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ABSTRACT - Several commonly used statistical
methods for fingerprint identification in microbial
source tracking (MST) were examined to assess the
effectiveness of pattern-matching algorithms to cor-
rectly identify sources.  Although numerous statistical
methods have been employed for source identifica-
tion, no widespread consensus exists as to which is
most appropriate. A large-scale comparison of sever-
al MST methods, using identical fecal sources, pre-
sented a unique opportunity to assess the utility of
several popular statistical methods.  These included
discriminant analysis, nearest neighbor analysis,
maximum similarity and average similarity, along with
several measures of distance or similarity. Threshold
criteria for excluding uncertain or poorly matched
isolates from final analysis were also examined for
their ability to reduce false positives and increase
prediction success.  Six independent libraries used
in the study were constructed from indicator bacteria
isolated from fecal materials of humans, seagulls,
cows and dogs.  Three of these libraries were con-
structed using the rep-PCR technique and three
relied on antibiotic resistance analysis (ARA). Five of
the libraries were constructed using Escherichia coli
and one using Enterococcus spp. (ARA).   Overall,
the outcome of this study suggests a high degree of
variability across statistical methods.  Despite large
differences in correct classification rates among the
statistical methods, no single statistical approach
emerged as superior. Thresholds failed to consistent-
ly increase rates of correct classification and

improvement was often associated with substantial
effective sample size reduction.  Recommendations
are provided to aid in selecting appropriate analyses
for these types of data.

INTRODUCTION
Many microbial source tracking (MST) methods

rely on libraries of indicator organisms cultivated
from known sources of fecal contamination to identi-
fy unknown sources (see Simpson et al, 2002 and
Scott et al., 2002 for a recent review of these meth-
ods).  These library-based methods involve the
assembly of a variety of “fingerprints” from indica-
tor organisms for several known animal sources
(e.g., cow, human, and seagull).  These fingerprints
are stored as libraries that are used to compare with
fingerprints from these same indicators isolated from
water presumed contaminated with fecal material.  In
this way, the source of the unknown indicator bac-
terium can be identified, or at least predicted, based
on similarity to members of the known-source
libraries.

Library-based MST methods may be based on
either genotypic or phenotypic “fingerprints” of fecal
indicator organisms, frequently E. coli or
Enterococcus spp.  Antibiotic resistance analysis
(ARA) is a phenotypic MST method that uses pro-
files of resistance to various antibiotics at different
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concentrations (Wiggins, 1996; Hagedorn et al.,
1999; Harwood et al., 2000; Whitlock et al., 2002;
Wiggins et al., 2003).  The underlying assumption of
ARA is that differential exposure of humans and ani-
mals to a variety of antibiotics will elicit specific
resistance patterns for associated flora of host intes-
tines.  Subsequently, the antibiotic resistance patterns
of indicators from unknown sources can be com-
pared to a library of ARA profiles of indicators from
known sources.   

Rep-PCR is a genotypic method that uses the
polymerase chain reaction and primers based on con-
served extragenic repetitive sequences to amplify
specific portions of the microbial genome
(Versalovic, et al., 1991, Versalovic, et al., 1994).
Following electrophoresis and staining, a banding
pattern or fingerprint is revealed that can be used for
strain identification. The underlying assumption of
this technology is that organisms having indistin-
guishable banding patterns can be regarded as being
identical or nearly identical, and those having similar
banding patterns are regarded as genetically related.
As a result, hosts for the bacteria may be identified
by comparing presence/absence of bands with those
from known source fingerprints (i.e. band-matching).
Rep-PCR DNA fingerprinting of E. coli has been
previously used for MST (Carson et al. 2003;
Dombek et al. 2000).

Several statistical methods, including discrimi-
nant analysis (DA) (Wiggins 1996, Carson et al.,
2001, Harwood, et al. 2000, Whitlock et al., 2002),
and maximum or average similarity (MS and AS)
(Dombek et al. 2000, Carson et al. 2003) have been
used to classify sources. These statistical approaches
differ with respect to distributional assumptions,
measures of distance or similarity, and strategies for
prediction.  Many approaches, such as DA and AS,
take into account the central tendency and variability
of each source group as a whole.  Other methods,
such as nearest neighbor (NN) and MS predict
source membership based on similarity to an individ-
ual isolate within each source.  Consequently, rates
of correct classification may differ depending on the
method used.

