

Sampling, Extraction and Analysis of Microplastics Challenges for Wastewater Treatment Plants

Steve A. Carr Jin Liu Arnold Tesoro

Microplastics Methods Standardization Workshop SCCWRP 04/04/19

TYPES OF PLASTICS

Most popular / commonly used plastics

- Polyethylene (PE)
- Acrylic Polymethyl methacrylate (PMMA nylon)
- Polyethylene Terephthalate (PET_{polyester})
- Polyvinyl Chloride (PVC)
- Polycarbonate (PC)
- Polypropylene (PP)
- Acrylonitrile-Butadiene-Styrene (ABS)

PLASTICS CAN BE SEPARATED INTO TWO BROAD GROUPS

THERMOPLASTICS

- Can be re-melted
- Recycled into new products
- Examples polyvinyl chloride, polyethylene, polypropylene, nylon polystyrene, polycarbonate etc.

THERMOSETS

- Are usually formed and cured as a final product in a single step
- Cannot be re-melted or returned to their pre-synthetic state.
- Examples vulcanized rubber, acrylics, melamines, polyurethanes, epoxies, silicone etc.

Identification of Microplastics

- Visual sorting (microscope, magnifying glass etc.)
- Tactile probing using micro-spatulas
- Morphology (spheres, geometric features)
- Physical / chemical properties (density, deformity)
- Acidic Digestion / Enzyme digestion, and Oxidative cleanups
- FT-IR / Raman / GC-MS / Pyrolysis / NMR

Cospheric Microspheres

Microsphere Distribution in H₂O

Mixed Liquor Imhoff

Imhoff ML Settling Test (10 min)

Imhoff Settling (1 hour)

Microplastic Dispersion

Microspheres 300 μm on 246 μm mesh

Microspheres (45, 63, 106, 150) μm on 246 μm Mesh

Microplastic from toothpaste

-

Biofilm

Surface biofouling

MPPs - Fats – Oil - Grease

Fiber Residues

(a) Bio-residues collected in the 45 μ m sieve at WRP 6 when viewed under high magnification, I: Testate Amoebae, II: filamentous bacteria, III: rotifer. (b) Filamentous bacteria in 45 μ m sieve residues at WRP 6. (c) Comparative fabric fibers (lint type taken from domestic washing machines) using similar magnification for (b).

Conclusions

- Field blanks must be utilized throughout sampling and associative processes
- Commercial standard sources be available (NIST)
- Consensus on reporting units: count, mass
- Preparative manipulations could change counts
- Fibers and particulate residues will likely require separate cleanup / enumeration methods
- Methods should not be bounded by preconceived notions
- Orthodox analytical routines may not be transferable

Thank You

QUESTIONS ?