DEVELOPMENT OF BIOANALYTICAL TECHNIQUES FOR MONITORING OF CHEMICALS OF EMERGING CONCERN IN RECYCLED WATER

JOINT MEETING BETWEEN CALIFORNIA AND WATEREUSE RESEARCH FOUNDATION PROJECT TEAMS

JANUARY 23 - 24, 2014 MEETING AGENDA

To be held at: Southern California Coastal Water Research Project 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626

For Audio Access: Dial +1 (213) 493-0007 Access Code: 682-658-022 Audio PIN: Shown after joining the meeting

Thursday, January 23

8:30	Coffee & pastries	
9:00	Welcome & Introductions	Stephen Weisberg (SCCWRP) Julie Minton (WRF)
9:15	Opening Remarks	Jonathan Bishop (CA Water Board) David Smith (WateReuse CA) Vickie Wilson (EPA ORD) John Printen (Life Technologies)
9:30	WRF10-07 Project Summary (Goals, Key Results)	Beate Escher, Fred Leusch
10:15	BREAK	
10:30	CA Project Summary (Goals, Key Results)	Nancy Denslow, Sandy Westerheide
11:15	Discussion "Which bioassays are ready for pilot implementation?"	Moderators: N. Denslow, B. Escher
12:00	LUNCH	

1:00	Analysis & Interpretation of Bioassay Results WRF Intercalibration Exercise & Effect-Based Monitoring Trigger Development	B. Escher			
2:00	Comparing Bioassay & Analytical Chemistry Results – CA Intercalibration Exercises	Shane Snyder			
2:30	Standardization of Bioassay Protocols	Alvina Mehinto			
3:00	BREAK				
3:15	Discussion - "How do we implement bioassays for monitoring of recycled water?"	Moderators: K. Maruya, B. Escher			
4:00	Bioassays/MOA Wish List for CA	Dan Schlenk			
4:30	Promising Endpoints in the Development Phase	F. Leusch			
5:00	5:00 Discussion – "What tools/data are needed to Moderators: V. Wilson, F. Leusch make monitoring more comprehensive and robust?"				
5:45	Adjourn				
DINN	DINNER WITH THE GROUP				
Frida	y, January 24				
7:30	Coffee & pastries				
8:00	Summary of Day 1; Breakout Assignments	K. Maruya, B. Escher			
8:30	Breakout Session (by Project)				
10:00	– 10:15 BREAK				
10:15	Meeting Summary and Consensus Building Bioassays to move forward Implementation Strategy Next Steps	Moderators: K. Maruya, B. Escher			
11:30	Project Deliverables, Action Items & Wrap Up				
11:45	Adjourn				

WateReuse Research Foundation – SCCWRP Collaboration Meeting #2

Costa Mesa, CA January 23-24, 2014

Julie Minton

Director of Research Programs

The Foundation's Mission

To conduct and promote applied research on the reclamation, recycling, reuse and desalination of water.

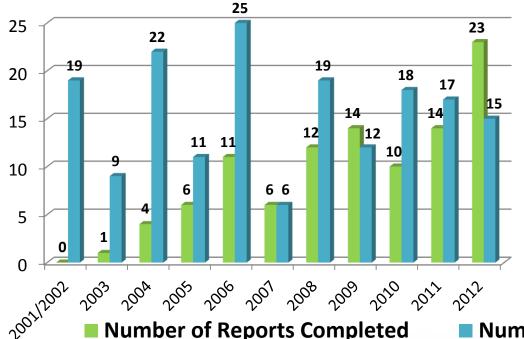
The Foundation's Vision

2011-2020

- Annual Budget of \$5-10 Million
- Funding Partners
 - > DPR Initiative Donors
 - ➤ Utilities/Manufacturers
 - > Bureau of Reclamation
 - > CA SWRCB/DWR/CEC
 - > Pentair Foundation
 - > Subscribers
 - ➤ Partners: AWRCE/Singapore PUB
 - Multinational Corporations
 - Charitable Foundations
- A Global Presence and Reach
- The Respected Voice for Research on Water Reuse and Desalination

WateReuse Research Foundation: History

- Incorporated on September 13, 1993 to:
 - Develop the Science & Technology Necessary to Support the Water Recycling Needs of the 21st Century
- Foundation Specializes in Conducting "Leading Edge"
 Applied Research
- Address Following: Chemical & Microbiological Agents, Treatment Technology, Economics, Marketing, Public Perception
- Push Back the Frontiers in Technology


Significant Events

- Hired FT Executive Director on August 1, 2000
- Secured \$180,000 in Funding from USBR in September,
 2000
- Secured "Earmark" of \$1MM in FY 2001
- Received Matching Funding of \$1MM from CA-SWRCB in 2002
- Expanded Mission to Include Desalination in 2003
- Reconstituted, Strengthened RAC in 2004
- Developed Equitable Sustainable Funding Model in 2007
- Changed Name in 2010
- Launched the CA DPR Initiative in June 2012
- New Executive Director to start March 1, 2014

Outreach is an Important Element of Foundation Work

- Number of Outreach Pieces to Date: 500+ (reports, presentations, proceedings, peer-reviewed publications)
- New Journal Initiated in 2012


 WorldWater: Water Reuse and Desalination
- Webcast Program initiated in 2011: 60-90
 min program on hot topic held on the second
 Thursday of each month (free for
 Subscribers)

Since 2000...

172 projects commissionedOver \$50M in fundingleveraged120 published works50 projects still active

Number of Project Starts

In 2013...

12 projects launched \$1.9M in funding awarded 36 published reports

Annual WateReuse Research Foundation Conference

- First Conference held on June 5-6, 1997
- Theme was "Merging Our Resources"
- Will Convene 18th Annual Conference
 - May 19-20, 2014 in Las Vegas, NV
- Conference provides opportunity to:
 - Showcase results of WRRF research
 - Hear presentations from federal agencies, researchers from partner organizations
 - Identify future research needs
- EPA's OR&D and Water Research Foundation have been Conference Sponsors for 13 Consecutive Years

 RESEARCH

Research Categories

Direct Potable Reuse

Business Economics & Industrial Reuse

- Public Acceptance & Policy
- Desalination

Thank you!

Julie Minton

jminton@watereuse.org

703-548-0880 x 108

WATEREUSE'S FORWARD-LOOKING DIRECTION

- RAC re-focused its framework for regular research to place more emphasis on socio-economic research angles, and public policy implications, to generate more ROI for subscribers – a sharpened focus
- The Foundation has made a major commitment to philanthropy, to replace previous government/agency funding lost – trying to attract more non-dues donors from within our community, but also from humanitarians/philanthropists
- Have raised \$5.3 million in philanthropy since June 2012 towards DPR
 Adoption tremendous opportunities
- Future research priorities will center around:
 - -- Potable reuse as a supply solution to water scarcity/availability across the US, not just in CA, TX, AZ and CO
 - -- Industrial reuse, especially the water-food-energy nexus EREUSE
 - -- International water reuse, as it impacts the human condition
 - -- Championing innovation and new technology in reuse for all water portfolios

Sandy Westerheide and Nancy Denslow University of South Florida & University of Florida

Goals of the project

- Characterize the response of selected in vitro bioassays for samples representing a range of recycled water quality
- Quantify the relationship, if any, between bioassay response and higher order impacts that are relevant to human health
- Identify the appropriate use and role for bioassays that exhibit acceptable performance in a recycled water monitoring program

Approach

Tasks

- Literature review → identify most promising assays
- Evaluate bioassays and optimize them. Validate with water samples of known chemistry
- 3. Compare bioassay response to reference doses Predict BEQ's
- 4. Provide data interpretation and implementation guidance