To reduce error inherent in these statistical meth-
ods, some have suggested that uncertain or poorly
matched isolates should be removed from classifica-
tion .  This is especially relevant when false positives
are a concern, such as when response to presence of
specific sources of fecal contamination results in
costly management action.  Some have argued that
imposed thresholds decrease noise and may elimi-

nate false positives resulting from statistical or meas-
urement error (Wiggins, personal communication,
2003).  Others have suggested threshold values
should be based on an average rate of misclassifica-
tion of sources estimated from known library isolates
(Whitlock, et al. 2002) or effects of inter-gel vari-
ability on similarity between identical control iso-
lates (Wheeler et al., 2002, Sadowsky, personal com-
munication, 2003).   Others advocate exact match-
ing, removing any isolates whose fingerprints were
not represented in the library (Samadpour, personal
communication, 2003).  

While statistical methods for classification and
threshold criteria to reduce error have been used
extensively with these library-based methods, there
is no widespread consensus as to when each of these
methods or criteria is appropriate. Further, little
attention has been given to the consequences associ-
ated with applying these various statistical approach-
es to microbial data.  In this study we consider sev-
eral statistical approaches for identifying source
membership using these (binary) data resulting from
rep-PCR and ARA fingerprints.  Statistical methods
were selected based on their popularity and availabil-
ity in standard software packages.  Following a brief
review of each method, we assess the ability of each
statistical technique to successfully identify sources
of fecal contamination from blind test samples.
Further, we investigate the use of threshold criteria
to reduce rates of false positive classifications within
several of the statistical methods. 

METHODS
Six libraries of indicator bacteria were used to

assess the utility of various statistical approaches.
Three of the libraries (A1, A2, and A3) were con-
structed using antibiotic resistance analysis and three
were constructed using rep-PCR ( R1, R2, and R3).
In this study, only BOXA1R primer was used to gen-
erate fingerprints from E. coli isolates.  Neither the
three ARA libraries nor the three rep-PCR libraries
were congruent in any way other than having a
roughly a similar library size, aliquots of the same
starting fecal materials and the same sources of blind
samples.  Library samples consisted of swab fecal
samples of human, dog, cow, and seagull.  Blind test
samples consisted of pure (100%) sources of human,
cow and seagull, composited from the same fecal
samples used to create the library samples.  None of
the test samples contained pure dog sources.  Around
60 isolates per known source sample were used to
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create libraries and approximately 50 isolates per
unknown source sample were used for testing the
rates of correct classification by the method.  All
libraries were constructed using E. coli except one
(AR2) that used Enterococcus spp.  For a more
detailed description of the study design see Griffith
and Weisberg in this issue.

Seven statistical analyses were performed on
each of the six libraries.  These included DA (pooled
and non-pooled estimates of covariance), NN
(Mahalanobis and Euclidean distances), MS
(Jaccard), AS (Jaccard), and ID Bootstrap Maximum
Similarity (Jaccard).   For three of the statistical
methods (DA, MS, and ID Bootstrap), threshold cri-
teria for excluding isolates from source identification
were applied and resulting changes in percent correct
classification (% CC) were determined for each blind
test sample.  Threshold criteria for DA and ID
Bootstrap were based on estimates of posterior prob-
abilities, or the probability of correct classification.
Threshold criteria for MS were based on a quality
quotient. These criteria, along with the correspon-
ding statistical methods, are described in more detail
in the following section

Both DA and NN analyses were performed using
PROC DISCRIM in SAS (Cary, NC) while MS, AS,
and ID Bootstrap were performed using the identifi-
cation function in BioNumerics (Applied Maths,
Sint-Martens-Latem, Belgium).  These software
packages were chosen due to their versatility, useful-
ness, and popularity among the microbial source
tracking community.  BioNumerics is a software
package predominantly chosen by those using rep-
PCR, while choice of SAS is more common among
those using ARA.  All rep-PCR patterns were
processed in BioNumerics prior to statistical analy-
ses. 

The predictive abilities of the various statistical
methods for each of the library methods were
assessed by calculating the percent of correctly clas-
sified isolates (%CC) from each of the three blind
test samples (human, cow, and seagull).  Trade-offs
for applying the different threshold criteria for
removing uncertain isolates were examined by calcu-
lating both the change in %CC and the proportion of
the sample (i.e. percentage of isolates) eliminated
from final analyses.  Ties, or those isolates that were
predicted by the statistical algorithm to belong to
more than one source, were excluded from final
analyses.

