


## Characteristics of Effluents from Large Municipal Wastewater Treatment Plants in 1989

e summarized effluent constituent concentrations and mass emission estimates for Hyperion Wastewater Treatment Plant (City of Los Angeles), Joint Water Pollution Control Plant (County Sanitation Districts of Los-Angeles County), County Sanitation Districts of Orange County Wastewater Treatment Plants 1 and 2, and Point Loma Wastewater Treatment Plant (City of San Diego) for 1989 (Figure 1). Effluents from these facilities constitute 90% of municipal effluents discharged directly into the Southern California Bight.

## Materials and Methods

We obtained the effluent data reported by each discharge agency under National Pollution Discharge Elimination System permits from the Regional Water Quality Control Boards (Los Angeles, Santa Ana, and San Diego). Annual mass emission estimates are the product of annual effluent volume and mean annual constituent concentration. The discharge agencies have measured the constituents featured in this report annually for 18 years. The long-term trends are also discussed.

## Results and Discussion

The combined volume of effluent discharged from the largest facilities increased 2% from



Metridium attached to wastewater outfall pipe.

1988 to 1989 (Table 1). The amount of effluent receiving secondary treatment increased from 42% of the combined discharge in 1988 to 45% of the combined discharge in 1989. The greatest change occurred at Hyperion—the amount of effluent receiving secondary treatment increased from 41% in 1988 to 48% in 1989.

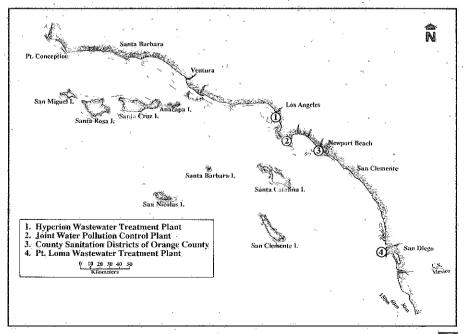
The range of constituent concentrations in effluents from the four facilities varied from less than a factor of two to greater than 1000 (Table 2). Most constituent concentrations differed by a factor of five or less. The

differences are due to the type of wastes (domestic and industrial), source control, volume of water removed for reclamation or inland discharge, and efficiency and degree of treatment (advanced primary or secondary). The range of constituent mass emissions from the four facilities varied less than ten-fold (Table 3).

From 1988 to 1989, combined effluent emissions of suspended solids declined 14%, biochemical oxygen demand (BOD) declined 5%, and oil and grease declined 11% (Table 4). The mass emissions of suspended solids declined 32% at Hyperion and 11%

**Table 1.**Volume of municipal wastewater discharged to the ocean in 1989 from the largest municipal wastewater treatment facilities in southern California.

|                       | Treat                         | ment               |                        |                                               | ~                            |  |  |
|-----------------------|-------------------------------|--------------------|------------------------|-----------------------------------------------|------------------------------|--|--|
|                       | Advanced<br>Primary<br>(mgd*) | Secondary<br>(mgd) | Total<br>Flow<br>(mgd) | Distance of<br>Discharge<br>From Shore<br>(m) | Depth of<br>Discharge<br>(m) |  |  |
| Hyperion <sup>b</sup> | 188                           | 177                | 365                    | 8,300                                         | 57                           |  |  |
| JWPCP°                | . 174                         | 208                | 382                    | 2,400-3,660                                   | 60                           |  |  |
| CSDOC <sup>4</sup>    | 122                           | 140                | 262                    | 7,250                                         | 60                           |  |  |
| Point Lomac           | 191                           | Ò                  | 191                    | 4,000                                         | 60                           |  |  |
| Total                 | 675                           | 525                | 1200                   | 4                                             |                              |  |  |


<sup>\*</sup>mgd=million gallons per day (1 mgd = 3,785,000 liters/day)

at Point Loma. The mass emissions of oil and grease declined 11% at JWPCP and 20% at Point Loma. The combined emissions of cadmium and lead declined about 45%. The combined emissions of arsenic, chromium, copper, and nickel declined 10-25%. The combined emissions of silver, mercury, and zinc remained virtually unchanged. Effluent concentrations of DDT and PCB were often below method detection limits. Based on detectable concentrations, the estimated mass emission of DDT declined 23%. The estimated mass emission of PCBs was zero in both years.