Selecting Relevant Endpoints

Assay	Acronym	Mechanism	Potential Health Implications
Estrogen receptor activity	ER	Estrogen signaling	Reproduction, cancer
Androgen receptor activity	AR	Maintenance of male sexual phenotype	Androgen insensitivity syndrome
Progesterone receptor activity	PR	Embryonic development, cell differentiation, homeostasis	Cancer, diabetes, hormone resistance syndromes
Peroxisome proliferator- activated receptor gamma	PPARg	Fatty acid storage and glucose metabolism	Obesity, diabetes, atherosclerosis, and cancer
Glucocorticoid receptor	GR	cortisol, glucocorticoids	Development, metabolism, immune response, neuroendocrine integration
Genotoxicity		DNA mutations	Cancer
Cytotoxicity		General toxicity	Tissue integrity

Bioassay Comparison

Relevance

- specificity (MOA, CEC)
- link to tox pathways, apical endpoints

Robustness

- specificity, sensitivity, precision
- historical usage

Simplicity

protocol complexity

Time & Cost

- set-up, incubation, data interpretation, reporting
- capital & recurring costs

Vendor support

- co-investment, leveraging
- ready resources & expertise

Commercial Assays Table

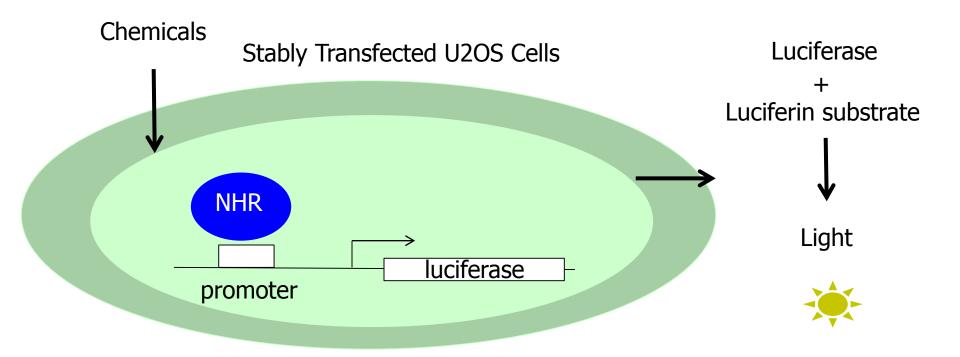
Vendor	Assay Name	Cell Type	Assay Description
Invitrogen	GeneBLAZER	293T cells (kidney)	FRET-based reporter assay
BioDetection Systems	CALUX	U2-OS (bone)	Luciferase reporter assay
SwitchGear Genomics	LightSwitch	HT1080 (fibrosarcoma)	Multiplexed luciferase reporter assay
Attagene	Factorial TM	Transfect into cells of choice	Multiplexed reporter assay using capillary electrophoresis
DiscoverX	PathHunter	MD453 (breast) U2OS (bone)	Split beta-Gal reporter assay
Indigo BioSciences- Axxora	Nuclear Receptor Assays	Unspecified	Luciferase reporter assay

Commercial Assays Table

	Vendor	Assay Name	Cell Type	Assay
				Description
	Invitrogen	GeneBLAZER	293T cells	FRET-based
			(kidney)	reporter assay
	BioDetection	CALUX	U2-OS	Luciferase
	Systems		(bone)	reporter assay
	SwitchGear	LightSwitch	HT1080	Multiplexed
	Genomics		(fibrosarcoma)	luciferase
				reporter assay
	Attagene	Factorial IM	ransfect into	Multiplexed
			cells of choice	reporter assay
				using capillary
				electrophoresis
	DiscoverX	PathHunter	MD453	Split beta-Gal
			(breast)	reporter assay
			U2OS	
			(bone)	
	Indigo	Nuclear	Unspecified	Luciferase
	BioSciences-	Receptor		reporter assay
	Axxora	Assays		-
				•

Vendor Assay Availability

Bioassay	Invitrogen	BDS-CALUX	SwitchGear
Estrogenicity- ER	Yes	Yes	Yes
Androgenicity- AR	Yes	Yes	Yes
Progesterone activity- PR	Yes	Yes	Yes
Genotoxicity- p53	Yes	Yes	Yes
Peroxisome proliferator activated receptor-PPARg	Yes	Yes	Yes
Glucocorticoid receptor activity- GR	Yes	Yes	Yes
Cytotoxicity	Yes-separate assay	No	Yes- integrated assay



- Stable U2OS (bone) cells
 - Express nuclear hormone receptor
 - Contain luciferase reporter with optimized DNA binding site for nuclear hormone receptor

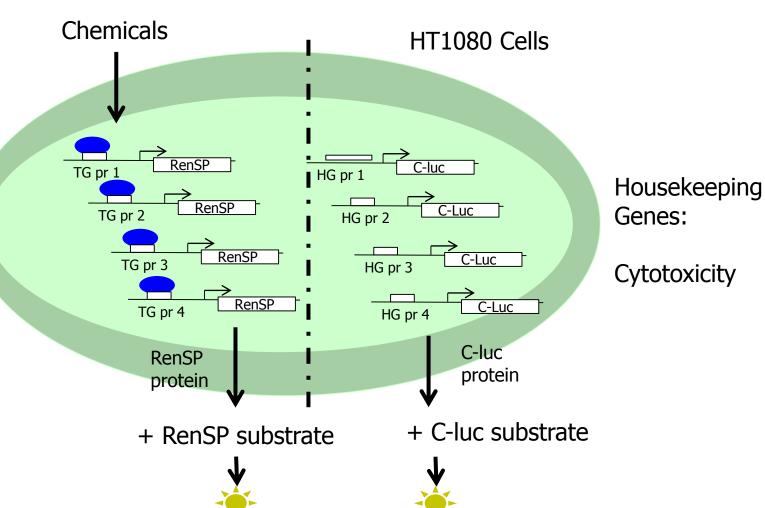
 Cells are plated, treated with compounds, and then assayed for luciferase activity

4

BDS CALUX Assays

- Individual stable cell lines: ER, AR, PR, p53, PPARγ, GR
- No cytotoxicity assay

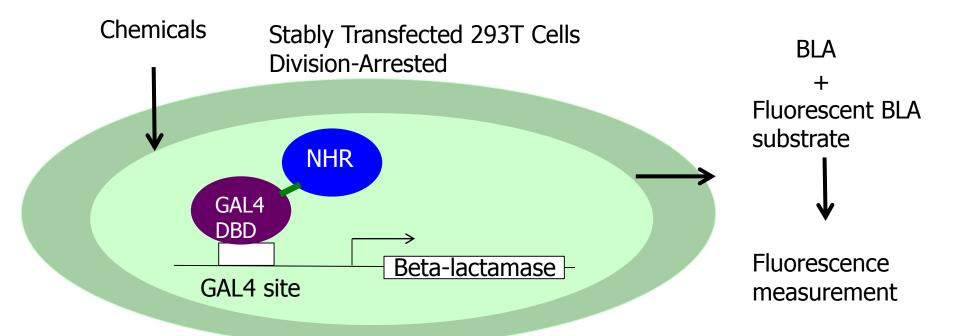
- HT1080 cells
 - Highly transfectable fibrosarcoma cells
 - Contain normal number of chromosomes
 - Can also use any other cell type of choice


 Cells are plated, transfected with pooled reporters, treated with compounds, and then assayed for dual luciferase activity

