A two-stage multivariate approach to
identifying ocean outfall plumes based
on temperature and salinity profiles

ABSTRACT

Ocean outfall plumes are often mapped using
CTD profiles, but the extent to which particulate
plume parameters, such as bacteria, behave like the
physical parameters measured by CTDs has not been
well tested. Additionally, interpretation of CTD data
for plume mapping is typically based on subjective
judgment of where physical parameters differ from
those of surrounding waters. Here, we present moni-
toring data spanning two years in which bacterial con-
centration and CTD profiles were collected simultane-
ously near a large treated wastewater outfall. These
data were used to assess the effectiveness of tempera-
ture-salinity (T-S) plots for describing bacterial plume
dilution and to test a statistical model for predicting
bacterial concentration from T-S data. Elevated bacte-
rial concentrations were found to be consistently asso-
ciated with subsurface low salinity deviations. We
also found that this deviation could be quantifiably
defined using a two-stage multivariate approach based
on cluster analysis followed by principal component
analyses (PCA). Due to the considerable natural vari-
ability in T-S relationships, the extent to which this
approach can be used as a plume tracer was dependent
on the level of detection required. T-S relationships
were reliable for identifying the plume when bacterial
concentrations were several times water quality stan-
dards and were also effective at defining areas from
which the plume was absent. The T-S relationships
were inconsistent in defining those areas where plume
dilution reduced bacterial concentrations to moderate
levels, including those approximately equal to that of
the water quality standard.

INTRODUCTION

Many types of freshwater effluents, such as those
from wastewater treatment or industrial facilities, are
discharged into coastal ocean waters because these
waters are believed to provide sufficient dilution to
minimize environmental harm. This presumption is
assessed using a variety of techniques that measure
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physical, chemical and biological responses.
Conductivity-temperature-depth profilers (CTD) col-
lect continuous water-column measurements of phys-
ical variables, such as temperature and salinity, to
identify plume location and concentration. Physical
parameter measurements are often used in lieu of
direct measurements of bacteria, nutrients, or other
contaminants because CTDs provide continuous
measurements with depth and the results are view-
able in real-time when connected to a shipboard data
acquisition system. Grab sample measurements
taken at discrete depths are less spatially descriptive,
require additional time to analyze, and are more
costly than CTD profiles.

One concern with CTD profiles is that many
plume parameters of interest, such as bacteria and
viruses in wastewater effluents, can adsorb to parti-
cles and may not disperse similarly to soluble con-
stituents such as salinity. Viruses and bacteria have
been shown to adsorb onto suspended particles in the
marine environment (Chung and Sobsey 1993, MEC
and AOS 2001), but it is unclear whether these small
particles disperse similarly to the dissolved compo-
nents or by a separate particle-dependent process.
Some work suggests that bacterial association with
particles contributes to the sinking losses, where the
rate of sinking is a function of the size class of parti-
cles (Auer and Nichaus 1993). Particle adsorption
and sinking would tend to separate the dispersion of
particles from the dispersion of soluble components.
With time and distance away from the source, the
bacterial abundance could then be offset vertically
from the low salinity signature of the outfall plumes.
This would also result in horizontal separation due to
the vertical shear of currents often observed in the
coastal region. On the other hand, dissolved natural
fluorescent tracers have been found to correlate with
the bacteria concentrations in nearshore regions in
Australia, consistent with the bacteria dispersing
similarly to the dissolved components (Kaye and
Haddad 1992). Recent analyses of the particles dis-

!Department of Biological Science, University of Southern California, Los Angeles, CA

Two-stage multivariate plume identification - 133



charged from the Orange County Sanitation District
(OCSD) ocean outfall indicate that the sinking rates
of discharged particles are extremely small (SAIC
2003). Previous studies from other outfalls have
indicated a close association between suspended par-
ticles and low salinity associated with the outfall
plume (Wu et al. 1994).