The number of reported analyses with masses below detection limits (BDL) has increased in recent years. Concentrations have declined due to source control and improved treatment; some contaminant

Figure 1.

Map of the Southern California Bight showing the location of the four largest municipal wastewater dischargers. Hyperion Wastewater Treatment Plan (City of Los Angeles), Joint Water Pollution Control Plant (JWPCP; County Sanitation Districts of Los Angeles County), County Sanitation Districts of Orange County (CSDOC), and Point Loma Wastewater Treatment Plant (City of San Diego).



<sup>&</sup>lt;sup>b</sup>City of Los Angeles

<sup>&#</sup>x27;Joint Water Pollution Control Plant, County Sanitation Districts of Los Angeles County

<sup>&</sup>lt;sup>d</sup>County Sanitation Districts of Orange County

City of San Diego

**Table 2.**Mean annual constituent concentrations in effluents from the largest facilities in southern California in 1989.

|                               | ·                     |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | * * * * * * * * * * * * * * * * * * * * |
|-------------------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                               | Hyperion <sup>a</sup> | JWPCP <sup>b</sup> | CSDOC <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Point Lomad                             |
| Flow (mgd°)                   | 365                   | 382                | 262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 191                                     |
| Suspended solids (mg/l)       | 33                    | 65                 | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .60                                     |
| Settleable solids (ml/l)      | 0.3                   | 0.3                | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                     |
| BOD <sup>f</sup> (mg/l)       | 90                    | 109                | 74.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119                                     |
| Oil & Grease (mg/l)           | . 13                  | 12.1               | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.4                                    |
| NO <sub>3</sub> -N (mg/l)     | 0.54                  | 0.12               | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * -L.                                   |
| NO <sub>2</sub> -N (mg/l)     | ÷                     | < 0.15             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
| NH <sub>2</sub> -N (mg/l)     | 19                    | 38.2               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.4                                    |
| Organic N (mg/l)              | ±,                    | 8.2                | e de la companya del companya de la companya del companya de la co |                                         |
| PO <sub>a</sub> -P (mg/l)     | 4.07                  | 7.34               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8                                     |
| MBAS <sup>g</sup> (mg/l)      | 5 A                   | 3.7                | <b>-</b> .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.2                                     |
| Cyanide (mg/l)                | 0.018                 | < 0.01             | < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004                                   |
| Phenols                       | *                     | ,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Non-chlorinated (µg/l)        | 0.7                   | 1500               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6                                     |
| Chlorinated (µg/l)            | 1.1                   | 34.6               | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <15.3                                   |
| Turbidity (NTU <sup>b</sup> ) | 36                    | ·50                | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                                      |
| Toxicity (TU)                 | 0.71                  | 1.83               | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.48                                    |
| Silver (µg/l)                 | 7                     | 8                  | 8: · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                     |
| Arsenic (µg/l)                | 6                     | - 5                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                                     |
| Cadmium (µg/I)                | 0.4                   | 2                  | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <5                                      |
| Chromium (µg/l)               | 4                     | 31                 | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <50                                     |
| Copper (µg/l)                 | 38                    | 35                 | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37                                      |
| Mercury (µg/l)                | 0.2                   | 0.4                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                                    |
| Nickel (µg/l)                 | 28                    | 50                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                      |
| Lead (µg/l)                   | 18                    | 25                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <50                                     |
| Selenium (µg/l)               |                       | 13                 | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>* 1.0</b>                            |
| Zinc (µg/l)                   | . 74                  | 130                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68                                      |
| Total DDT (µg/l)              | ndi                   | 0.02               | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.036                                   |
| Total PCB (µg/I)              | nd                    | nd                 | <0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd                                      |

<sup>&</sup>lt;sup>a</sup>City of Los Angeles

Joint Water Pollution Control Plant, County Sanitation Districts of Los Angeles County

County Sanitation Districts of Orange County

dCity of San Diego

<sup>\*</sup>mgd=million gallons per day (1 mgd = 3,785,000 liters/day)

BOD=biochemical oxygen demand

<sup>&</sup>lt;sup>8</sup>MBAS=methylene blue active substances

hNTU=nephelometric turbidity units

TU=toxicity units

ind=not detectable and detection limit not reported

measurements are consistently below detection limits. If detection limits of the recommended techniques are below discharge permit requirements, then BDL results are in compliance. But, BDL results complicate mass emission estimates. We report detection limits in the table of concentrations (Table 2), but we did not use BDL results to estimate mass emissions (Table 3).