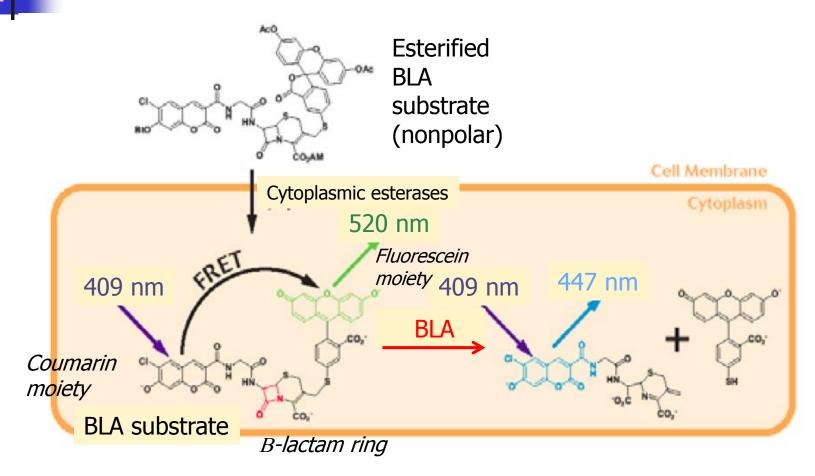
SwitchGear LightSwitch Assays

Target Genes:

Pathwayspecific activity



Invitrogen GeneBLAzer Assays

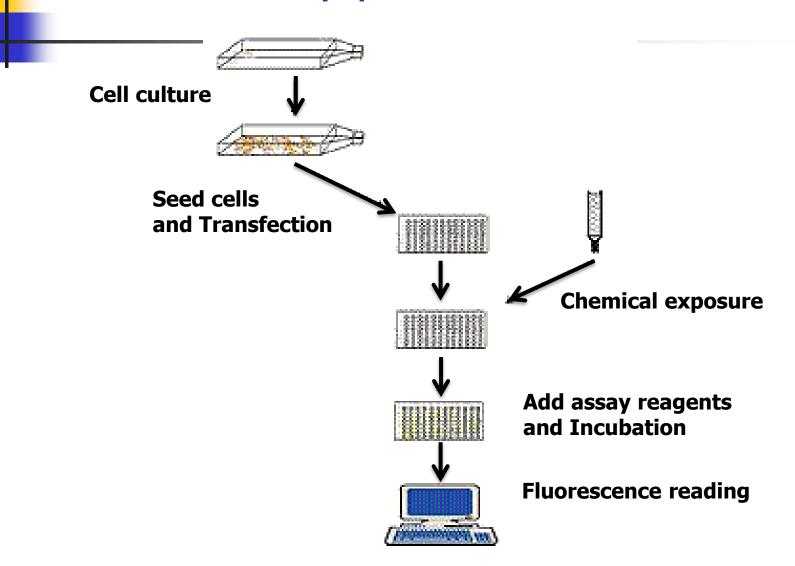

- Stable 293T cells
 - Transfected with GAL4-NHR and beta lactamase reporter containing GAL4 DNA binding site
- Cells are plated, treated with compounds, treated with fluorescent substrate, and then assayed for fluorescence activity

Invitrogen GeneBLAzer Assays

- Individual stable cell lines: ER, AR, PR, p53, PPARγ and GR
- Cytotoxicity measured separately (i.e. Presto Blue assay)

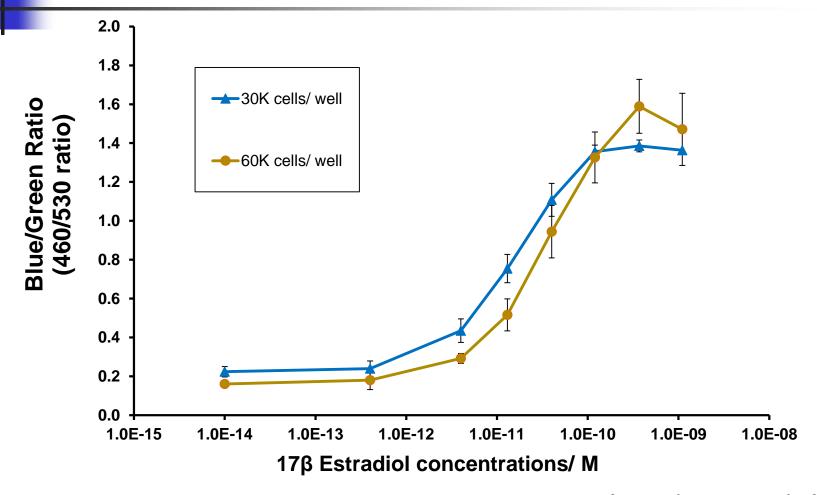
Fluorescence measurement

In the presence of beta lactamase expression (BLA), BLUE fluorescence is produced due to elimination of FRET

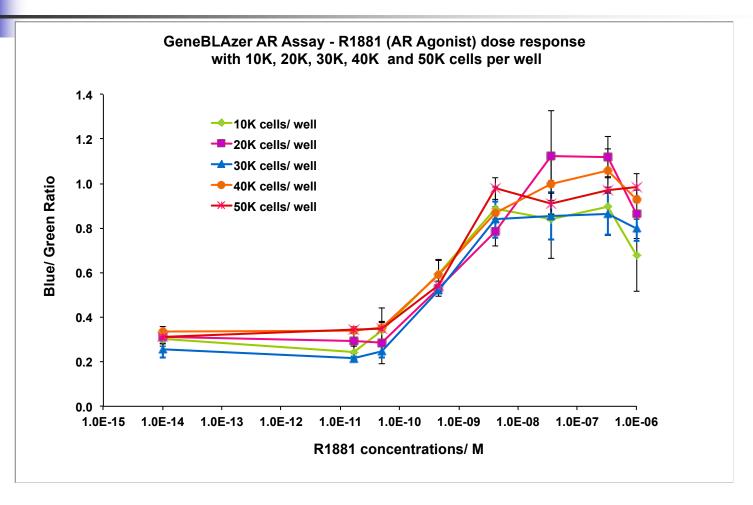

Characteristics of systems

- LightSwitch
 - Endogenous genes
 - Built-in cytotoxicity readout
 - Requires transfection
- CALUX
 - Artificial but sensitive
 - Widely used in Europe
 - Robust
 - Requires yearly license and MTA
- GeneBLAzer
 - Artificial but sensitive
 - Robust
 - Simplest and fastest
 - Best "kit" format

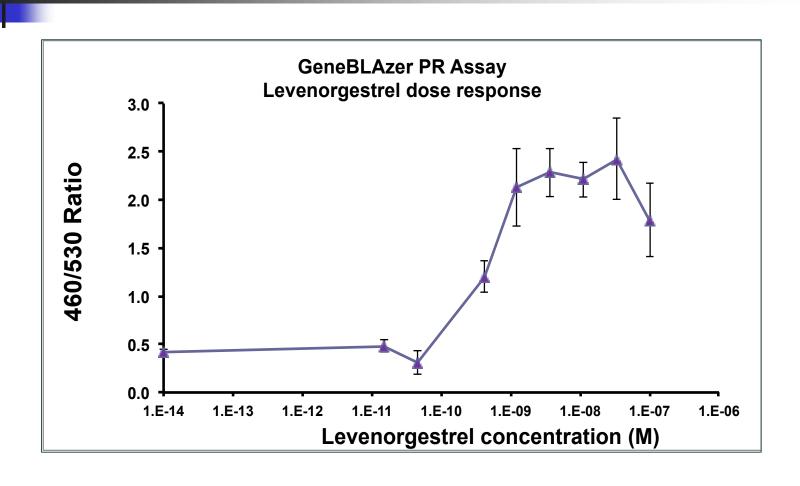
Optimization of GeneBLAzer Assays


- Estrogen receptor -- ER
- Androgen receptor -- AR
- Progesterone receptor -- PR
- Glucocorticoid receptor -- GR
- Peroxisome proliferator activated receptor-- PPARα
- Peroxisome proliferator activated receptor --PPARγ
- Aryl hydrocarbon receptor -- AhR
- Cytotoxicity Presto blue
- Genotoxicity p53