Adding to the concern about using CTD data to
describe a particle-laden plume is that CTD data are
typically interpreted based on subjective judgment of
where physical parameters appear to differ from
those of the unaffected ambient waters. In a few
instances, statistical algorithms have been used to
define background conditions or the relationship
between deviation from background and plume
strength. Oceanographers typically evaluate water
masses using a Temperature-Salinity (T-S) diagram.
These diagrams are not typically evaluated statisti-
cally, but rather by comparison with water types hav-
ing known T-S characteristics. In the case of outfall
plumes, the T-S characteristics away and preferably
upcurrent from an outfall discharge are used to
define the ambient or background T-S characteristics,
and the plume mixed with seawater is differentiated
from the ambient T-S on the basis of salinities that
are below the background levels for a given tempera-
ture (Washburn et al. 1992, Petrenko et al. 1998,
Jones et al. 2002). However, subjective delineation
of the plume can be problematic from a regulatory
standpoint. Another approach taken by the City of
Los Angeles’ monitoring group is to create a depth-
dependent average T-S profile and calculate an
anomaly based on the difference between the indi-
vidual measured profile and the depth-averaged pro-
file (City of Los Angeles 2003).

Here, we present a study in which bottle samples
for bacterial concentration were collected simultane-
ously with CTD profiles near a large treated waste-
water outfall. These data are used to assess the
effectiveness of using T-S relationships to describe
bacterial distribution and dilution near the outfall.
We also present and assess a statistical approach for
predicting bacterial concentration from these T-S data.

METHODS

Our study was based on data collected over two
years from a grid of stations surrounding the OCSD
outfall, which is located approximately 7 km off-
shore of the Santa Ana River in southern California
(Figure 1). The grid consisted of 17 core stations
spaced at 4 km intervals in the along-shore direction
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Figure 1. Map of sampling grid superimposed

on shoreline.

and at 2 km intervals in the cross-shelf direction.
At each core station, continuous CTD profiles were
collected throughout the water column and averaged
to 1 m depth intervals, and discrete water samples
were collected for bacteria analysis at 5 to 15 m
depth intervals. CTD profiles were also collected at
up to 24 additional stations on some sampling dates.
Sampling in 1999 consisted of one survey each
month in February and April, two surveys in May,
and one survey each month in March, August, and
November. Sampling in 2000 consisted of one sur-
vey in February, two surveys in March, and three
surveys each in May, August, and November.

CTD profiles were obtained using either a Sea-
Bird (SBE) 911 or 911plus CTD recording at 24 Hz, or
a SBE 25 CTD logging at 8 Hz. Recorded data
included temperature, conductivity, pressure, dis-
solved oxygen, pH, chlorophyll fluorescence, beam
transmission at 660 nm (25 c¢cm path length), and
photosynthetically active radiation (PAR). Salinity
was calculated from conductivity, temperature, and
pressure (Fofonoff 1985), and depth in meters was
calculated from pressure. Discrete water samples
were collected at 5 to 15 m intervals using a multi-
bottle carousel water sampler (SBE 33) equipped
with PVC bottles and analyzed for Escherichia coli
(E. coli) using the ColilertTM chromogenic sub-
strate technique.

A two-step multivariate approach was used to
analyze the T-S data set statistically for the presence
and discrimination of the effluent plumes. The first
step utilized cluster analysis to parse the data into



hydrographic layers. A non-hierarchical clustering
algorithm (SAS FASTCLUS procedure) was used
because it allows the number of clusters to be speci-
fied prior to application (for a detailed description,
see SAS/STAT User’s Guide; SAS Institute, Inc.
1989). Three clusters were specified because three
distinct layers (near-surface water, a transitional
layer comprising the thermocline, and deeper water)
were identifiable in the survey data. Prior to cluster-
ing, all of the T-S profiles collected on a given day
were pooled into one array and standardized to their
respective z-scores.

The second step used PCA to distinguish the
freshwater effluent from the ambient water based on
T-S. PCA was applied only to observations from the
transitional (cluster 2) and deeper layers (cluster 3);
surface samples (cluster 1) were excluded because
previous studies have shown that the thermocline
typically serves as a natural barrier that traps the
effluent subsurface (Petrenko ef al. 1998, Wu et al.
1994). This was confirmed with bacteria data, which
showed that measurable bacteria concentrations
rarely occurred near the surface.