Concerns about the reliability of trace contaminant analyses, especially trace organic analyses, in early monitoring programs complicate interpretation of long-term trends. Analytical methods for quantifying chlorinated hydrocarbons evolved during the 1970s and techniques were not standardized among laboratories. The older data reported herein are the best available for past discharges, but the old methods would be unacceptable today. The accuracy and precision of contaminant analyses have improved over the years because of advancements in methods, instru-

mentation, and intercalibration techniques among laboratories.

The combined flow from the largest facilities increased nearly 30% between 1971 and 1989 as a result of population increases (Figure 2). This is a mean annual increase of 1.4% (sd=2.0, n=18). The volume of wastewater discharged by the CSDOC and Point Loma facilities doubled during this time, while the volume discharged from JWPCP and Hyperion increased only slightly (Figure 2). Differences among the

 Table 3.

 Estimated mass emissions from the largest facilities in southern California in 1989.

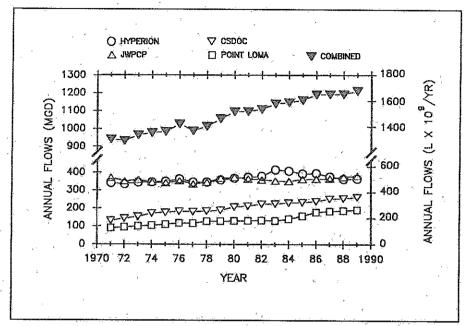
|                                     | Hyperion <sup>a</sup> | JWPCP <sup>b</sup>                            | CSDOC°                                  | Point Lomad                           |
|-------------------------------------|-----------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------|
| Flow (liter x 10°)                  | 504                   | 528                                           | 362                                     | 264                                   |
| Suspended solids (mt <sup>e</sup> ) | 16,640                | 34,303                                        | 16,650                                  | 15,832                                |
| BOD <sup>r</sup> (mt)               | 45,383                | 57,524                                        | 26,785                                  | 31,401                                |
| Oil & grease (mt)                   | 6,555                 | 6,386                                         | 4,778                                   | 4,855                                 |
| NO <sub>3</sub> -N (mt)             | 272                   | 63                                            |                                         |                                       |
| NO <sub>2</sub> -N (mt)             |                       | , • , · . • · . • . • . • . • . • . • . • . • | - · · · · · · · · · · · · · · · · · · · | , 🚔 :                                 |
| NH <sub>3</sub> -N (mt)             | 9,581                 | 20,160.                                       | 8,688.                                  | 6,702                                 |
| Organic N (mt)                      |                       | 4,300                                         |                                         | · · · · · · · · · · · · · · · · · · · |
| PO <sub>4</sub> -P (mt)             | 2,052                 | 3,874                                         | · · · · · · · · · · · · · · · · · · ·   | 1003                                  |
| MBAS <sup>g</sup> (mt)              | and the second of     | 1,953                                         | ·                                       | 1,372                                 |
| Cyanide (mt)                        | 9.1                   | · * * * * * * * * * * * * * * * * * * *       | * <del>-</del> -                        | 1.1                                   |
| Phenois (mt)                        |                       |                                               |                                         |                                       |
| Non-chlorinated                     | 0.35                  | 792                                           | 5.1                                     | 2.3                                   |
| Chlorinated                         | 0.55                  | 18                                            | 2.9                                     |                                       |
| Silver (mt)                         | 3.5                   | 4.2                                           | 2.9                                     |                                       |
| Arsenic (mt)                        | 3.0                   | 2.6                                           | 0.80                                    | 0.92                                  |
| Cadmium (mt)                        | 0.20                  | 1.1                                           | 0.65                                    |                                       |
| Chromium (mt)                       | 2.0                   | 16.4                                          | 4.0                                     |                                       |
| Copper (mt)                         | 19.2                  | 18.5                                          | 20.3                                    | 9.8                                   |
| Mercury (mt)                        | 0.101                 | 0.211                                         | 0.076                                   | 0.050                                 |
| Nickel (mt)                         | 14.1                  | 26.4                                          | 9.0                                     | 4.0                                   |
| Lead (mt)                           | 9.1                   | 13.2                                          | 4.7                                     | 0.00                                  |
| Selenium (mt)                       | 7                     | 6.9                                           | 0.47                                    | 0.26                                  |
| Zinc (mt)                           | 37.3                  | 68.6                                          | 21.7                                    | 17.9                                  |
| Total DDT (kg)                      | <del>-</del> ,        | 10.6                                          | ₹                                       | 9.5                                   |
| Total PCB (kg)                      | <u> </u>              | <del>-</del>                                  | <u> </u>                                |                                       |