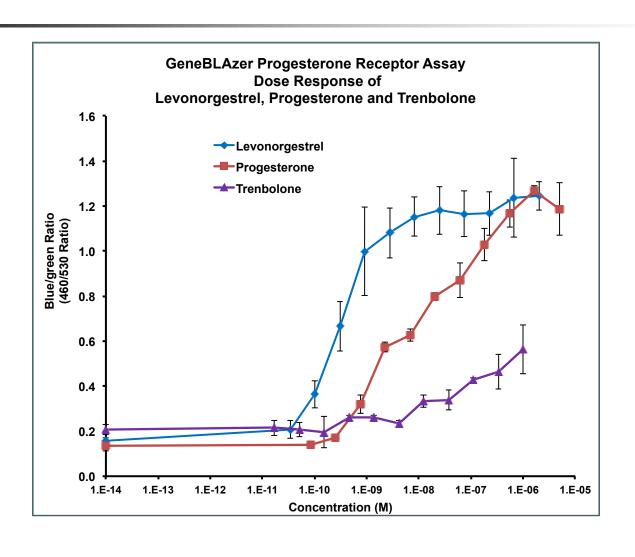
In vitro assay protocol

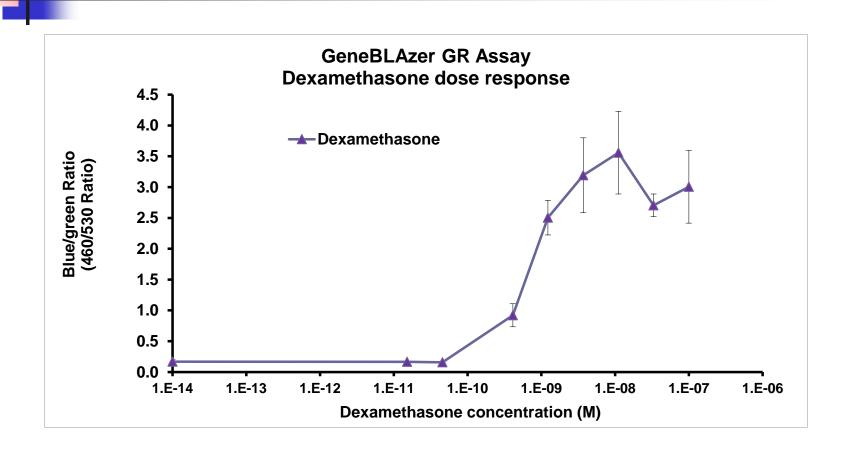

GeneBLAzer ERa Assay

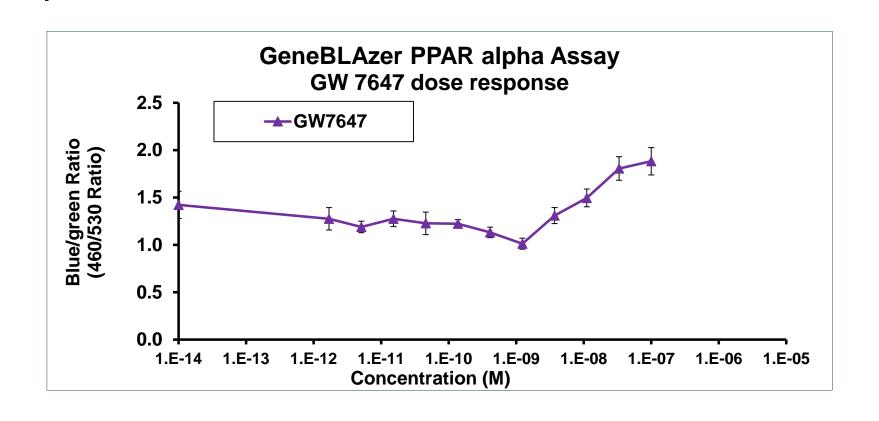
E2 dose response with 30K and 60K cells per well

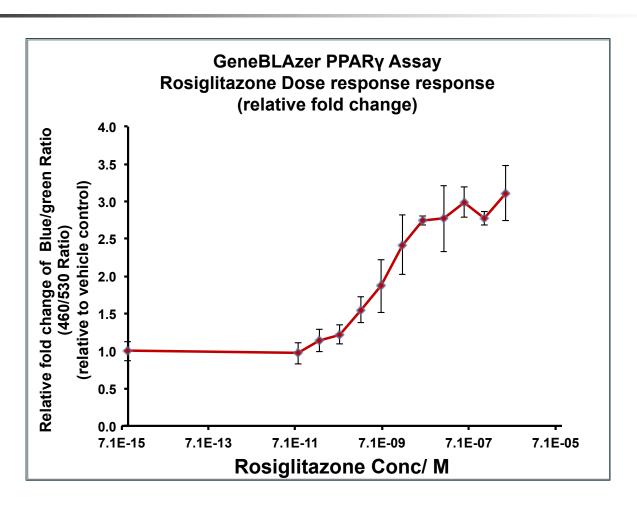


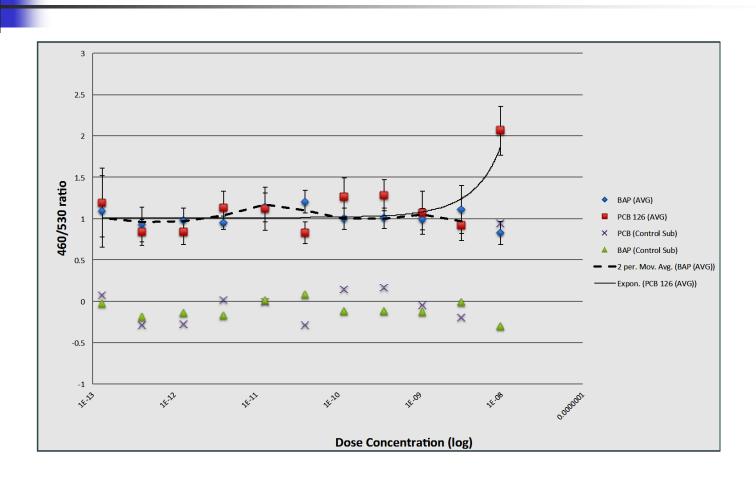
(Sumith Jayasinghe)