RESuLTS
Relationship between indicator bacteria and
T-S structure

Three types of T-S relationships, corresponding
to season, were observed (Figure 2a - ¢). During the
late winter and early spring, surface salinities were
generally lower than those found throughout the rest
of the year, due to a combination of winter cooling
and mixing, coastal runoff, and early upwelling
(Figure 2a). During late spring and summer, an iso-
haline upper layer typically extended from the sur-
face down to the 13°C isotherm. In the August 1999
example, the upper layer salinity ranged from 33.5 to
33.55 psu above temperatures of 13°C (Figure 2b).
Subsurface salinity decreased later in the summer,
probably due to an increase in low salinity California
Current water advecting from the north (Hickey
1979). In the late fall (Figure 2c), surface salinity
also tended to increase, possibly associated with
warmet, saltier subtropical water advecting from the
south (Reid ez al. 1958). Nearshore, northward flow
typically occurs in the late fall and winter associated
with the Davidson Current (Hickey 1979).

In all seasons, the T-S relationships partitioned into
three distinct depth zones. The first consisted of a sur-
face layer of warm water above the thermocline, which

11 MARCH 1999

(a) 20 uw

19

240

45

6.0

336 337 338 339
Salinity (psu)

333 334 335 336 337 338 339
Salinity (psu)

16 Nov 1999
@ ]

333 334 335 336 37 338 338

Salinity (psu)

Figures 2. Examples of three types of temperature and
salinity relationships (a - c).

was differentiated largely by temperature. The second
was a transitional water region of lower surface layer
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Figure 3. Temperature and salinity with
E. coli concentration.

and deeper water surrounding the thermocline. The
third was a deeper region where salinity increased and
temperature decreased with increasing depth.

The elevated bacterial concentrations were con-
sistently associated with a low salinity deviation in
the second and third layers (Figure 3). In most
cases, the maximum salinity deviation (at a particu-
lar temperature) was more than 0.2 psu. This com-
pares to a background salinity range at any given
temperature of less than 0.1 psu in the upper layer
and less than 0.02 psu in the lower layer for the por-
tion of the T-S curve that did not contain bacterially
affected water.

Low salinity anomalies were also occasionally
apparent in the warmest portion of the surface layer,
which is consistent with land-based runoff that
remained near the surface due to buoyancy of the
low salinity water (Figure 2 a - b). High bacterial
concentrations were not observed in this near-surface
low salinity water.

Statistical analysis of the T-S distribution

Cluster analysis effectively partitioned the three
depth-related water mass regions observed in the T-S
plots for both years (Figure 4a - 4b). Cluster 1 had
the highest temperature and consisted predominantly
of surface waters at depths between 5 and 10 m.
Cluster 2 contained the mid-depth samples, centered
at depths between 25 and 30 m. Cluster 3 contained
the deepest and coldest water, centered at depths
between 55 and 60 m. The depth distributions with-
in clusters were nearly identical in 2000 and 1999.

The PCA effectively defined the bacterial con-
centration gradients observed in the T-S plots. The
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first principal components axis corresponded to natu-
ral vertical density gradients in the water column
(Figure 5). The second axis, more parallel with the
density surfaces, was negatively correlated with bac-
teria concentration (r = -0.6). Large negative values
along this second axis signaled the largest deviations
in T-S values and were associated with the highest
bacterial concentrations.

While values along the second principal com-
ponent axis were correlated with bacteria concen-
trations, the predictive value of the relationship
was better near the ends and poorest near the mid-
dle. For the 1999 data, samples with PC2 scores
<-0.5 almost universally had elevated bacterial
concentrations and almost all of the samples with
PC2 scores >+0.5 had non-detectable bacterial
concentrations (Figure 6). However, the correla-
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Figure 5. Cluster analysis and principal compo-
nent axes.

tion with bacterial concentration was weak for
PC2 scores between -0.5 and +0.5.

