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ABSTRACT

Maps are useful scientific tools for presenting
environmental information, but the statistical
techniques necessary to prepare scientifically

rigorous maps have primarily focused on terrestrial habitats.
This study compares three popular techniques (triangulation,
kriging, and co-kriging) to map sediment grain size in Santa
Monica Bay, California.  Two grain size data sets, one
collected in 1994 (79 sites) and one collected in 1997 and
1998 (149 sites) were used for model development.  A
bathymetric data set collected in 1997 was used as a model
covariate.  A third grain size data set (40 sites) collected in
1996 from independent sites was used for model evaluation.
Predictions were compared to validation data by average
difference, prediction mean square error (PMSE), and a
goodness-of-prediction measure, G. The average difference
between prediction and truth was similar for all methods,
but the PMSE for triangulation was more than twice that
for kriging or co-kriging, which were similar.  The G
measure also shows triangulation to be a far worse predic-
tor than kriging and co-kriging. Small-scale differences
were observed between kriging and co-kriging at steep
depth contours, where co-kriging predicted values commen-
surate with the expected depth-defined grain size.

INTRODUCTION
Maps are useful scientific tools for portraying informa-

tion and facilitating communication between the scientific
community and the public.  Maps provide a geographic
reference for information, making them more useful than
tables or charts.  Maps also aid in the interpretation of data,
the identification of gradients and patterns, and the formula-
tion of hypotheses.  Modeling techniques provide the

information required to produce maps.  Modeling extrapo-
lates information from discrete stations to create maps of
values that cover the whole area of interest. Maps are
produced by using the information at stations to predict the
value or values between stations and then filling in the gaps
with this information.

Numerous techniques are used for spatial modeling.
These techniques are categorized as interpolators that
reproduce sample values or non-interpolators that do not.
Techniques are also categorized as global predictors that
use all data or local predictors that use only data from
neighboring sites.  Non-interpolators and global predictors,
such as kriging, generally produce a smoother surface over
the area of interest, whereas interpolators and local predic-
tors, such as triangulation, generally produce a jagged
surface.  Another discriminating aspect of modeling is the
ability to utilize covariate information.  For example, kriging
can be extended to co-kriging to accommodate variables
related to the variable of interest.

Many modeling techniques have been compared in the
terrestrial setting (Gotway Crawford et al. 1996, Gotway
and Hergert 1997, Laslett et al. 1987, Laslett and
McBratney 1990, McBratney and Webster 1983).  In these
comparisons, kriging and co-kriging have resulted in the
highest prediction accuracy and precision. The comparisons
for terrestrial soils focus on soil texture and soil parameters,
such as pH.  The terrestrial soil techniques have demon-
strated a limited spatial structure (between 1 and 200 m)
(Bragato and Primavera 1998, Gotway Crawford et al.
1996, Gotway and Hergert 1997, Kabrick et al. 1997,
Laslett et al. 1987, Laslett and McBratney 1990,
McBratney and Webster 1983, Streck and Richter 1997).

This study compared similar modeling techniques for
sediment samples from the marine environment. The
terrestrial comparisons may not apply to the marine environ-
ment because the vast sea floor lacks the interference of
roads, buildings, or other structures, and marine sediments
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may exhibit a far-reaching spatial correlation.  Sediment
grain size was selected as the mapping parameter in the
marine environment because it is an analog to the
terrestrial soil parameters that have been mapped. Grain
size is also an important parameter for marine scientists,
who use it as a correlate for chemical and biological
patterns.  Chemists use sediment grain size as a normal-
izing factor in determining the concentration of contami-
nants in sediments (Butcher 1996, Maurer et al. 1996,
Schiff and Weisberg 1997, Schiff and Gossett 1998).
Biologists recognize that benthic organisms partition their
chosen habitat, in part, based upon sediment grain size,
making this parameter important for assessing benthic
communities (Bergen et al. 1998, Dorsey et al. 1995,
Wu and Shin 1997, and Zmarzly et al. 1994).  Similarly,
microbiologists acknowledge that bacterial concentra-
tions correlate to sediment grain size (Irvine and
Pettibone 1993).  Generally, the percent of sediment less
than 63 micrometers (percent fines) is used to describe
sediment grain size.

