Planned European Method Evaluation Study
- ILC, QA/QC

Bert Van Bavel, Amy Lusher

Norwegian Institute For Water Research, Gaustadalléen 21, NO-0349, Oslo, Norway

Southern California Coastal Water Research Project Authority
California, 4th April 2019
Summary

• What is it?
• Why do we need it?
• Who should participate?
• How are we going to do it?
WHAT:

Interlaboratory Study on the Analysis of Microplastics in Environmental Matrices

A Microplastics Analysis Workshop was held in November 2018 in Amsterdam and was dedicated to the topic of microplastics analysis in environmental matrices. Based on the outcome of that workshop QUASIMEME announced the first phase of an international microplastics interlaboratory study.
WHY: Lack of QA/QC during Microplastic Analysis

Current studies portray a wide spread in results on the occurrence of MPs, highlighting a lack of comparability of results.

The results of this quality assessment show a dire need for stricter quality assurance in MP in studies.

(Hermsen et al. ES&T 2018)
WHY: Lack of QA/QC during Microplastic Analysis

Klimisch score

- Criteria for Reporting and Evaluating Ecotoxicity Data (CRED)

11 QA Criteria

- sampling method and strategy
- sample size
- sample processing and storage
- laboratory preparation
- clean air conditions
- negative controls
- positive controls
- target component
- sample (pre)treatment
- polymer identification

Table 1. Scoring of the Reviewed Articles in the Current Quality Assessment

<table>
<thead>
<tr>
<th>study</th>
<th>year</th>
<th>sampling method</th>
<th>sample size</th>
<th>sample processing and storage</th>
<th>laboratory preparation</th>
<th>clean air</th>
<th>negative control</th>
<th>positive control</th>
<th>target component</th>
<th>sample treatment</th>
<th>polymer identification</th>
<th>accumulated score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauber et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Temba and Thiyade</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Divia and Didehkar</td>
<td>2016</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Burnel et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Coetzer Jones et al.</td>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2017</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Mathison and Hill</td>
<td>2014</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Walk et al.</td>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Cornes et al.</td>
<td>2016</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Dieforgan and Ghabriel</td>
<td>2015</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Ito et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Murphy et al.</td>
<td>2017</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Vandenbroek et al.</td>
<td>2015</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Vanonkenberg et al.</td>
<td>2015</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Bred et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Terre et al.</td>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Reh et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Johnson et al.</td>
<td>2015</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Lauber et al.</td>
<td>2013</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Vanomkenberg et al.</td>
<td>2014</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Brni et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Anafarami et al.</td>
<td>2015</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Boening et al.</td>
<td>2015</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Juo et al.</td>
<td>2016</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Maryn and Crevecoer</td>
<td>2011</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Pront et al.</td>
<td>2017</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Verdich et al.</td>
<td>2017</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Beuket et al.</td>
<td>2013</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Li et al.</td>
<td>2016</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Nocera et al.</td>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Wijburg and Kolbom</td>
<td>2015</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Ribeiro et al.</td>
<td>2015</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Monte and de Carvalho</td>
<td>2016</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

*Scores of 0–2 were assigned to each publication in each of the 10 categories. The publications are ranked from high to low based on the "accumulated score". The overall reliability score was 0 for all studies and is not indicated. Studies with involvement of 1 or more of the authors of the present paper.

35 MP biota studies

Bert van Bavel, Amy Lusher

4th April 2019
WHY: Lack of QA/QC during Microplastic Analysis

On average, studies scored:

8/20 “completeness of information”

0 for “reliability”

Negative control
• 10 out of 35

Positive control
• 2 out of 35

Accuracy?
Uncertainty?
LoD?
WHO:

Laboratories performing microplastics analyses in abiotic or biotic environmental matrices, food or biological tissues.

Currently no limit to the number of participating labs.
1. Participants register for participation in different rounds.
2. Samples are prepared by organizing labs and sent to participants.
3. Complexity of samples increases as rounds progress.
4. Participants analyze samples at own lab and report their results.
5. Organizers compile data received and compare results per laboratory with assigned values, calculate z scores.
6. Labs get feedback on their method used: ("learning exercise").
7. z-scores communicate to labs how their reported data was evaluated (satisfactory score or outside)
8. Results are discussed and follow-up rounds are organized.
9. A second workshop is organized to discuss results and tips.
Study Design: Round 1

- Participants will receive “pills” to spike own samples and test recover rates
- Participants are free to use any analytical methods

Particle size:
A) 1 mm to 300 um (all methods including optical methods (most labs))
B) Samples that include the <300 um range for labs with these capabilities (fewer labs)