To investigate whether these same PC2 cutoffs
could be used to predict high and low concentrations
in subsequent surveys, we applied the rule (PC2
<-0.5 and PC2 >+0.5) to the 2nd and 3rd clusters
of bacteria data collected the following year. The
majority of samples predicted to be elevated in 2000
did, in fact, have high bacteria concentrations
(Figure 7). Of the samples having PC2 scores less
than -0.5, around 85% had levels exceeding 500,
compared to around 10% for those predicted to have
low concentrations of bacteria (PC2 >0.5). Only a
very small fraction of those samples predicted to be
elevated (around 5%) had non-detectable levels of
E. coli. In contrast, over 65% of the samples having
PC2 scores greater than 0.5 were non-detectable values.
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Figure 6. Second PC score vs. E. coli (1999).
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Figure 7. Distribution of E. coli using PC2 <-0.5 and
PC2 >0.5, validation year 2000.

DiscussION

The T-S plots were found to be an effective
tracer of plume bacteria, although there was consid-
erable variability in the shape of the curve and the
width of the portion corresponding to background
condition. The greatest variability was among differ-
ent months, driven by seasonal changes in air tem-
perature, rainfall, and coastal advection (Figure 2a -
2¢). More problematic, though, was the variability
we observed within a given survey, as this limits sen-
sitivity of these surrogate measures. Much of this
variability appears to be due to the naturally occur-
ring variability that is present in the upper layer.

For instance, in Figure 2b, a low salinity bulge in the
T-S distribution is seen between 17 and 19°C and
between 33.3 and 33.6 psu. This variability is often
observed in the spatial distribution of the upper layer
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T-S in southern California and likely results from the
complexity of coastal mixing and interleaving that
occur (e.g., MEC and AOS 2001).

Because of this variability, the extent to which
T-S relationships can be used as a tracer depends on
the level of detection required. The T-S relationships
were reliable for identifying the plume when bacteri-
al concentrations exceeded water quality standards
by several fold. It was also effective at defining
areas from which the plume was absent, but was
inconsistent in defining areas where plume dilution
reduced bacterial concentrations to levels near the
water quality standard. Part of this difficulty may be
due to measurement variability for the bacteria,
which can be as high as 50% of the measured value
at concentrations near the water quality standard
(Noble et al. 2004a). However, most of the limita-
tion results because natural variability in temperature
and salinity relationships confounds the plume signal
at low dilutions, causing a decline in precision for
bacterial concentration predictions.

The analysis of T-S relationships using the com-
bination of cluster and PCA is not the usual
approach for distinguishing water mass variability.
However, PCA provides a means of describing devi-
ation on multiple axes and allows differentiation of
natural depth-related gradients from the anthro-
pogenic influences on salinity and temperature from
ocean outfall. PCA also has the advantage of quan-
tifying this deviation, allowing development of rela-
tionships between deviation and pollutant concentra-
tion. While PCA has not been previously applied to
distinguishing anthropogenic from natural water
masses, it has been used to determine modes of vari-
ability in coastal oceanographic hydrographic data
sets using not only T-S, but also nutrients, oxygen,
and chlorophyll pigments (Blasco et al. 1980, Boyer
et al. 1997).

Transmissivity and chlorophyll are other contin-
uously measured parameters that have previously
been found to be useful for identifying plumes
(Washburn ef al. 1992, Wu et al. 1994, Petrenko et
al. 1998). These parameters are associated with par-
ticles, which might be advantageous for predicting
particulate pollutants such as bacteria. However, we
found that they were ineffective tracers for the
OCSD plume and did not add predictive power when
added as parameters in the PCA. The particulate
loading in the OCSD outfall has been reduced in
recent years. With the reduced particulate concentra-
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tions, other sources of suspended particulate matter
such as sediment resuspension, phytoplankton
growth, terrigenous runoff, and aeolian inputs con-
tribute suspended particles to the water column that
confound the particulate signal from sewage effluent.
The only case we identified where chlorophyll fluo-
rescence provided a noticeable source signal was in a
tropical, oligotrophic environment where ambient
chlorophyll was very low and where water clarity
was sufficiently high that photosynthesis could occur
at the depth of the plume (Petrenko et al. 1998). This
is not the case in southern California, where effluent
plumes typically reach density equilibrium beneath
the subsurface chlorophyll maximum (MEC and
AOS 2001, Jones et al. 2002, Noble et al. 2004Db).