Statistical Analyses
Discriminant analysis (DA) is a commonly

used technique for classifying unknown samples into
predefined groups and is especially popular among
microbiologists using ARA. In DA, a classification
rule is developed from a calibration data set where
group membership among the samples is known (the
library).  In SAS’s PROC DISCRIM  the rule is
based on estimated posterior probabilities, or the
probability that an isolate belongs to a specific
group.  The isolate is classified into the source group
yielding the highest estimated posterior probability
among all source categories.   Given a normal distri-
bution and assuming equal covariances among
groups, classification using posterior probabilities is
equivalent to placing the observation into its closest
group.  By default, distances to groups are defined
by Mahalanobis distance which takes into account
both distance of each observation to the mean and
the variability within the group.  The “pool= yes”
option in PROC DISCRIM estimates a single covari-
ance structure for all groups while the “pool= no”
option allows for estimation of covariances separate-
ly for each group (for more detailed description see
SAS/STAT User’s Guide, Vol. 1. Chapter 20).  

In SAS’s PROC DISCRIM a “threshold” option
is available for excluding observations from classifi-
cation in discriminant analyses based on a minimum
threshold for posterior probabilities.  If an isolate’s
posterior probability for its predicted group falls
below the threshold value, the isolate is classified
into an “other” category and excluded from classifi-
cation into one of the known groups.  

Maximum Similarity (MS) is another common-
ly used statistical algorithm that is particularly popu-
lar among those using rep-PCR.   In MS, observa-
tions are classified into the group to which its closest
or most similar known member belongs.
BioNumerics offers several alternative measures of
similarity, including Jaccard, Dice, and simple
matching.  We chose to use the Jaccard similarity
coefficient for our analyses because Jaccard targets
only those bands that are present in at least one of
the pairs being compared, ignoring potentially large
numbers of missing bands that may dilute or mask
differences.  The Jaccard similarty coefficient is
given by,  

NAB

NA + NB - NAB
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where NAB is the number of shared bands, NA is the

total number of bands in pattern A, and NB is the

total number of bands in pattern B.  
BioNumerics also offers a quality factor (QF) option
that qualifies the relative uncertainty of correct clas-
sification for each isolate and may be used for elimi-
nating potential false positives.  The QF is the ratio
of the average distance between the unknown and
the library source members and the average internal
distance where:   

QF = DUN/DLU

where DUN  =  

and DLU  =  

n is the number of entries in the library unit and s is
the similarity.  If QF ≤ 1, it can be inferred that the
unknown fits into the library source as well as or
better than other members of that source group;
whereas if QF >> 1, a poor fit is indicated.
Qualitative scores or “grades”, each representing a
numerical range of the QF for each isolate, may be
exported to a data file along with similarity and
scores and predicted source classifications. The
numerical range of these grades are as follows: 0-
0.5=A, 0.51-1.0=B, 1.01-1.5=C, 1.51-2=D, and
>2=E.  Recently a script file has been made available
to BioNumeric users that allow numerical values to
be exported as well, however, the program was not
available at the time of this study.

Average Similarity (AS), a common alternative
to MS, is available in BioNumerics, and is also very
popular among microbiologists using rep-PCR.
Rather than classifying unknown isolates into source
groups based on proximity to a single known isolate,
AS classifies an unknown isolate into the source cat-
egory yielding the largest average similarity to all
library isolates within that source.

Nearest Neighbor (NN) is a nonparametric
alternative to DA and is available in SAS using
PROC DISCRIM.  Source assignment is based on
nonparametric estimates of posterior probabilities
based on k-nearest neighbors.  With the k=1 option,
as was specified in this study, NN assigns source
membership based on proximity to closest known
individual. Therefore, NN is analogous to MS, only

NN defines proximity using Mahalanobis or
Euclidean distances, rather than Jaccard, Dice, or
simple matching similarity measures.  

