Techniques for Identifying and Quantifying Microplastics Prior to or in Lieu of Spectroscopy

Keenan Munno, M.Sc.

University of Toronto

keenan.munno@mail.utoronto.ca

Stages of Sample Preparation/Analysis

Automation

I. Morphology Key for Categorization

FiberFlexible, equal thickness, ends clean-cut, pointed or fraying

PelletLarger (3-5mm), often round or cylindrical

Fiber Bundle ≥20 fibers

Film *Flat, thin, malleable*

Fragment
Rigid, variety of shapes

Foam *Soft, compressible*

Sphere Round, smooth surface, tend to be smaller (100-300 µm)

I. Fiber Bundles vs Fibers

Fiber Bundle
Tightly-wound,
consistent in
appearance

Individual
Fibers
Inconsistent
appearance, loose

Do tease apart

I. Clear Fibers

Cellulosic

Tapered ends, rough surface texture, spiny projections off of main fiber body

Synthetic

Surface texture appears smooth (may have bubble-like spheres), main body of fiber typically thick with few projections, tensile

II. Color Key for Categorization

Black

White

Clear

Blue

Red

Green

Pink

Purple

Yellow

Orange

Grey

Silver

Gold

Goals:

- Simplicity
- Consistency
- Harmonization with other studies

Adapt colour categories when necessary

- Subcategories for very common colours
- Additional categories if necessary (e.g. multi-coloured)

II. Color Key for Categorization

For fibers, colour/clear combinations are common

- Bleaching may cause clear portions
- Assign colour based on dyed portion

For fragments (and other categories), multi-coloured particles or particles with images/text are possible

Assign colour based on dominant colour (if possible)

III. Size Fractioning

Size fractioning is useful

- Reduces particle load
- Creates bins for data analysis
- ► Easier to focus on similarly sized particles

Consider the following:

- Hypothesis (e.g. effects sizes)
- Harmonization with other studies
- Methods (e.g. limitations for handling)

IV. Sorting and Picking

- Fine-tipped forceps
- Counting dish (with grid)
- Dissecting microscopes (3D view of particles)

V. Plating Samples

Covered, clearly-labelled, circled and numbered particles

Mounted on clear, adhesive surface with particles as flat as possible

VI. Subsampling

VII. Pictures and Measurements

Length and width measured

- Longest dimension and widest dimension perpendicular to length
- Do not measure frayed projections in fibers
- Use segmented lines when necessary
- Subsample for larger particle counts

VIII. Polymer Verification

IIX. Staining Methods

Rose Bengal stains organic matter

- ► Used to colour organic matter so it is distinguishable from synthetic polymers (Davison & Asch 2011)
 - Does not stain minerals or chitin
 - ► Faintly colours clear/white particles

IIX. Staining Methods

Nile Red stains neutral lipids and highly hydrophobic microplastic (Greenspan & Fowler 1985)

- ► Fluorescent in hydrophobic environment
- Stains natural organic material
- Not recommended to use NR-staining alone for identifying MP (Shim et al. 2016)

IX. Limitations for Identifying & Quantifying Microplastics

Visual identification is not enough

► Feel of the particles is a contributor to identification

Bright colours exist in nature

 Colour of particles used as indicator of anthropogenic origin

Not all dyed materials are plastic

Cellulosic fibers (e.g. cotton) can be dyed

Thank you! Questions?