\*City of Los Angeles

bJoint Water Pollution Control Plant, County Sanitation Districts of Los Angeles County

County Sanitation Districts of Orange County

City of San Diego


emt=metric tons

BOD=biochemical oxygen demand

MBAS=methylene blue active substances

Figure 2.

Combined effluent flow and individual effluent flows from the four largest municipal wastewater treatment facilities in Southern California (MGD = Millions of gallons per day, L = Liters).



agencies are related to population growth patterns, water reclamation, and inland discharge. Orange. San Diego, and Riverside counties have grown faster than Los Angeles County. Los Angeles County and the City of Los Angeles expanded their upstream treatment and reclamation facilities. The County reclaims 137 mgd of water — double the amount reclaimed 10 years ago. The volume of effluent discharged to the Los Angeles River by the Los Angeles-Glendale and Donald C. Tillman water reclamation plants increased from 25 mgd in 1985 to 60 mgd in 1988. Rainfall has little effect on effluent volumes because sewer and storm drain systems are not connected. Water conservation efforts during droughts (e.g., 1975-77 and 1985-1991) may reduce the rate of increase in flows.

**Table 4.**Combined mass emissions from City of Los Angeles Hyperion Treatment Plant, County Sanitation Districts of Los Angeles County Joint Water Pollution Control Plant, County Sanitation Districts of Orange County Wastewater Treatment Plants 1 and 2, and City of San Diego Point Loma Wastewater Treatment Plant from 1971 through 1989.

