitor-
ing grid to estimate the semivariogram parameters
for a host of chemical contaminants around the out-
fall.  These estimates are intended to aid in deter-
mining cost-efficient sample spacing for subsequent
monitoring surveys, for which kriging could be
applied to produce a map of chemical contaminants
surrounding the outfall. 

Using data collected previously from the exist-
ing PLWTP monitoring grid across two years, we
roughly estimated semivariograms for a host of
chemical contaminants.  The analyzed chemicals
included chromium, copper, lead, mercury, and total
organic carbon.  We found that the estimated range
of the spatial autocorrelation was between approxi-
mately 2 and 8 km, depending on sampling event
and chemical constituent (Figure 3).  This informa-
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Figures 2.  Distribution of (unit less) lag distances between sampling points represented in each of the five sam-
ple designs (FixGrid5 (A), Star (B), S (C), Short Lag Star (D), Long Lag Star (E), and FixGrid10 (F) used in the first
simulation study.



tion was used to choose appropriate lag spacing for
the multi-lag cluster enhancements.    

Based on results from the first simulation study,
we chose a modification of the STAR multi-lag
cluster enhancement to a subset of stations from the
existing PLWTP monitoring grid  (Figure 4).  The
subset consisted of 12 sites, spaced 1 to 12 km from
each other.  The study design allowed for 100 addi-
tional samples to be taken.  The chosen design con-
sisted of 16-site clusters sites placed around 3 exist-
ing monitoring stations and 2 new stations of special
concern.   The two additional sites of interest were
located near the United States Environmental
Protection Agency (US EPA) LA5 dredge-dumping
site, at a depth between 60 m and 90 m. The four lag
distances in the STAR design were 0.05, 0.25, 1.00,
and 3.00 km.  We placed eight additional samples at
old monitoring stations located along the shallower
depth contour of the original Point Loma outfall dis-
charge site (~60 m).  We also allocated: nine field
duplicates were also allocated; five to the star centers
and four at core grid stations.  In total, 112 samples.
were allocated for sampling in our mapping study.  

Assessment of multi-lag cluster enhancement to
PLWTP monitoring grid

We performed a second simulation study to
assess the accuracy of multi-lag cluster enhancement
to the PLWTP monitoring grid for estimating the
nugget, sill, and range.  As with the first simulation
study, we generated a spatially correlated sample
data using rfsim in the Splus S+Spatial Statistics
module.  We chose the spherical model to represent
the “true” spatial variability and performed semivari-
ogram model fits automatically using variogram.fit.
We simulated semivariogram estimation under sever-
al semivariogram parameter values in order to inves-
tigate the usefulness of the design under varying
degrees of spatial autocorrelation, including: six val-
ues for the range (R =1, 2,…, 6), three values for the
nugget (N = 0, 0.1, and 0.2), and one value for the
sill (S = 1).  We chose the spherical model and
parameter values based on rough approximations to
empirical semivariograms provided by previous sur-
veys across multiple chemical constituents.  We
based performance on median estimates for each of
the three parameters, across 1,000 simulations.
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RESULTS

Simulation study 1
The multi-lag cluster designs provided substantial

improvement over the fixed-grid designs for estimat-
ing the semivariogram parameters (Tables 2A - C).
The multi-lag cluster designs were particularly effec-
tive when the range parameter value was less than the
minimum distance between fixed-grid stations.
Designs with more replication at shorter lag distances
(Short Lag Star, Star, and S) tended to provide nugget
estimates closer to the true value than those with less
replication at shorter lag distances (FixGrid5,
FixGrid10, and Long Lag Star).  Designs with greater
replication at lag distances shorter than the target
range provided better estimates of the range than those
whose shortest distance exceeded the range.  Relative
performances among the designs with regard to esti-
mating the sill generally mirrored performance with
regard to estimating the range.  There was little differ-
ence in performance between the STAR and S
designs, reflecting differences in spatial coverage.
Designs with shorter or longer lag distances varied
depending on the parameter value being estimated;
however, neither performed as well as designs with
both shorter and longer lag distances.  Pairwise com-
parisons among the designs confirmed these findings.