METHODS
Three modeling techniques—triangulation, kriging,

and co-kriging—were compared by creating models with
one data set and then testing those models with an
independent data set.  All data sets were derived from
sediment samples collected from Santa Monica Bay,
California (Figure1), which drains the watershed of the
greater metropolitan Los Angeles area.  The study area
consisted of approximately 550 square km reaching a
maximum depth of 800 m.  The bay contains two can-
yons, Santa Monica and Redondo, which frame a large
shallow shelf or shortbank.

Three data sets were combined to form a calibration
data set (Figure 2).  The first data set was collected in 1994
from 79 randomly selected sites, and was analyzed using a
Horiba LA900 Laser (Schiff 2000).  The second data set
was collected in 1997 from 26 randomly selected sites, and
was analyzed using a SediGraph 5100.  The third data set
was collected in 1998 from 123 subjectively chosen sites,
and was also analyzed using a SediGraph 5100.  The
validation data set was collected in 1996 from 40 subjec-
tively chosen sites, and was analyzed using a Horiba
LA900.  The data sets were obtained using two measure-
ment methods whose results have been found to be compa-
rable (Dalkey and Leecaster 2000).

The first modeling technique applied to these data was
triangulation.  Triangulation makes predictions for the
triangles formed by connecting three sampling points.  The
prediction equations are bivariate fifth-degree polynomials.

The connecting edges of the triangles are then smoothed by
using partial derivatives of the prediction equations (Akima
1978).

The second modeling technique applied to these data
was kriging, which makes predictions based upon a
weighted mean of all sample values.  Kriging makes two
assumptions:  (1)  that there is a locally common expected
value (stationarity) and (2) that spatial correlation is inde-
pendent of direction (isotropy). Stationarity and isotropy of
percent fines was verified by comparing the variograms
(values of distance and variance between pairs of points at
each distance) of the raw data and of the residuals from a
polynomial regression on latitude and longitude.  These two
variograms were compared for six directions corresponding
to north-south, east-west, northeast-southwest, northwest-
southeast, along-shore, and cross-shore.  The data set that

FIGURE 1.  Santa Monica Bay, California, with depth contour
lines.
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FIGURE 2.  Sample site locations in Santa Monica Bay,
California.
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displayed similar variograms for all directions was consid-
ered stationary and isotropic.  The empirical variograms of
the stationary and isotropic data were then modeled by
specifying a spherical model with specified nugget (small-
scale variation), sill (asymptotic variance between pairs of
sites), and range (distance at which the sill is attained).
Kriging predictions were calculated to minimize the error
variance, which was accomplished by weighting station
values in the prediction equation based upon the variogram
model parameters.  Those values closer to the prediction
point received larger weight.  Since these values are more
highly correlated with the prediction site, this results in
smaller variance.

The third modeling technique applied to these data was
co-kriging.  Co-kriging, which is kriging plus a covariate,
was performed using depth as a covariate.  Depth data
were obtained from side-scan sonar in 1997.  Kriging
assumptions of stationarity and isotropy were checked for
depth as well as percent fines.  In addition to the kriging
assumptions, a linear model of co-regionalization assumption
was used.  The model is necessary to ensure positive
variance functions and is assured by specifying variogram
and cross-variogram models with similar structure with
respect to choice of nugget and range values.  The
variograms for percent fines and depth and their cross-
variogram, values of distance and covariance between pairs
of variables at that distance, were modeled using spherical
models with specified nugget, sill, and range. Co-kriging
predictions were calculated to minimize the error variance
based upon both variogram model parameters and cross-
variogram model parameters, similar to kriging.

All modeling techniques were performed on the residu-
als from the polynomial regression.  Predictions of percent
fines were calculated as the modeled residual predictions
plus the polynomial regression fit.  Predictions of percent
fines were made over a 50-by-50 grid.  This grid resulted in
estimates made every 1.12 km east-west and every 0.89
km north-south.  The prediction surface covered at most 56
km east-west and at most 44.5 km north-south.

All model results were compared to the validation data by
calculating the average difference between the actual and
predicted value, the prediction mean square error (PMSE),
and an accuracy measure (G) introduced by Agterberg
(1984).   The PMSE is defined as:

where:

n   = the number of validation stations

iz = the validation value (truth) at station i

iẑ  is the predicted value at station .