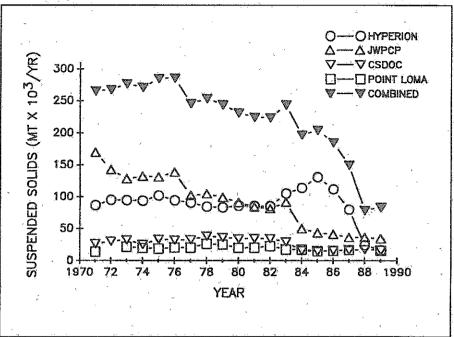
| The second secon | n       |                  |         | • "       |         |         | * .     |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------|-----------|---------|---------|---------|---------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1971    | 1972             | 1973    | <br>1974  | 1975    | 1976    | 1977    | 1978    | 1979    |
| Flow (liter x 109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,286   | 1,289            | 1,319   | <br>1,336 | 1,346   | 1,406   | 1,319   | 1,382   | 1,438   |
| Flow (mgd <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 931     | 931              | 954     | 967       | 975     | 1015    | 955     | 1001    | 1041    |
| Suspended solids (mtb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 263,400 | 279,000          | 269,700 | 263,700   | 284,900 | 286,400 | 233,500 | 253,800 | 243,900 |
| BOD <sup>c,d</sup> (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 281,000 | 250,000          | 217,900 | 221,600   | 233,500 | 255,900 | 241,500 | 234,200 | 241,900 |
| Oil & Grease (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61,500  | 60,600           | 57,300  | 54,800    | 56,500  | 58,800  | 49,200  | 48,500  | 45,400  |
| NH <sub>3</sub> -N (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53,800  | 36,600           | 45,900  | 36,900    | 36,300  | 35,600  | 40,000  | 38,900  | 41,100  |
| Total P (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32,900  | 36,000           | 40,600  | 34,200    | 32,000  | 28,400  | 10,400  | 10,100  | 10,000  |
| MBAS <sup>e</sup> (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,800   | 5,400            | 5,900   | 6,800     | 6,100   | 6,100   | 5,300   | 5,800   | 6,300   |
| yanide (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 186     | 240              | 244     | 303       | 251     | 401     | 213     | 176     | 145     |
| Silver (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15      | 21               | 29      | 22        | 25      | 20      | 34      | 32      | 43      |
| Arsenic (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3       | - 13             | 16      | 18        | 6       | 10      | 27      | 15      | 15      |
| Cadmium (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53      | 34               | 49      | 55        | 51      | 44      | 41      | 44      | 43      |
| Chromium (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 648     | 673              | 694     | 690       | 579     | 592     | 368     | 279     | 239     |
| Copper (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 560     | 485              | 508     | 576       | 510     | 506     | 402     | 416     | 361     |
| Mercury (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.8     | <sup>7</sup> 3.9 | 3.1     | 1.8       | 2.2     | 2.5     | 2.6     | 1.9     | 2.6     |
| Vickel (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 307     | 273              | 318     | 315       | 282     | 302     | 262     | 318     | 256     |
| Lead (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 211     | 226              | 180     | 199       | 198     | 189     | 150     | 216     | 224     |
| Selenium (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44      | 49               | 16      | 18        | 11      | 22      | 22      | 23      | 7.9     |
| Zinc (mt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,676   | 1,210            | 1,189   | 1,324     | 1,087   | 1,061   | 834     | 833     | 728     |
| ODT <sup>d.</sup> (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,527  | 6,558            | 3,818   | 1,562     | 1,158   | 1,626   | 855     | 1,121   | 839     |
| PCB <sup>d</sup> (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,730   | 9,830            | 3,389   | 5,421     | 3,065   | 2,829   | 2,183   | 2,540   | 1,170   |

mgd=million gallons per day (1 mgd = 3,785,000 liters/day)

mt=metric tons

BOD=biochemical oxygen demand

dHyperion 7-mile outfall not included


Estimates for 1971 through 1975 are based on SCCWRP analyses of effluents; estimates for 1976 through 1989 are based on discharger data.

Despite increases in population and volume of wastewater discharged, the combined mass emission of most constituents have declined over the past two decades. The combined mass emission of suspended solids declined 68%, BOD declined 43%, and oil and grease declined 64% (Table 4; Figures 3-5). The decline in solids emissions from JWPCP between 1971 and 1989 accounted for 65% of the reduction. Termination of sludge discharge from the Hyperion 7-mile outfall (November 1987) accounted for a 40% reduction in combined emissions from 1987 to 1988. Most of the decline in BOD occurred after 1985. Reductions by JWPCP account for about 75% of the decline in oil and grease.

The combined mass emission

Figure 3.

Combined suspended solids emissions and individual suspended solids from the four largest municipal wastewater treatment facilities (MT = Metric tons).