While we found statistical analysis of T-S rela-
tionships to be effective for the OCSD outfall, it is
unclear whether they would be equally effective
elsewhere. The ability of the method to work in other
regions will depend on the nature and stability of the
T-S relationships. T-S relationships appear to be sta-
ble in southern California, as the relationships we
observed in Orange County are similar to those
observed near Los Angeles (Washburn ef al. 1992,
Jones et al. 2002). It is also likely to work well in
regions such as Mamala Bay, Hawaii, where the
effluent plume provides a distinct perturbation on the
ambient T-S structure (Petrenko et al. 1998). The
limitations will depend on the depth of the outfall
diffuser, the complexity of freshwater sources feed-
ing into the coastal ocean, and the amount of stratifi-
cation that separates the surface freshwater sources
from the submerged outfall discharge. However,
ocean outfalls are generally designed to release water
below the thermocline, where salinity and tempera-
ture are most homogeneous and plume-generated
deviations are most likely to be apparent.

Other scientifically based approaches to differen-
tiating outfall effluent plumes from the ambient
water have been attempted by other water quality
monitoring agencies. The City of Los Angeles
Hyperion Treatment Plant (HTP) monitoring group
has used depth-averaged profiles of salinity to
compare with individual CTD profiles of salinity
in the evaluation of a salinity anomaly for detection
of the plume. A salinity anomaly is calculated using
the formula:

SA, = (1 - S/Sx;) x 100

where S, is the measured salinity in a profile at depth
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Figure 8. Temperature vs. salinity with E. coli concen-
trations (El Nino - July, 1998).

interval 1; Sx; is the mean salinity at depth interval i;
and SA, is the calculated salinity anomaly.

Applying the depth-averaging approach poses
several problems. First, the approach assumes that
the isopycnal surfaces are relatively flat within the
sampling grid. However, several oceanographic
processes can tilt isopycnal surfaces. When isopyc-
nal surfaces are tilted, the depth-averaged approach
may provide misleading results. Second, coastal
upwelling, eddies, geostrophically balanced along-
shore currents, and internal tides can all contribute to
tilting of the isopycnal surfaces over the shelf. In
such cases, using a depth-averaged profile salinity to
compare with individual profiles could lead to erro-
neous indications of the plume. Using the T-S rela-
tionship eliminates the potential problems of tilted
isopycnal surfaces. An alternative approach to the
HTP depth-averaging approach would be to average
the salinity at fixed-density intervals rather than
fixed-depth intervals, eliminating possible biasing
due to tilted isopycnal surfaces. Further research is
needed to quantify differences between the
depth/density-average approach and the approach
taken here.

Regardless of the approach, the use of T-S rela-
tionships has greater variability under unusual
oceanographic conditions (such as El Nifio or strong
rain events), which cause stormwater to mix deeply
in the water column. For instance, 1998 was an El
Nifo year in southern California and the T-S rela-
tionships near the OCSD outfall were different than
in 1999 or 2000 (Figure 8). Low salinity water can
also intrude into deeper waters from natural offshore
sources. For example, naturally occurring salinities

of <33.4 are often observed in the southward flowing
California current water (Lynn and Bograd 2002). If
this water impinges on the coast, it may create ambi-
guity in the local T-S structure, and may be responsi-
ble for variations in the elbow seen in the ambient T-
S relationship around 13°C (Figure 3). While T-S
relationships can be confounded by potential ambi-
guities, T-S relationships should provide an effective
method for mapping the effluent plumes in a strati-
fied coastal ocean under most circumstances. The
primary requirements are: (1) the water column
should be somewhat stratified and (2) the observa-
tional program should have sufficient spatial cover-
age, so that observations outside of the influence of
the outfall discharge are included within the data set.
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