G is defined as:

where:

PMSE   = prediction mean square error defined above

zMSE = mean square error from on the overall mean

(53.2)

The average difference between actual and predicted
values is small for a good model, as is the PMSE.  For G, a
value of zero would represent a model that performs equally
as well as the overall mean.  Larger numbers imply predic-
tions better than the overall mean, while negative numbers
imply predictions worse than the overall mean.  The mea-
sure is used to compare models and has no inherent stand-
alone numerical significance.

RESULTS
Percent fines and depth data were stationary and

isotropic after regressing each variable on latitude, latitude
squared, longitude, and longitude squared.  All directional
variograms had a similar structure for percent fines and
depth, as did their cross-variograms (Figure 3).  A spherical
model with a range of 0.06 was used for variograms on
percent fines and depth and for their cross-variograms.
The range of 0.06 on coordinate scale corresponded to
approximately 6 km.  The sill of the percent fines variogram
was estimated to be 400 and the nugget, 50.  The sill of the
depth variogram was estimated to be 12,000 and the nugget,
50.  The sill of the cross-variogram was estimated to be -
1000 and the nugget, 0.

The triangulation predictions were not as close to the
validation data set as were the kriging and co-kriging
predictions (Tables 1 and 2, Figure 4).  The average differ-
ence between the truth and the predictions was approxi-
mately 7 percent fines, where the full range of predictions
was between 3 and 92 percent fines.  All models tended to
over-predict percent fines, resulting in positive average
differences.  The PMSE was 2.5 times smaller for krigingn
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FIGURE 3.  Empirical variograms of residuals from a polynomial regression and
spherical model estimates (lines).
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and co-kriging compared to triangulation.  Although the
average differences were the same among methods, some
very large over- and under-predictions from the triangula-
tion method were evident in the plot of measured-versus-
predicted values (Figure 4).  The G measure of validation
accuracy was approximately the same for kriging and co-
kriging, but was very small for triangulation.

DISCUSSION
Based upon numeric measures from the validation data,

kriging and co-kriging techniques provided similarly accu-
rate predictions.  This finding is also evident in the correla-
tion between model predictions (Table 3).

A more robust approach for comparing models is to
consider the details in the final maps (Isaaks and Srivastava
1989).  Using this approach, it was determined that co-
kriging produced a better map of the Santa Monica Bay
than the kriging method (Figures 5 and 6).  The differences
between these two methods are evident at the depth-
defined canyons, canyon lips, and shortbank.  The co-
kriging map corresponds much better with these bathym-
etry-defined features.  The kriging map shows a different
shape for the shortbank and does not reflect Redondo
Canyon at all.  Deep canyons contain a much higher
percentage of fine sediment while the shallow shelf area is
generally rocky and contains a much lower percentage of

fine sediment.  The inclusion of
depth in the model improves
prediction in the depth-defined
areas.

Triangulation performed
poorly compared to the kriging
techniques on all counts.  The
predictions were further from
the validation set and were not
highly correlated with the kriging
or co-kriging predictions.
Triangulation predictions were
also sometimes less than 0 or
greater than 100 percent fines
near the edges of the data hull.
Interpolators often suffer from
poor predictions (Laslett et al.
1987).  Since triangulation is an
interpolator, fitting a model
through two values, one larger
and on the edge of the data hull,
would result in an ever-increas-
ing prediction slope.  Limiting
the prediction to the convex hull

produced very tight isopleths at the boundary that still
exceeded the range of possible values (0–100%).  In
practice, all values exceeding the range would be assigned
the limiting value (0 or 100%), but this solution does not
reduce concerns about the limitations inherent in interpolat-
ing methods.

The findings of this study correspond well to modeling
method comparison studies conducted with terrestrial soils.
When kriging was compared to techniques other than co-
kriging in the terrestrial environment, it performed best
(Gotway Crawford et al. 1996, Gotway Crawford and Hergert
1997, Laslett et al. 1987, and Laslett and McBratney 1990).
Two comparison studies were conducted on terrestrial soils
involving co-kriging.  Co-kriging was found to be the best
method in one study (McBratney and Webster 1983), and
regression plus kriging was found to be the best method in the
other study (Odeh et al. 1994).