|          | et.     | . *     |         |         |         |         |         |         | · · · · · · · · · · · · · · · · · · · |   |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------------------------------------|---|
| <br>1980 | 1981    | 1982    | 1983    | 1984    | 1985    | 1986    | 1987    | 1988    | 1989                                  | , |
| 1,493    | 1,492   | 1,511   | 1,549   | 1,565   | 1,579   | 1,623   | 1,629   | 1,632   | 1,658                                 |   |
| 1078     | 1080    | 1094    | 1122    | 1129    | 1143    | 1175    | 1179    | 1178    | 1200                                  |   |
| 232,100  | 224,900 | 224,200 | 244,700 | 197,700 | 204,500 | 184,900 | 148,500 | 97,000  | 83,400                                |   |
| 255,100  | 260,900 | 266,100 | 251,800 | 230,100 | 253,500 | 181,900 | 166,500 | 168,800 | 161,100                               |   |
| 38,400   | 36,700  | 37,300  | 35,700  | 30,000  | 34,300  | 29,000  | 25,700  | 25,30ò  | 22,600                                |   |
| 42,000   | 40,500  | 41,800  | 40,100  | 40,500  | 44,500  | 42,900  | 44,500  | 44,600  | 45,500                                |   |
| 10,000   | 9,500   | 9,000   | 9,000   | 9,200   | 8,500   | 10,900  | 9,000   | 10,400  | 6,000                                 |   |
| 6,400    | 5,600   | 5,700   | 5,200   | 4,600   | 5,100   | 3,400   | 3,900   | 3,900   | 3,400                                 |   |
| 116      | 98      | 77      | 46      | 39      | 26      | 22:     | 27      | 26      | 10                                    |   |
| 30       | 28      | 25      | 26      | 24      | 26      | . 22    | 15      | 11      | 11                                    |   |
| 11       | 12      | 5.8     | 10      | 18      | 16      | 12      | 11      | 8.9     | 7.4                                   |   |
| 39       | 32      | 21      | 23      | 16      | 16      | 14      | 9.0     | 3.4     | 1.9                                   |   |
| 275      | 187     | 203     | 163     | 140     | 110     | 88      | - 57    | 29      | 22                                    |   |
| 335      | 337     | 284     | 272     | 251     | 239     | 202     | 125     | 76      | 68                                    |   |
| 1.8      | 1.8     | 1.2     | 1.1     | 0.9     | 0.9     | 0.7     | 0.4     | 0.4     | 0.4                                   |   |
| 224      | 167     | 168     | 163     | 133     | 118     | 127     | 76      | 63      | 54                                    |   |
| 175      | 130     | 122     | 98      | 87      | 118     | 105     | . 61    | 50      | 27                                    |   |
| _11      | 15      | 6.4     | 6.5     | 6.5     | 5.6     | 8.2     | 7.2     | 6.7     | 7.6                                   |   |
| 729      | 538     | 545     | 497     | 369     | 375     | 336     | 260     | 151     | 146                                   |   |
| 671      | 480     | 290     | 223     | 310     | 48      | 51      | 53      | 26      | 20                                    |   |
| 1,127    | 1,252   | 785     | 628     | 1,209   | 46      | 37      | 5       | 0       | 0                                     |   |

of trace metals declined 90% from 1971 to 1989 (Table 4; Figure 6). Declines of individual metals averaged 55% (sd=81%, n=10). The greatest reductions were for cadmium, chromium, copper, mercury, nickel, lead, and zinc. Arsenic was the only metal that increased in mass. From 1987 to 1988, the combined emissions of trace metals declined 36%. Termination of discharge from the Hyperion 7-mile outfall accounted for about 60% of the decline.

The combined emissions of

chlorinated hydrocarbons declined more than 99% from 1971 to 1989 (Table 4; Figure 7). Montrose Chemical Corporation. the largest manufacturer of DDT in the world and the only manufacturer in California, discharged DDT wastes into the Los Angeles County sewer system from 1947 to 1971. Residual waste in the sanitation system was the principal source of DDT in JWPCP effluent after that time. Concentrations of DDT in JWPCP effluent are now near or below detection limits (tens of pg/I).

since 1985. County Sanitation Districts of Orange County, the largest source of PCBs, discovered discrepancies between their analytical results and the results of independent laboratories. After an extensive investigation, they concluded that an unknown source of contamination in the CSDOC laboratory resulted in high PCB concentrations in effluent samples. An independent laboratory has analyzed CSDOC effluents for PCBs since 1986. Mean annual PCB concentrations in CSDOC effluent for 1985 to

follows.

|      | Old    | Corrected       |
|------|--------|-----------------|
|      | Value  | Value           |
| Year | (µg/l) | ( <u>ug/l</u> ) |
| 1985 | 2.8    | <1.0            |
| 1986 | 1.4    | < 0.3           |
| 1987 | 0.7    | < 0.3           |

The combined emission of

exceeded emissions of DDT since

(Table 4; Figure 7). There is some

uncertainty about the quantity of

PCBs discharged to the Bight

PCBs, which have generally

1972, have dropped to zero

The PCB values in Table 4 reflect these changes.

