QA/QC for Microplastics sampling, analysis and reporting

Chelsea Rochman

What can we learn from the field of analytical chemistry?

What can we learn from the field of analytical chemistry?

Rochman et al., 2019 ET&C

Best Practices /Sound QA/QC

- Clean Techniques
- Training protocols
- Blanks & Blank Subtraction
 - Spike recoveries
- Chemical analysis of particles
- Transparent and harmonized reporting

Clean Techniques

Avoid Dust by –

- Wiping benchtop regularly and mopping
- Work in a clean cabinet
- Get a HEPA filter
- Cover samples whenever possible
- Avoid procedural contamination with
 - Cotton lab coats
 - Brightly colored jumpsuits 😳
 - Clean tools in water between use
 - Use glass or non-plastic materials where possible

Be aware of and catalogue the type of contamination you might see in your samples – filter pieces, fibers from lab coats, hair, kim wipe fibers, rope from the boat or net, etc ...

Training protocols to standardize your lab

- Have a lab training protocol. For example:
 - Small sample volume on petri dish at a time
 - Use both white and black background
 - Use touch and feel in addition to visual
- Consider people bias something to think about, consider, account for (better to have one person on a study if possible; two people count for some samples)

Test the recovery of the method in your laboratory

- Similar to a matrix spike in analytical chemistry
- To test efficacy of methods.
- Do this by number of particles
- Use different polymers types, shapes, sizes...

Environmental Science & Technology Letters

Grbic et al., 2019 *ES&T Letters*

Include field and laboratory blanks

- To account for procedural contamination
- Make sure you sample enough volume to be 3x above the amount in your blank.
- Should mimic how you sample and process the sample
- Blank subtraction -
 - By color and category

Test your extraction efficiency with chemical analysis

- Helps control any over- or under-estimation.
- Is a descriptor for how well you picked plastics versus other materials.
- Also provides an idea of the type of materials in your sample.

Best practices for reporting

- Include a section for QA/QC
 - Describe clean techniques
 - Blanks and subtraction
 - Recovery of method used, correct?
 - Report your LOD/LOQ
 - Provide subsampling strategy for chemical ID
- When you show your raw data, report:
 - Particle size (or size range)
 - Colour
 - Morphology (i.e., shape category)
 - Material type (based on subsampling strategy)
- Give plastic concentrations in # of particles per unit volume (or organism)
- Share ALL your data for synthesis studies.

Thank you!