While the modeling approach deemed best by this study
had an average absolute difference of 11.3%, this value
overstates the true modeling error because it includes inter-
annual variability introduced by using a validation data set
from a different year.  To estimate the effect of inter-annual
variability, City of Los Angeles data collected from 1987 to
1995 at the same 40 sites used in the validation data set
were used to calculate the biennial average absolute
difference of 6.8%.  Biennial deviation was used since the
validation data were collected two years later than one
modeling data set and one or two years earlier than the
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other modeling data set.  Thus, half of the variability
associated with differences between prediction and valida-
tion data appears to be due to differences in years and not
error in prediction.

Overall, the co-kriging map of percent fines corre-
sponds to local knowledge of the system, but some short-
comings were observed in the predictions (Figure 6).  The
model fails to accurately describe the canyon lip areas that
are very active, so that sediment grain size is spatially as

well as temporally variable; in fact, all
models fail to some degree in these
areas. Limited data on the canyon lips
and in the canyons made prediction
difficult in this study.  Other data
sources might be used to adjust these
predictions.  Backscatter information,
which portrays the hardness of the
seafloor as shades of gray, and seafloor
photographs at some calibration data
sample sites might be used to adjust
predictions a posteriori or be included a
priori as a covariate in the co-kriging
model.  Another possible discrepancy
was found in the northern shoreline,
which is predicted to be quite muddy.
This finding conflicts with the general
belief that shorelines have sandy
sediments, but is consistent with Allen
(1982) who found that this area has
finer sediments because the south-
facing shore is largely protected from
extreme currents.

In this study, several data sets
were combined to achieve a higher
sampling density than is typically
available from most areas.  This higher
sampling density resulted in an im-
proved level of confidence in the
variogram upon which the kriging
models were based.  The resulting
variogram provides information about
the level of density necessary to
achieve optimal kriging variance
(McBratney et al. 1981, McBratney
and Webster 1981), since kriging
variance depends only upon sample
station spacing and variogram param-
eters.  The optimal grid spacing to map
grain size in Santa Monica Bay is
approximately 950 m on a triangular
grid.  This spacing corresponds to a

density of approximately 1.4 samples per square km, which
is 7 times as dense as the current routine monitoring effort
being conducted in Santa Monica Bay (City of Los Angeles
2000) and 10 times as dense as the most recent regional
survey of conditions throughout southern California (Schiff
2000).  Although the kriging variance would be very large,
the designs are useful for their intended purposes of trend
analysis and inferential statistics.

Station 1996 Triangulation Kriging Co-Kriging
Number Percent Fines Prediction Prediction Prediction

1 10 3 24 32
2 11 10 7 10
3 8 30 20 23
4 67 55 70 79
5 73 50 76 79
6 54 34 52 46
7 42 34 43 38
8 43 48 52 43
9 43 55 52 42
10 50 65 56 50
11 26 34 33 40
12 33 32 29 37
13 39 82 46 48
14 68 65 81 77
15 65 67 75 68
16 37 18 41 44
17 20 15 31 38
18 53 35 35 36
19 32 36 33 33
20 18 29 28 30
21 28 40 34 38
22 24 90 46 50
23 50 36 42 44
24 24 68 33 35
25 33 18 25 24
26 35 27 33 31
27 26 83 71 61
28 40 92 69 67
29 47 56 75 78
30 51 42 73 70
31 62 62 72 82
32 55 77 73 83
33 48 40 55 60
34 50 68 53 55
35 48 40 50 37
36 33 50 50 40
37 77 90 84 73
38 45 43 42 54
39 35 60 43 35
40 49 60 43 32

TABLE 1.  True percent fines and predictions for validation stations.  Bold
values represent predictions that are larger than the true value.
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FIGURE 4.  Measured values of percent fines for valida-
tion data versus predictions from triangulation, kriging,
and co-kriging.
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FIGURE 5.  Kriging prediction of percent fines for Santa
Monica Bay.  Squares represent validation data values and
size signifies the deviation from prediction.
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Triangulation Kriging Co-kriging

Average Difference 7.2 7.5 7.3
Prediction Mean Square Error 499 183 209
G 5 51 42

Kriging Triangulation

Co-kriging   0.95      0.43
Kriging      0.48

TABLE 3. Spearman rank
correlation coefficient among
model predictions.
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