The distribution of parameter estimates varied
widely across all designs (not shown).  This variabil-

ity may be explained, in part, by the poor semivari-
ogram fits that often resulted from the automated
semivariogram fitting procedure.  Upon closer inspec-
tion, the automated fit produced a very different curve
than would have resulted from a manual fit.  In addi-
tion, the automated procedure tended to yield a zero
nugget estimate when no information was obtained at
short lag distances. Excluding these extreme estimates
resulted in only slightly better median estimates than
those reported and did not change the relative per-
formance standing among the designs.   

Simulation study 2
The modified STAR enhancement to the PLWTP

monitoring grid provided median estimates of semi-
variogram parameters close to target values across all
the nugget, sill, and range parameter values selected
for data simulation (Figures 5A - C).  Nugget accura-
cy tended to increase as the range parameter
increased.  Median range estimates were closer to the
target value for smaller range and nugget parameter
values.  The design tended to overestimate the range
as the target range increased, and estimates tended to
be higher than the true value, especially for larger tar-
get nugget values.  As with the first simulation study,
parameter estimation resulted in many extreme values.
We believe that deficiencies in the automated semivar-
iogram fitting procedure accounted for a substantial
number of these poor estimates.

DISCUSSION

Critical to constructing statistically defensible
maps and developing cost-efficient surveys is our
ability to accurately model the spatial variability or
the semivariogram.  Reliable estimates of the semi-
variogram require a sample design to have adequate
spatial coverage and sufficient replication at multi-
ple spatial distances.  Sample locations that are
spaced too far apart may result in model misspecifi-
cation because there is not sufficient replication at
moderate and smaller spatial distances to character-
ize the shape of the semivariogram or to estimate
the nugget.  Sample locations that are spaced too
close together waste resources and may fail to cap-
ture the range and/or estimate the sill.  Ideally, we
would like to have a dense sampling grid that cov-
ers the entire study area. Unfortunately, economic
considerations limit the total number of sites visited
and samples collected.  Consequently, such consid-
eration requires that we be selective and strategic in
sample allocation.
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This study demonstrates that multi-lag cluster
designs offer a simple approach for augmenting
existing grids that can greatly improve semivari-
ogram parameter estimation.  The first simulation
study demonstrated that the semivariogram cannot be
estimated dependably from sampling grids with rela-
tively few sampling points or lacking sites spaced at
multiple distances, particularly sites in proximity.
Even with increased sample size, as with FixGrid10,
the fixed grid only outperformed the multi-lag clus-
ter designs under limited conditions.  However, due
to the truncation of pairwise distances to model the
semivariogram, the number of pairs of points used to
estimate the semivariogram was smaller for the
FixGrid10 than for the multi-lag design.   This may
be attributed, in part, to the poor semivariogram fit
with this design.  Regardless, the FixGrid10 lacked
adequate information at smaller spatial scales to
model the semivariogram at shorter distances or esti-
mate the nugget effectively. In addition, our study
showed that the ability of the multi-lag cluster
designs to estimate semivariogram parameters accu-
rately depends on how samples are allocated to the
clusters and the strength of spatial autocorrelation.  