1987 have been corrected as

Despite increases in the volume of municipal effluents discharged to the Southern California Bight, the concentrations and mass emissions of most constituents decreased from 1988 to 1989. Reductions were the result of improved primary treatment, increased secondary treatment, and improved source control. Municipal effluent contaminant concentrations and mass emissions have declined significantly during the past 20 years. The declines are due to increased source control and solids removal (land disposal of sludge), improved sludge and primary treatment, and increased secondary treatment. Further

Figure 4.

Combined mass emission of biochemical oxygen demand from the four largest municipal wastewater treatment facilities (MT = Metric tons).

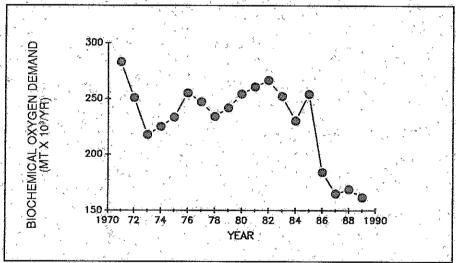
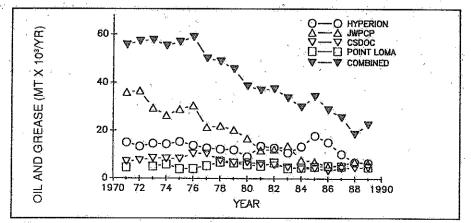
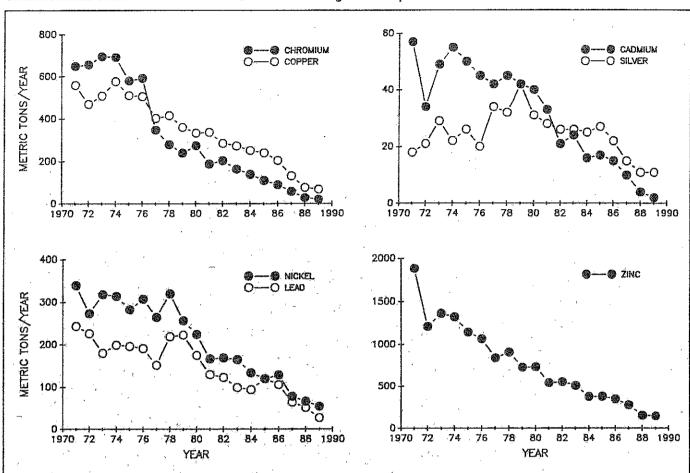




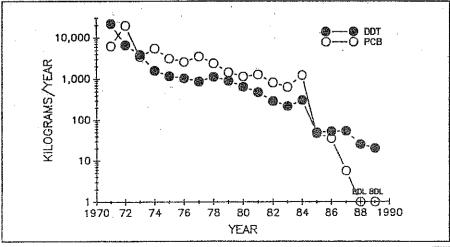

Figure 5.

Combined oil and grease emissions and individual oil and grease from the four largest municipal wastewater treatment facilities (MT = Metric tons).



**Figure 6.**Combined mass emissions of trace metals from the four largest municipal wastewater treatment facilities.




reductions in mass emissions on a comparable scale are not possible. Nominal reductions will occur due to planned increases in the volume of wastewater receiving secondary treatment, increased inland reclamation of water, and more effective source control.

## **Acknowlegements**

Author Henry Schafer thanks the Los Angeles, Santa Ana, and San Diego Regional Water Quality Control Boards; Hyperion Wastewater Treatment Plant; County Sanitation Districts of Los Angeles County; County Sanitation Districts of Orange County; and Point Loma Wastewater Treatment Plant for their cooperation.

Figure 7.

Combined mass emissions of chlorinated hydrocarbons from the four largest municipal wastewater treatment facilities (BDL = below detection limits).