Content of pills:
1. Pre-production pellets, different sizes and one blank (10 pills) main objective: (counting particles)
2. Fibers (2 pills) (main objective: identification of plastic)
HOW: Study Design (Round 1)

- Study design finalized
- Participant registration
- 1st round samples prepared & sent
- 1st July: Participants analyze & submit results
- 15th April: Data analysis, feedback, z-scores
- 1st round reporting and prep 2nd round
- September 2019

Bert van Bavel, Amy Lusher
HOW: Standard reference material

- Reference standard materials of common, relatively high-production volume (co)polymers that are likely to be components of real-world MPs-contaminated samples (fragments, spheres, fibers)
- Weathered MPs in an uncleaned extract (contains potential interferences)
- MPs commonly found in environmental matrices (e.g. sediment, biota)

Lusher et al., NIVA Report, 2017
Standard reference material for analytical QA/QC

3 materials
- Synthetic fibers
- Different polymer fragments
- Car tire dust
Procedure tablet production

A powder mixture consisting of sodium hydrogen carbonate (NaHCO₃) and citric acid (C₆H₈O₇)

Both tyre dust and polymer fragments were encapsulated in the tablets.

Polyester fibres were added and counted manually under a microscope.

Blank tablets were produced with every batch.
How the pills work:
Polymer fragments 50-150 um
Fibers 250-500 um

Stage View

Source Spectra Search Results:

1. Polyester fibre: 100% Polyester, Crushed velvet fabric clothing, Green
2. Mercer 3206: 100% Polyester, Crushed velvet fabric clothing, Green
3. Mercer 3207: 100% Polyester, Crushed velvet fabric clothing, Green
4. Mercer 3208: 100% Polyester, Crushed velvet fabric clothing, Green
5. Mercer 3209: 100% Polyester, Crushed velvet fabric clothing, Green

Search Hit List:

1. Polyester fibre: 100% Polyester, Crushed velvet fabric clothing, Green
2. Mercer 3206: 100% Polyester, Crushed velvet fabric clothing, Green
3. Mercer 3207: 100% Polyester, Crushed velvet fabric clothing, Green
4. Mercer 3208: 100% Polyester, Crushed velvet fabric clothing, Green
5. Mercer 3209: 100% Polyester, Crushed velvet fabric clothing, Green

Additional properties of Polyester (Velvet):

- Sample: 975.00 um (V), 975.00 um (V)
- Description: 100% Polyester, Crushed velvet fabric clothing

Bert van Bavel, Amy Lusher

4th April 2019
Fibers 50-150 um

<table>
<thead>
<tr>
<th>Pill number</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
<td>27</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>17</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>30</td>
<td>28</td>
</tr>
</tbody>
</table>

X

- **29.9**
- **26.9**

SD

- **0.73**
- **2.64**

RSD

- **2.4 %**
- **9.8 %**

RDS: 9.7% by hand, <3% with machine

Bert van Bavel, Amy Lusher

4th April 2019
Pills for QA/QC

Calibration curves
Easy to handle
Suitable for several methods
 • Visual
 • FTIR
 • Raman
 • Pyr-GC/MS

Might be useful for QA/QC studies
Logistics for the European method evaluation study

- Labs can sign up when interlab registration opens on www.quasimeme.org
- Stay in touch via the QUASIMEME microplastics interlab mailing list quasimeme@wur.nl
- Each round has a small registration fee.
This study will be coordinated by Dr. Louise van Mourik and Prof. Jacob de Boer, Vrije Universiteit, Amsterdam, The Netherlands. Both of them are highly experienced in the organization of large, international interlaboratory studies. Materials will be provided by the research group of Prof. Bert van Bavel, NILU, Oslo, Norway. Data management and statistics for this exercise will be developed and provided by QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) (Wim Cofino, Steven Crum and Esther van de Brug). QUASIMEME operates Proficiency Testing Studies for institutes making chemical measurements in the aquatic environment worldwide. As part of the improvement programme, QUASIMEME co-operates with centers of excellence to provide workshops for discussion, and “hands on” experience to complement the development programmes in the Laboratory Performance Studies.

Participation Fee
The fee for participation in this study will be 750 Euro per round. In case a pre-payment is made for all three rounds, the fee will be 2000 Euro in total for all three rounds. The samples will be dispatched after receipt of the fee.

Registration
Participants should register before 12th April 2019. To register, please return the 2019 application form DE-17 Microplastics, containing all details necessary, by email to the Quasimeme office (quasimeme@wur.nl). Suggestions with regard to the design of the study and the type of test materials are also welcome and could be added to your email. Upon receipt of your email you will receive a confirmation of your participation and an invoice.