Since there are many ways to allocate sampling
resources in multi-lag cluster designs, we offer a
number of important recommendations.  First, lag
distances selected for clusters should be shorter than
the true range, as shown by Range 10 simulations
and FixGrid10 designs in Table 2.  If possible, infor-
mation from previous surveys should be used to
determine the extent of the spatial autocorrelation of
the data.  Such information will be helpful in select-
ing maximum lag distances to use in each multi-lag
cluster.  Second, multiple lag distances are preferred
over increased replication at one or two lag distances
when little is known about the true spatial range.
Replication at both moderate and long lag distances
is necessary to cover all potential range values.  This
is demonstrated in Table 2 by comparing the STAR
and S design rows with the Short Lag Star and Long
Lag Star rows. Third, multi-lag clusters with replica-
tion at short lag distances ensure more accurate esti-
mation of the nugget, as demonstrated by Short Lag
Star compared to Long Lag Star and FixGrid (Table 2).
If possible, field duplicates should be collected at
various stations.  Stein (1990) notes that accurately
estimating the semivariogram near the origin is criti-
cal to constructing defensible maps.  Fourth, the
choice between greater spatial coverage (e.g., more
clusters, as in the S design) and more samples in a
cluster (e.g., the STAR design) depends on the goals
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Figure 5.  Median of nugget estimates (A), median of
range estimates (B), and median of sill estimates (C).
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of the study and the physical properties of the study
area.  Substrata such as grain size and different depth
zones within the study area may lead to different
models of spatial variability or varying strengths of
spatial autocorrelation.  If spatial variability changes
are expected with different substrata, then particular
substrata should be targeted.  If the area of interest is
uniform, then the number of clusters and hence the
spatial coverage should be increased.  Fifth, if it is
suspected that variability may change with direction,
either STAR designs or S designs should be used
with clusters rotated to cover various directions.
Finally, and probably most importantly, the distribu-
tion of lag distances associated with candidate
designs should be inspected.  Such inspection allows
the user to check for “holes” where lag distances are
not represented in the design, as seen in FixGrids
and the Short Lag Star designs (Figures 2A - F).  

Many considerations influenced the choice of the
STAR multi-lag cluster design for the PLWTP map-
ping study.  The multi-lag cluster enhancement
enabled the City of San Diego to sample new sites for
estimation of the semivariogram while simultaneously
sampling the existing PLWTP grid as required under
its sewage discharge permit.  Also, there were five pri-
mary areas of interest in the PLWTP monitoring
region, each thought to represent different strata in
terms of depth, grain size, and relative levels of chem-
ical contamination.  Thus, these areas are important
for examining potential differences in mean concen-
trations and spatial variability (i.e., non-stationarity).
Further, the star-shaped pattern allowed for spatial
variability to be estimated in multiple directions. Due
to the steeper depth gradient perpendicular to the
shoreline and oceanic currents, the strength of spatial
autocorrelation is likely to change depending not only
on distance, but on direction as well (i.e., anisotropy).
Although we did not explore effects of anisotropy in
this study due to time constraints, we did consider the
potential for anisotropy when constructing the clusters
so that the spatial variability across multiple directions
could be explored.  The size-16 clusters had two lag
distances represented in eight different directions.
Finally, from the first set of simulations, the size-16
clusters were useful for estimating multiple parame-
ters under varying degrees of spatial variability.

The multi-lag cluster design has several advan-
tages for monitoring agencies, including: ease of
implementation, flexibility, and the ability to provide
more accurate estimates of the semivariogram.
Because semivariogram estimation is based on statisti-

cal models, randomness is not a requirement for these
designs, allowing monitors to target specific areas of
interest.  However, because non-random designs have
potential for bias, results should be interpreted with
caution.  Also, because the enhancement is built upon
the existing monitoring grid, sampling can be done in
conjunction with current monitoring efforts to con-
serve resources and preserve time-series information.

While this study showed that the multi-lag cluster
design offers an effective strategy for estimating semi-
variogram parameters, further research is needed to
more carefully examine the relationship between
semivariogram parameter values and estimate accura-
cy with regard to choosing the number and size of
clusters and lag classes.  This study is not exhaustive
in terms of selecting the “optimal” multi-lag cluster
design candidates.  The intent is to provide some 
simple guidelines for monitoring agencies to aid in the
design of a survey for estimating the semivariogram.
In addition, alternative semivariogram fitting 
algorithms such as maximum likelihood (ML),
restricted maximum likelihood (REML), non-station-
arity, and anisotropy should be considered and com-
pared with other design alternatives, including ran-
dom-nested designs.
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