ID Bootstrap is a script file designed to improve
correct classification rates and has only recently been
made available to BioNumerics users (see
http://www.applied-maths.com/bn/bn.htm).  The
script applies a bootstrap algorithm to a matrix of
similarity values in order to estimate the probability
of obtaining an observed similarity score relative to
chance.  A similarity matrix is first calculated for all
known samples, each of which is assigned to a par-
ticular group, and then each unknown is compared to
each group of known samples, providing an average
(or maximum) similarity for each unknown to each
group.  Each unknown is tentatively identified as
belonging to the group with which it has the highest
average (or maximum) similarity.  The distribution
of similarities between group non-members and
group members is then approximated by resampling,
with replacement, group members and non-members.
Each bootstrap iteration involves the random selec-
tion of 30 or more group members and a single non-
member.  The proportion of bootstrap iterations in
which the unknown is more similar to the re-sampled
group than the known non-member approximates the
probability that the unknown belongs to the group.
In this study, the script was applied to MS and 1000
iterations were specified.  As with DA, thresholds for
ID Bootstrap were based on estimated probabilities
of correct identification.  

RESULTS
The ability of each MST method to correctly

predict source membership relied heavily on which
statistical analysis was used (Table 1).  Depending
on the choice of statistical method, %CC could be
quite high; at other times, %CC fell well below
chance.   In half of  the cases where blind test sam-
ples were classified, %CC changed by more than 40
percentage points as a result of varying the statistical
approach.  In one case %CC increased from 0% to
90% by switching the statistical analysis from aver-
age similarity to maximum similarity.  Even simply
changing the measure of distance often resulted in
substantial changes in the proportion of correctly
identified isolates. For example, in NN, changing
from Euclidean to Mahalanobis distance increased
the percentage of correctly identified human isolates
for researcher A1 from 29% to 75%.  
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The consistently high %CC for human and seag-
ull across the various statistical methods for
researcher A2 was due primarily to the fact that vari-
ability of fingerprints was low within each of these
unknown samples.  In fact, all isolates analyzed in
the human blind sample for this researcher had the
exact same antibiotic fingerprint (so that only 100%
or 0% were possible for %CC) and only a handful of
fingerprints were found among the blind seagull iso-
lates.  

Despite the large differences in correct classifi-
cation rates among the statistical methods, no single
statistical approach emerged as superior across any
of the MST methods or sources.  Improvements in
correct classification rates for one source as a result
of applying an alternative statistical analysis were
often followed by a decrease in correct classification
rates for another source.   For example, for
researcher R2 switching statistical analysis from DA
(non-pooled) to NN (Mahalanobis) resulted in a 60-
percentage-point increase in %CC for human, while

decreasing %CC for cow and seagull by approxi-
mately 40 percentage points.  

In the majority of the cases, the “right” choice of
statistical method improved substantially the
researcher’s ability to identify unknown sources of
fecal contamination.  However, in some cases, none
of the statistical methods were particularly satisfy-
ing.  In many cases, %CC fell below 60%, regardless
of which statistical method was applied.  In one case
(A1), the maximum %CC for human was less than
4% regardless of the statistical approach (less than
expected by chance alone).  

Attempting to reduce false positives by applying
various threshold criteria to exclude uncertain iso-
lates from classifications did not always result in
improved %CC (see Tables 2-4).  Using thresholds
based on estimated DA posterior probabilities
between 80% and 95% resulted in changes in %CC
for individual samples anywhere from -16 to +33
percentage points depending on the library and
source (Table 2).  Thresholds based on QF scores

Table 1. Percent Correct Classification for Seven Statistical Methods.



Statistical methods - 343

Table 2.  Effect of Imposing threshold value for posterior probabilities (Discriminant Analyses, Pooled
Covariance).

Table 3.  Effect of Imposing Cutoff based on Quality Factor (Maximum Similarity QF).
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between B and D (there were no A’s), resulted in
changes in %CC for individual samples between -49
to  +44 percentage points (Table 3).  For ID
Bootstrap posterior probability thresholds between
80% and 95% resulted in changes in %CC for
between -35 and +35 percentage points (Table 4).
For one researcher (A3), estimated posterior proba-
bilities from ID Bootstrap were below 80% for all
isolates.

Where increases in %CC occurred as a result of
applying a threshold for classification, large propor-
tions of isolates were often eliminated from final
analyses.  Increases in  %CC above 10% as a conse-
quence of applying a posterior probability threshold
in DA often resulted in the elimination of more than
half of the sample.  Similarly, for exclusion of iso-
lates based on QF’s, increases in %CC above 10%
were typically accompanied by removal of 60-75%
of the sample isolates.  For IDBootstrap thresholds,
%CC above 10% resulted in the removal of 60%-
95% of the sample.    