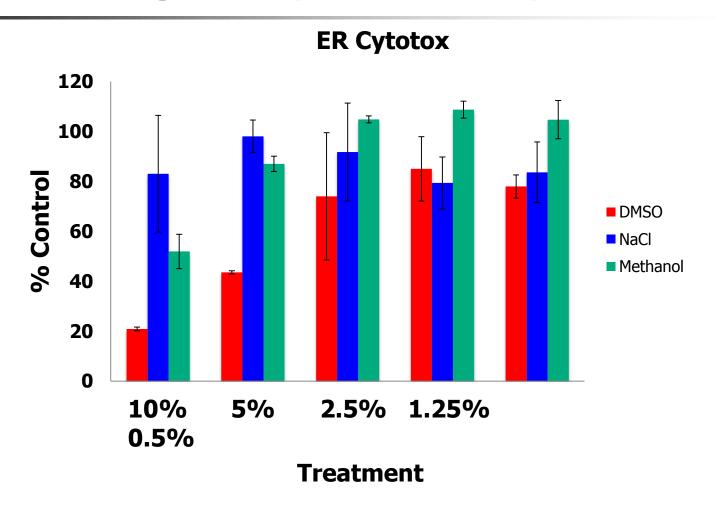

Invitrogen AR assay

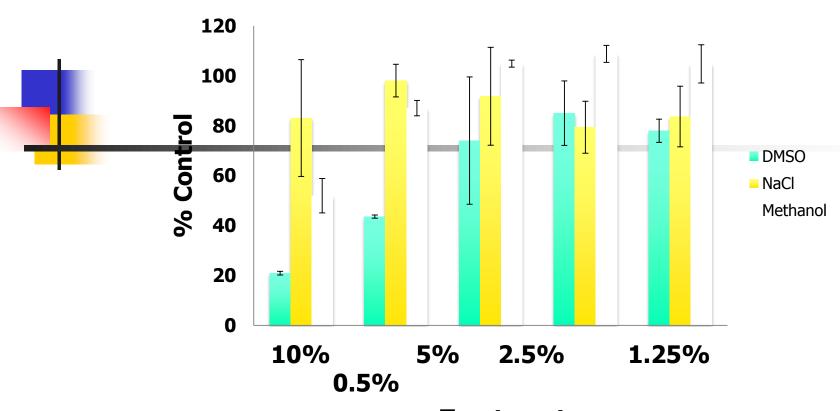

Invitrogen PR assay


Progesterone receptor Levonorgestrel, progesterone, and trenbolone

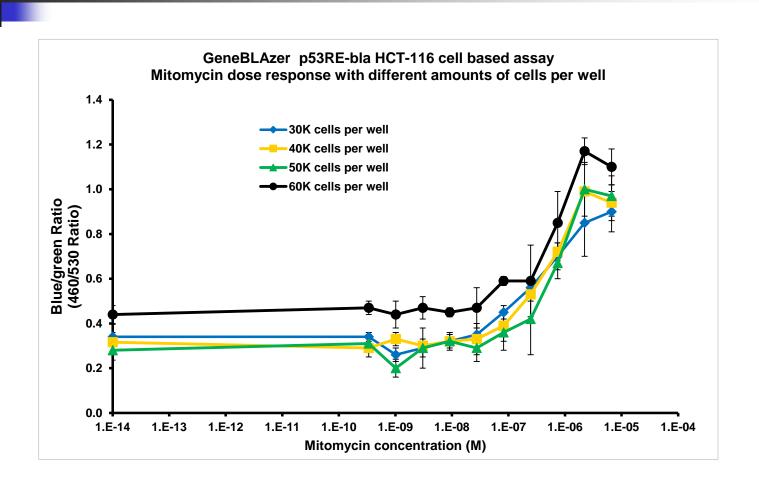

Invitrogen GR assay

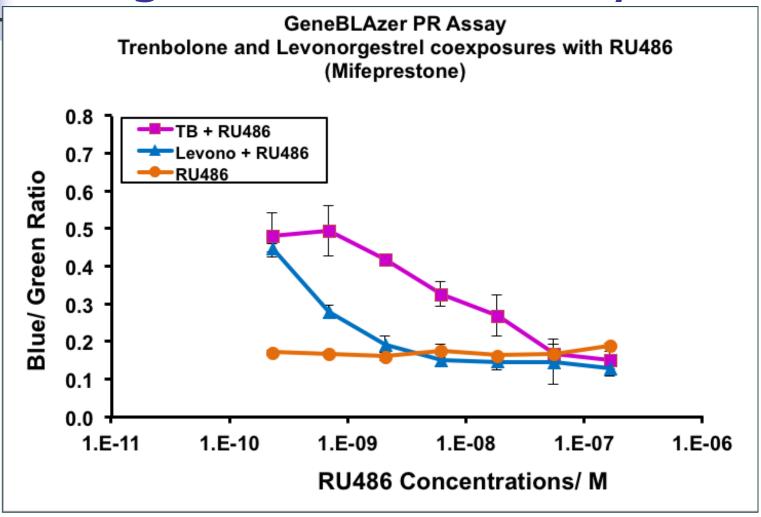

Invitrogen PPARα Assay


Invitrogen PPARγ Assay

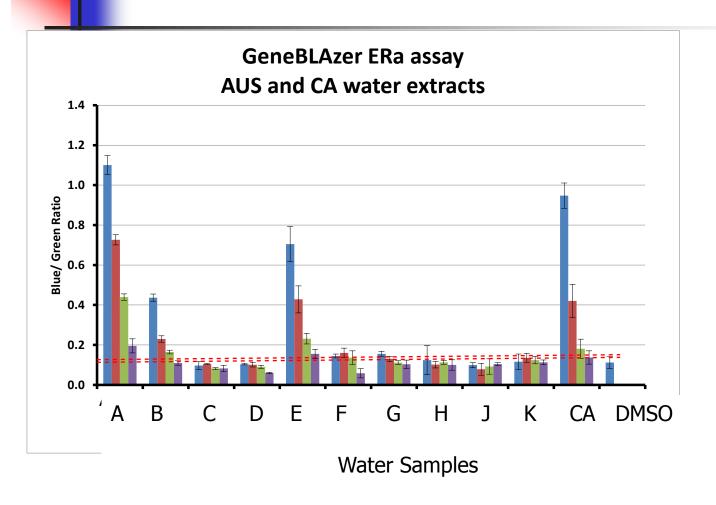

Invitrogen AhR assay

Invitrogen cytotoxicity





Treatment


p53 assay using agonist mitomycin

Antagonism of PR Assay

Round Robin Results -- ERα

Legend for samples

A= Effluent 2

B= Effluent 1

C= Ozonation

D= Storm water

E= Membrane

F= RO

G= River Water

H = AO

J= Blank

K= Drinking water

AR assay

Legend for samples

A= Effluent 2

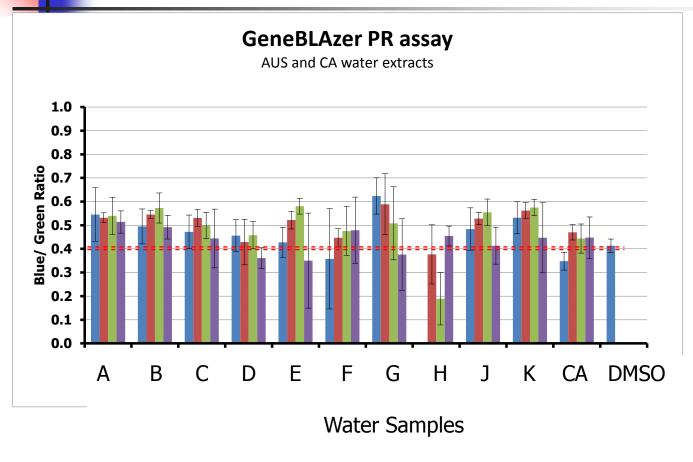
B= Effluent 1

C= Ozonation

D= Storm water

E= Membrane

F= RO


G= River Water

H = AO

J= Blank

K= Drinking water

PR Assay

Legend for samples

A= Effluent 2

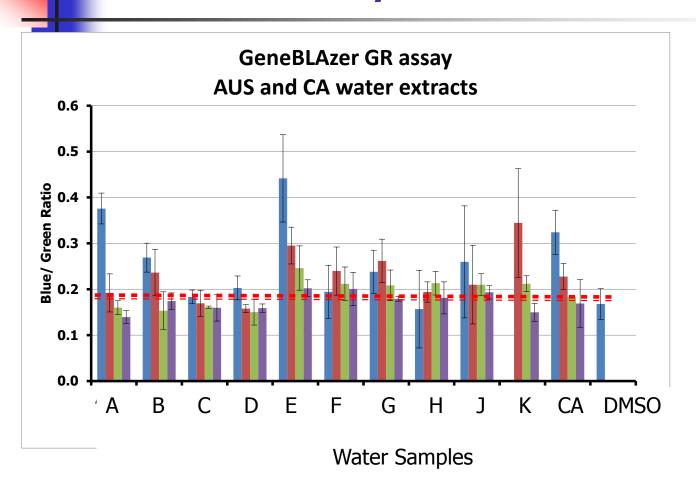
B= Effluent 1

C= Ozonation

D= Storm water

E= Membrane

F= RO


G= River Water

H = AO

J= Blank

K= Drinking water

GR assay

Legend for samples

A= Effluent 2

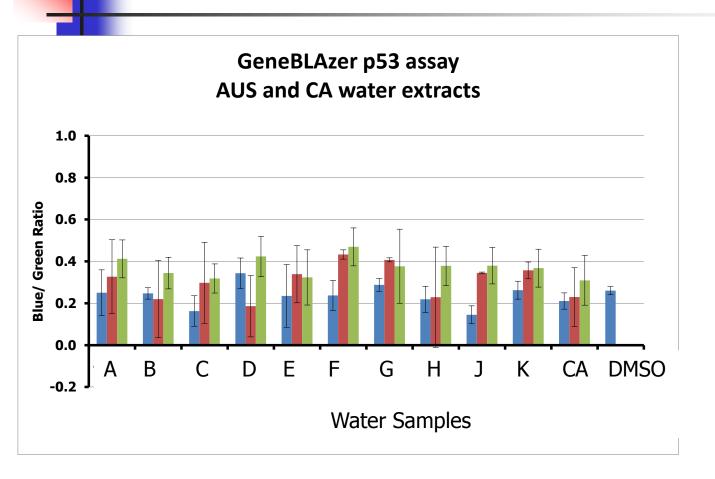
B= Effluent 1

C= Ozonation

D= Storm water

E= Membrane

F= RO


G= River Water

H = AO

J= Blank

K= Drinking water

P53 Genotoxicity Assay

Legend for samples

A= Effluent 2

B= Effluent 1

C= Ozonation

D= Storm water

E= Membrane

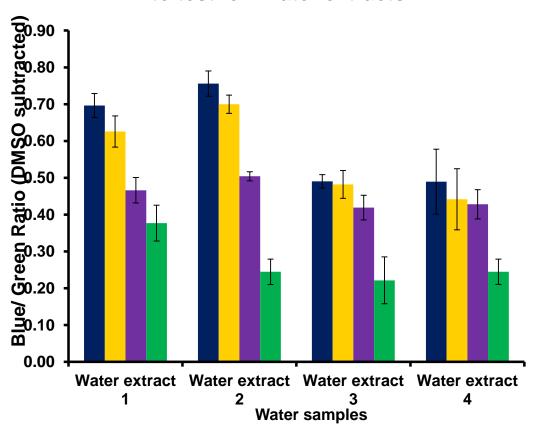
F= RO

G= River Water

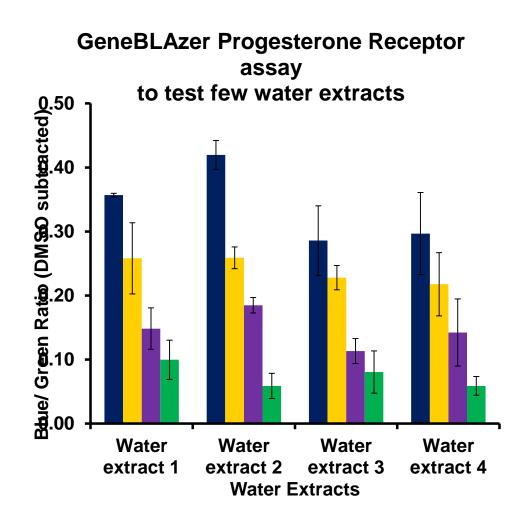
H = AO

J= Blank

K= Drinking water



Fenholloway river- Florida Androgens and progesterone


	Androstenedione	Progesterone
Water column	0.04 ±0.02 ug/L	2.06 ±0.38 ug/L
Sediments	$0.7 \pm 0.02 \text{ug/L}$	48.8 ±7 ug/L

Fenholloway River and Econfina River in Florida

GeneBLAzer AR assay to test few water extracts

Fenholloway River and Econfina River in Florida

Conclusions

- Bioanalytical assays work well with standard chemicals and also work with water extracts
- Can be used to help inform the chemist about the analytes that should be investigated
- Multiple commercial assays are available
- Assays are relatively easy to perform training required – mostly careful pipetting
- Still need to find a functional AhR assay

Acknowledgements

- UF team: Sumith Jayasinghe
- USF team: Jamie Mendez, Chris Menzie
- UCR team: Dan Schlenk, Jordan Crago
- UA team: Shane Snyder, Ai Jia
- SCCWRP team: Keith Maruya, Alvina Mehinto

Analytical Methods & Results

Ai Jia, Shimin Wu, Tarun Anumol, Bingfeng Dong, Darcy VanDervort, & Shane Snyder

The University of Arizona 23rd January 2014