Consequences for both %CC and percent exclu-
sion of sample isolates resulting from applying

threshold criteria were not constant across sources.
In fact, increases in %CC for one source were often
accompanied by decreases in %CC for another
source.  For researcher R2 using  rep-PCR, applying
a threshold of 95% for estimated posterior probabili-
ty for DA increased %CC for human from 66% to
81% and for gull from 8% to 10%, yet decreased
%CC for cow from 16% to 0%.   For this same
researcher, applying a 95% threshold eliminated 38%
of the human isolates, 58% of the seagull isolates,
and 36% of the cow isolates.  Similar trade-offs
occurred with applying other threshold criteria as
well. 

DISCUSSION
The results of this study demonstrate that the sta-

tistical method used to predict host source member-
ship can significantly affect the ability of library-
based methods to correctly identify sources of fecal
contamination.   While no one statistical method
consistently performed better than another across all
MST methods and sources, some statistical

Table 4.  Effect of Imposing threshold value for estimated relative likelihood (ID Bootstrap,
Maximum Similarity).



approaches were better suited than others for identi-
fying certain patterns in the data and for assigning
source membership based on those patterns.  Choice
of similarity or distance measure defined fingerprint
distribution within each library and these distribu-
tions, in turn, affected the ability of the statistical
algorithm to differentiate among sources.  Clustering
of sources, multimodality, overlap, and variability of
fingerprints within sources had substantial effects on
which statistical tool performed best.  

The major challenges for each of the statistical
methods were lack of library representativeness (no
apparent match of unknown) and lack of significant
host specificity (overlap between groups and lack of
discriminatory characters).  Although not addressed
in this study, the issue of representativeness is one of
the most important issues for library-based MST
methods and has recently been addressed with
respect to ARA of Enterococcus spp. (Wiggins et al.,
2003).  Representativeness is the link between sam-
pling and the successful use of statistical methods.
Even in this particular study, where fingerprints from
the unknown isolates should be more similar to those
of the library isolates because the same sources of
fecal material were used in both the test and library
samples, factors such as differential survival (Gordon
2002) or cultivability of indicators (Lleo et al. 2001,
Bissonette et al., 1975, Boualam et al., 2002) may
have affected the representativeness of the various
libraries. While libraries were constructed directly
from fecal material (primary habitat for indicators),
indicators from the blind samples were isolated from
water (secondary habitat). Gordon et al., 2002 sug-
gested a significant change in population structure
can take place between these two habitats for E. coli.
In this study, many of the patterns observed in the
blind test samples were distinct from those represent-
ed in the library.  

Because most of the statistical strategies investi-
gated in this study relied upon either central tenden-
cy or similar patterns within the same source, host
specificity and similarity of patterns within a source
are key to the success of these statistical methods.
For the data sets observed in this study there was
quite a bit of overlap between various sources (lack
of host specificity).  Such overlap has been docu-
mented by others.  For example, McLellan et al.
2003 noted that rep-PCR banding patterns for seag-
ulls overlapped with those obtained from sewage
samples. Gordon et al. 2001 has suggested E. coli
lack sufficient host specificity to be useful in MST
methods

While various threshold criteria have been pro-
posed for decreasing false positive errors and thus
improving %CC, our investigation showed that such
actions do not always produce favorable results.
One explanation for the decrease in %CC as a result
of applying a particular threshold criteria is the pres-
ence of “subtypes” of bacteria within a given host
source group.  In many of the libraries in this study,
we saw clustering of fingerprints into multiple sub-
groups within the same source and these clusters
were often interspersed among multiple clusters
within other sources.  These subgroups often
belonged to the same individual within a given
source.  As a result test samples often contained iso-
lates that were more similar to another source group
or subgroup than the one to which they truly
belonged.  Applying a threshold value then discarded
those isolates that were more poorly matched yet
correctly classified while keeping those more similar
to the true source yet incorrectly classified.  

RECOMMENDATIONS
Given that choice of statistical method is impor-

tant and that no statistical method emerged as superi-
or to all others, how do we choose among the vari-
ous statistical approaches available?  In order to
choose the approach likely to yield the highest %CC,
we recommend a careful examination of the library,
including visualizing the data, calculating estimates
of predictive success, and assessing library represen-
tativeness.  Repeating this process across the various
statistical methods provides the researcher with a
measure of potential success and a comparative basis
from which to select the most appropriate statistical
method.  Finally, we recommend options for manag-
ing classification ties and fingerprint patterns result-
ing in all-zeros that may distort or bias %CC.  

Visualizing the Data
Visualizing fingerprint patterns in the library

prior to classifying unknown samples identifies the
degree of overlap among fingerprints from different
sources, which in turn affects the potential of the sta-
tistical method.  Many software packages (including
SAS and BioNumerics) offer several alternatives for
graphical representations of the data.  Some of the
most popular include canonical discriminant analysis
and cluster analyses.  When using these visual tools,
it is important to note that both are dependent on the
choice of distance or similarity measure.  Canonical

Statistical methods - 345



Statistical methods - 346

discriminant analyses uses Mahalanobis distances
while cluster analyses may use alternative measures
such as Jaccard, Dice, and simple matching.   Visual
display should reflect the distances employed by the
particular statistical algorithm under investigation.  

In addition to clustering trees and canonical plots
where appropriate, we recommend multidimensional
scaling (MDS) for visualizing distances among iso-
lates for various measures of distance.  MDS pro-
duces a “map” in two (or more) dimensions such that
the distance between isolates best approximates the
relative distances between isolates, allowing one to
visualize proximity of isolates both within and
among source groups.  Therefore, MDS plots often
allow one to see what measure of distance or similar-
ity is likely to produce the most separation (or clus-
tering).

MDS plots can also point to whether a statistical
tool based on averaging or one based on proximity to
singletons is most appropriate.  In general, where
source patterns are clustered about a central location,
with limited overlap, the statistical methods based on
averages, such as DA or AS tend to perform well.
For sources where fingerprints were patchy and clus-
tered around several locations, NN or MS techniques

are often a better alternative.   For example, the
MDS plot for A2 using Jaccard distance shows that
for cow, there are multiple subgroups within the
known cow data and these overlap with other known
sources (Figure 1).  Therefore, maximum similarity
was more appropriate than average similarity (%CC
for MS = 90% and %CC for AS=0%).  Of course the
usefulness of MDS plots depends on how representa-
tive and complete the library is.

Estimating Predictive Success
Another tool for aiding in the choice of statisti-

cal analyses is to compare estimates of predicted
success across each of the statistical methods.
Among the readily available methods for estimating
%CC, we recommend the jackknife.  Assuming sim-
ple random sampling of the population, jackknifing
provides unbiased estimates of correct classification
and is readily available in both BioNumerics  and
SAS.  In SAS, jackknife estimates are obtained using
the cross validate option in PROC DISCRIM and is
preferred over the resubstitution estimates (the
default in PROC DISCRIM).  In PROC DISCRIM
one can also obtain jackknife estimates for percent
correct classifications based on thresholds.  

Known sources: COW, DOG,GULL, HUMAN
Unkown source: UCOW

Figure 1.  Example MDS plot



Although not reported in this study, jackknife
estimates were calculated using the standard soft-
ware across each of the statistical methods for each
library.  For nearly all libraries, jackknife estimates
of %CC were higher than those observed.   Inflation
may be due, in part, to library construction.  In this
study libraries depended on subsampling of isolates
from individuals or groups of individuals within
sources rather than on simple random sampling usu-
ally required for these standard jackknife procedures.
Wiggins et al. (2003) suggest an alternative jackknife
analysis to hold out entire feces instead of individual
isolates that may be more appropriate for subsam-
pling designs.   Where estimation of predicted suc-
cess differed substantially from that observed, test
fingerprints were underrepresented in the library.  

Assessing Library Representativeness
Because statistical algorithms used to identify

sources rely on similarity to known patterns, it is
crucial that libraries sufficiently represent the popu-
lation of fingerprints within each source.  We recom-
mend a thorough investigation of library representa-
tiveness prior to classifying unknown sources of
fecal contamination.  Wiggins et al. (2003) offer sev-
eral methods for assessing library representativeness.
One method compares jackknife estimates of average
rates of correct classification within each source to
those estimated by the resubstitution method.
Recall that the resubstitution method uses all isolates
both to build the library and to predict source mem-
bership, thereby estimating how well the library can
predict itself.  A representative library, then, would
provide jackknife estimates of average rates of cor-
rect classification comparable to those obtained by
resubstitution.   A second method for assessing
library representatives, also suggested by Wiggins et
al. is the “hold out” method, where a portion of the
known samples are used to make up the library (i.e.
a calibration data set) and the remaining portion is
used to estimate average rates of correct classifica-
tions (i.e. a validation data set). Again average rates
of correct classification are compared with those
estimated via resubstitution.  