http://snyderlab.arizona.edu/

Challenges

- Extraction Method has limitations
 - Inappropriate for inorganics and highly-polar organics
 - Loss of highly-volatiles
 - Assumed recovery/stability for unknowns
 - Recovery not corrected for bioassays
- Analytical data from extracts less robust
 - No surrogates for recovery & suppression correction
 - Modern instrumental methods use <2 mL sample vol.
 - ➤ If mass balance good, instruments are faster/easier

Sample Collection-SCCWRP

Sampling Date: 2012.6.18 Roger Road Effluent (1st round)

2012.8.28 Green Valley AOP Pilot (2nd round)

2013.7.01 West Basin recycle water (2nd round)

Washed with MeOH and Milli-Q water

Ice inside

Sample Collection-1st round

Roger Road Wastewater Reclamation Facility (1st Round)

RR effluent is used for the irrigation of golf courses and also infiltrated.

Treatment process consists of:

- 1) Headworks
- 2) Clarifiers
- 3) Biotowers
- 4) Chlorination

Sample Collection-SCCWRP

Green Valley AOP Pilot Plant

- GV-pilot influent (secondary eff)
- 2. GV-pilot UV (500mJ/cm2)
- 3. GV-pilot UV/H2O2 (500mJ/cm2, 10mg/L)
- 4. GV-pilot ozone (3mg/L)
- 5. GV-pilot ozone/UV (3mg/L, 500mJ/cm2)
- 6. GV-Chlorine (10mg/L HOCl, 2h contact)

Sample Collection-SCCWRP

West Basin Little Water Recycling Facility

- 1. Field Blank
- 2. WB-Influent
- 3. WB-Ozone
- 4. WB-MF
- 5. WB-RO
- 6. WB-UV AOP

Sample Preparation

Samples as well as field blanks were moved into the lab and filtered immediately using the glass fiber filters (1.0um, Whatman)

Before SPE, all samples were stored at 4°C. Extraction was conducted within one week.

Sample Preparation

Dechlorinated with thiosulfate (50 mg/L) for specific samples.

Sample (2L)

HLB (500mg,6cc) tandem

Coconut charcoal (6cc 2g)

2X 5ml Acetone: Hexane (1:1)

2X 5ml MeOH

2X 5ml HPLC Water

Cartridge Condition

2X 5ml MeOH

2X 5ml Acetone:Hexane (1:1)

Elution

Nitrogen

Evaporation

Final Extract

2mL in MeOH, half converted into DMSO

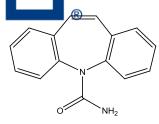

Sample Preparation

1. Cartridge Conditioning

2. Loading Samples

3. Cartridge Elution

4. Evaporation


5. Transfer

Target CECs

Acesulfame	Fluoxetine	PFBS	Sucralose
Atenolol	Gemfibrozil	PFDA	Sulfamethoxazole
Atrazine	Ibuprofen	PFDoA	ТСЕР
Benzophenone	Iohexol	PFHxA	ТСРР
Benzotriazole	Iopamidol	PFHxDA	Testosterone
Caffeine	lopromide	PFHxS	Triclocarban
Carbamazepine	Meprobamate	PFOA	Triclosan
DEET	Naproxene	PFOS	Trimethoprim
Diclofenac	Norethindrone	Primidone	
Diphenhydramine	Norgestrel	Propylparaben	
Ditiazem	PFBA	Simazine	

Target CECs

Carbamazepine (Anticonvulsant)

Sucralose (Artificial Sweetener)