Another potential statistic that may help to test
for representativeness is the bootstrap analyses
applied to the hold out method.  By re-sampling with
replacement the distribution against which the test is
performed, we can get a better idea of how variable
the rates of correct classification are within each
source category.   This is especially important when
one is using maximum similarity to identify

unknowns, since a single outlier can drastically
affect the result.  The magnitude of variability found
in repeated simulations would inversely relate to the
representativeness of the library.  Further, large vari-
abilities in %CC may indicate multiple clustering
within each source population or provide evidence of
sampling bias.   

Managing Classification Ties
Ties occur when the classification rule inherent

in the statistical method assigns a given fingerprint
to more than one source group.  Different software
packages have different ways of handling ties and
these mechanisms are often unknown or overlooked.
In SAS’s PROC DISCRIM, for example, the default
places ties into an “other” category, allowing the
researcher to decide on the appropriate action.
Because SAS calculates %CC based on the entire
sample (including ties), excluding these data from
the final analyses requires the researcher to adjust
reported rates of classification (i.e., the denomina-
tor).  In contrast, BioNumerics’ default systematical-
ly assigns ties according to the order in which the
source groups are listed in the library.  Identifications
involving numerous ties are likely to result in severe
bias.  In this study we found a 30-percentage point
increase in %CC for one researcher simply by
removing the ties prior to applying MS in
BioNumerics.   Finally, BioNumerics’ jackknife pro-
cedure for predicting %CC by default assigns ties to
their own known source group, resulting in inflated
estimates of predicted success.  However, in the
more recent version of BioNumerics (version 3.0)
there is an option designed to reduce bias toward a
single source by spreading ties equally among the
source groups through random assignment.

Several options exist for handling ties.  Selecting
which option to use will depend on available auxil-
iary information and penalties associated with false
positive or negative errors. One option is to exclude
ties from final analyses.  This option should be
selected when positive identification of known
sources may result in costly penalties relative to con-
sequences of false negatives.  For example, beaches
can be incorrectly listed as unsafe for swimmers,
resulting in severe penalties for sewage dischargers
and lost revenue to surrounding business communi-
ties, though risk of illness may be low.   

A second option for handling ties is to systemati-
cally assign ties to a likely source group based on
auxiliary information, prior belief, or consequences
of false identification.   PROC DISCRIM has an
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option for specifying prior probabilities that will bias
assignment of ties toward a particular source.  For
example, previous research may support a distribu-
tion of sources within the target area that favors one
source over another.  By specifying prior probabili-
ties for source classification, one can weigh source
assignment toward one particular source more than
another.  When reliable and current auxiliary data
exist, we recommend using this option regardless.
In addition to using prior information, systematic
assignment of ties could be achieved visually
through dendograms.  This procedure is particularly
useful for those sources containing multiple clusters
or subtypes of fingerprint.   Finally, ties can be
assigned to a particular source group based on expert
knowledge and/or familiarity with the study area.
Samples obtained downstream from a dairy farm, for
instance, are more likely to belong to cow source
group than seagull.  

Managing All-zero Patterns 
In many cases, fingerprint profiles may yield all-

zero patterns.  In rep-PCR, all-zero patterns are usu-
ally attributed to measurement or laboratory error
and are eliminated from further analyses.  In ARA,
however, all-zero patterns may result from bacteria
that are not resistant to any of the antibiotics at the
concentrations tested, and thus may contain useful
discriminating characteristics.  The all-zero patterns
present a problem when using similarity measures
which target only the number of “ones” that match in
the binary data sets, ignoring all “zeros” (e.g.
Jaccard and Dice).   For example, the Jaccard simi-
larity applied to two isolates whose fingerprints con-
tain all zeros will have a similarity score of “0”, yet
they are identical.  In fact, an all-zero isolate will
have zero similarity with all isolates regardless of
their pattern.  We recommend several alternatives for
matching all-zero patterns in ARA data.  One alter-
native is to use exact matching if there is at least one
other all-zero value in the library.  If there is more
than one source in the library that contains an all-
zero pattern then one could apply those strategies
previously  mentioned for managing ties, including
using auxiliary information and visualization.
Alternatively, one could explore other similarity
measures that takes into account zeros (e.g.
Euclidean distance or simple matching).   For the
ARA data sets here we chose to report %CC after
removing all-zero fingerprints prior to applying MS
and AS to Jaccard similarity scores as there was little
difference in %CC with all-zeros included.
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