Atenolol (β-blocker)

$$H_2N$$
 O NH_2

Meprobamate (Anxiolytic Drug)

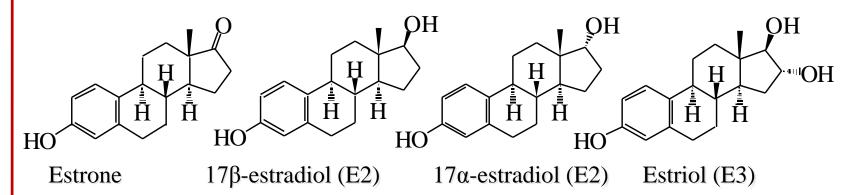
DEET (Insect Repellent)

Sulfamethoxazole (Antibiotic)

Gemfibrozil (Lipid-lowering Drug)

TCPP (Flame Retardant)

Ibuprofen (Anti-inflammatory Drug)


Triclosan (Antibacterial/Antifungal Agent)

Iopamidol (Contrast Agent)

Target Hormones

Natural

Synthetic

17α-Ethynylestradiol (EE2)

Bisphenol A (BPA)

Target Glucocortcoids

Target Analytes										
Aldosterone	Budesonide	Spironolactone								
11-Deoxycorticosterone	Deflazacort	6-α-Methylprednisolone								
Fludrocortisone	Flunisolide	Fluocinonide								
Cortisone	Amcinonide	Betamethasone								
Dexamethasone	Fluticasone Propionate	Fluorometholone								
Triamcinolone	Mometasone Furoate	Triamcinolone Acetonide								
Prednisone	Beclomethasone	Hydrocortisone								
Prednisolone	Flumethasone	Fluocinolone Acetonide								
Corticosterone	Clobetasol Propionate	Clobetasone Butyrate								
Beclomethasone Dipropionate										
	Surrogate									
Hydrocortisone-d ₄	Dexamethasone-d4	Cortisone-d8								
Prednisone-d4	Corticosterone-d8	Fludrocortisone-d5								
Methylprednisolone-d2	Prednisolone-d6									

LC-MS/MS

Recovery: 88-122%

Method Performance for common CECs

Recoveries

(spike: 100 ng/L)

No Surrogates

Compounds	Recovery
Atrazine	63 ± 4
TCPP	66 ± 6
TCEP	66 ± 2
Simazine	68 ± 3
PFOS	71 ± 2
Sulfamethoxazole	75 ± 2
Sucralose	76 ± 5
Caffeine	77 ± 2
Primidone	78 ± 4
PFBS	86 ± 3
PFOA	88 ± 2
Gemfibrozil	88 ± 14
Carbamezapine	88 ± 3
Trimethoprim	96 ± 1
Sucralose	100 ± 2
Triclosan	120 ± 8
Sulfamethoxazole_13C6	97 ± 2
Triclosan_d3	99 ± 6
Sucralose_d6	79 ± 17
Carbamezapine_d10	101 ± 1
PFOA_C13	116 ± 3

Compounds	Recovery
Fluoxetine	11 ± 5
PFBA	28 ± 2
DEET	38 ± 9
Triclocarban	40 ± 12
Fluoxetine d5	19 ± 7

Method is good for common CECs

Detection Summary on 2nd round samples

- No compounds were detected in the field blank.
- Of the 12 samples analyzed, 29 of 41 (70%) target CECs were detected in the samples.
- 25 compounds were detected in more than 50% of Green Valley samples; while 24 were detected in more than 60% of West Basin samples (Raw, post ozone, post MF).
- Two compounds were detected in all of the samples except blank (Atenolol, Benzophenone).

CECs Concentration on 2nd round samples

<MRL

Green Valley Pilot								West Basin						
ng/L	Influent	UV	UV/H ₂ O ₂	O_3	O ₃ /UV	CI ₂	Influent	O ₃	MF	RO	UV	FB		
Acesulfame	13.9	<6.7	<7.0	<7.3	<6.2	<6.7	191	167	141	<7.0	<7.4	<6.9		
Atenolol	1730 <	1670	1210	994	568	547	514	310	325	3.1	3.0	<0.2		
Atrazine	<0.3	<0.4	<0.4	<0.4	<0.4	<0.4	14.4	12.1	12.1	<0.4	<0.4	<0.4		
Benzophenone	184	63.4	11.1	54.9	8.7	10.4	880	334	280	150	130	<0.5		
Benzotriazole	120	191	67.2	76.0	52.9	77.4	<16	<14	<15	<9.1	<9.1	<9.1		
Caffeine	<3.1	<3.5	<3.5	<3.6	<3.2	<3.3	73.6	61.4	66.2	32.4	31.5	<3.0		
Carbamezapine	290	224	265	10.4	28.6	23.8	118	16.4	30.2	<0.4	<0.3	<0.3		
DEET	54.5	32.6	49.7	27.0	24.2	23.5	96.9	60.8	74.5	<0.5	<0.5	<0.5		
Diclofenac	1360	378	240	<2.2	<1.9	273	120	10.9	70.0	<2.1	<2.0	<1.8		
Diphenhydramine	512	485	456	<0.1	196	35.9	470	<0.2	265	<0.1	<0.1	<0.1		
Ditiazem	266	184	174	<0.1	<0.1	165	262	47.7	56.1	<0.1	<0.1	<0.1		
Fluoxetine	199	173	164	130	112	89.2	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1		
Gemfibrozil	148	135	130	14.1	45.7	87.9	633	221	319	<1.0	<0.9	<0.9		
lbuprofen	58.2	55.9	30.8	33.5	28.7	52.4	180	77.4	99.6	<7.6	<8.3	<7.8		

CECs Concentration on 2nd round samples

<MRL

		(Green Val	ley Pi	lot	West Basin						
ng/L	Influent	UV	UV/H ₂ O ₂	O ₃	O ₃ /UV	Cl ₂	Influent	O_3	MF	RO	UV	FB
lohexol	860	206	256	699	153	721	1830	1400	1320	<16	<15	<16
lopamidol	294	79.8	52.8	168	40.3	147	387	277	324	<4.7	<4.5	<4.6
lopromide	50.8	16.9	24.1	33.4	<15	37.4	44.3	54.1	39.9	<16	<15	<16
Meprobamate	540	402	417	324	313	404	370	300	336	<0.2	<0.1	<0.1
Naproxene	135	128	137	<3.5	19.2	40.3	854	163	267	<3.4	<3.2	<3.1
PFBA	6.8	6.0	6.4	4.9	4.7	4.7	<0.8	<0,8	<1.0	<0.8	<0.6	<0.4
PFOS	<0.7	<0.7	<0.7	<0.8	<0.7	<0.7	530	261	290	200	<0.6	<0.6
Primidone	709	812	711	449	471	595	49.0	33.9	42.1	<0.5	<0.5	<0.4
Sucralose	1810	1480	1610	282	346	216	12100	11100	19700	38.7	32.9	<8.5
Sulfamethoxazole	2270	537	129	41.4	27.3	<0.2	510	366	400	<0.2	<0.2	<0.2
TCEP	380	196	308	339	271	235	381	417	410	<0.3	<0.3	<0.3
TCPP	3960	1240	1930	1970	1230	693	731	718	859	<0.4	<0.4	<0.4
Triclocarban	185	99.7	93.9	60.5	42.5	37.0	30.8	15.1	18.3	<0.1	<0.1	<0.1
Triclosan	211	26.2	23.2	<2.5	<2.3	<2.3	346	<9.2	11.2	<2.4	<2.2	<2.2
Trimethoprim	288	269	269	<0.1	<0.1	<0.1	878	194	264	<0.1	<0.1	<0.1

CECs Concentration on 2nd round samples

Compounds not detected in any of the samples:

		(Green Val	ley Pil	ot	West Basin						
ng/L	Influent	UV	UV/H ₂ O ₂	O ₃	O ₃ /UV	Cl ₂	Influent	O_3	MF	RO	UV	FB
Norethindrone	<1.8	<2.1	<2.1	<2.2	<1.9	<1.9	<7.1	<6.7	<5.9	<1.9	<1.7	<1.7
Norgestrel	<0.7	<0.8	<0.7	<0.9	<0.7	<0.7	<1.7	<1.6	<1.6	<0.7	<0.7	<0.7
PFBS	<3.4	<4.0	<3.9	<4.1	<3.6	<3.7	<4.1	<3.9	<3.9	<3.9	<3.7	<3.7
PFDA	<0.6	<0.5	<0.7	<0.8	<0.6	<0.7	<0.4	<0.4	<0.4	<0.6	<0.5	<0.4
PFDoA	<2.8	<1.3	<2.8	<2.9	<2.5	<3.7	<1.2	<1.4	<1.2	<2.3	<1.1	<1.1
PFHxA	<46	<31	<37	<37	<23	<37	<45	<32	<25	<34	<31	<21
PFHxDA	<2.6	<3.6	<2.5	<2.8	<2.4	<4.3	<1.9	<2.1	<1.2	<2.1	<2.6	<1.5
PFOA	<0.8	<0.7	< 0.9	<1.0	<0.7	<0.9	<0.7	<0.7	<0.8	<1.0	<0.9	< 0.9
Propylparaben	<0.3	<0.4	<0.3	<0.4	<0.3	<0.3	<0.3	<0.3	<0.3	<0.4	<0.3	<0.3
Simazine	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1
Testosterone	<0.7	<0.8	<0.8	<0.8	<0.7	<0.7	<2.2	<1.9	<2.1	<0.7	<0.7	<0.7

Steroid Hormone Concentration

- Of the target estrogen compounds, only BPA was detected.
- Five glucocorticoid compounds were detected in some samples.

<MRL

	West Basin											
ng/L	Influent	UV	UV/H ₂ O ₂	O_3	O ₃ /UV	Cl ₂	Influent	O_3	MF	RO	UV	FB
Bisphenol A	<2.7	3.2	<2.1	2.5	<2.2	<2.4	35.3	6.5	7.6	0.5	1.2	<0.4
Prednisolone/ Cortisone	0.06	<0.02	<0.02	<0.02	<0.02	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02	<0.02
Amcinonide	0.4	0.68	0.49	0.5	0.62	0.47	<0.5	< 0.2	<0.1	0.36	0.48	<0.1
Hydrocortisone	<0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluticasone Propionate	<0.5	<0.1	<0.1	0.57	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1
Fluocinonide	0.37	0.46	0.47	0.35	0.32	0.29	<0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Betamethasone/ Dexamethasone	0.07	0.13	0.09	80.0	0.07	0.06	<0.05	<0.02	<0.02	0.03	<0.02	<0.02

prednisone

rimexolone

triamcinolone triamcinolone

acetonide triamcinolone

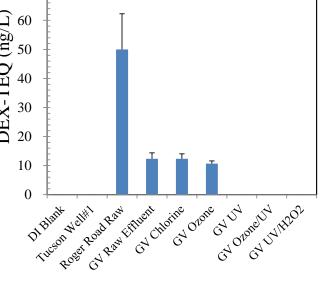
hexacetonide

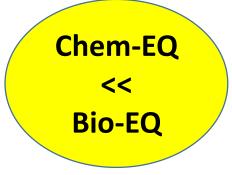
Chemistry & Bioassay

GR Analysis-TEQ value

compound	GR CALUX EC50 (nM)	REP ^a		
aldosterone	112.2 ± 4.84	$\textbf{0.008} \pm \textbf{0.06}$		
amcinonide	$\textbf{0.49} \pm \textbf{0.04}$	1.7 ± 0.09		
betamethasone ^b	$\textbf{1.02} \pm \textbf{0.05}$	$\textbf{0.8} \pm \textbf{0.06}$		
cortisol	$\textbf{11.4} \pm \textbf{0.87}$	$\textbf{0.07} \pm \textbf{0.08}$		
cortisone	>1000 ^c	$<$ 0.0008 \pm 0.00006		
desoximetasone	$\textbf{0.66} \pm \textbf{0.03}$	1.3 ± 0.06		
dexamethasone	$\textbf{0.84} \pm \textbf{0.03}$	1 ± 0.05		
flunisolide	$\textbf{0.49} \pm \textbf{0.03}$	1.7 ± 0.07		
fluorometholone	$\textbf{0.59} \pm \textbf{0.03}$	$\textbf{1.4} \pm \textbf{0.06}$		
6α-methylprednisolone	2.25 ± 0.14	0.4 ± 0.07		
paramethasone ^b	1.14 ± 0.04	0.7 ± 0.05	70 F	
prednicarbate	$\textbf{4.75} \pm \textbf{0.20}$	$\textbf{0.2} \pm \textbf{0.06}$	<u> </u>	
prednisolone	$\textbf{3.68} \pm \textbf{0.34}$	0.2 ± 0.1	⇒ 60 +	

 $< 0.002 \pm 0.0004$


 1 ± 0.06


 0.2 ± 0.05

 2.3 ± 0.04

 0.3 ± 0.06

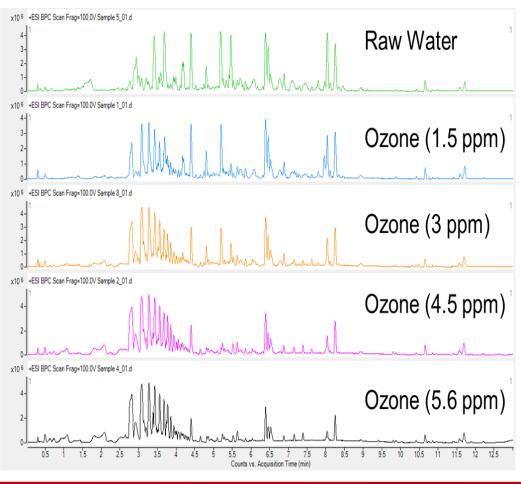
	DEX-EQ (ng/L)
GV Eff	1.1
UV	1.8
UV/H2O2	1.6
03	2.3
O3/UV	2.0
Chlor	2.0

Environ. Sci. Technol. **2010,** 44, 4766–4774

>500c

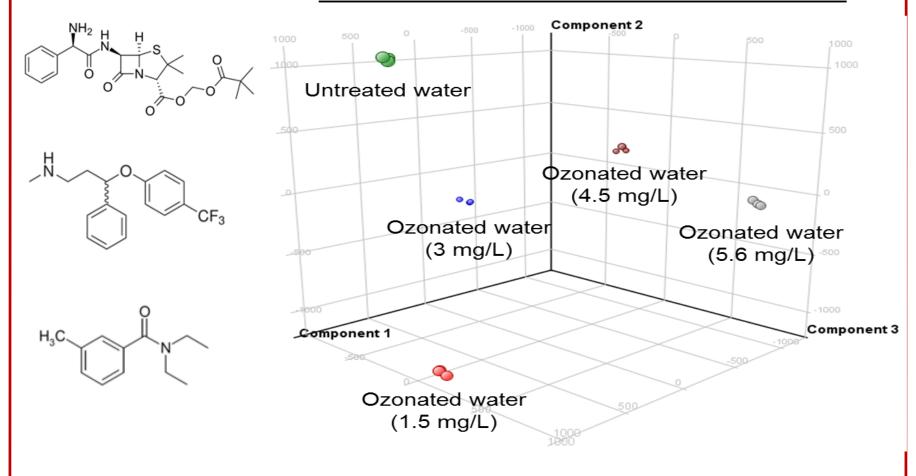
 0.83 ± 0.04 5.67 ± 0.23

 0.37 ± 0.01


 3.40 ± 0.17

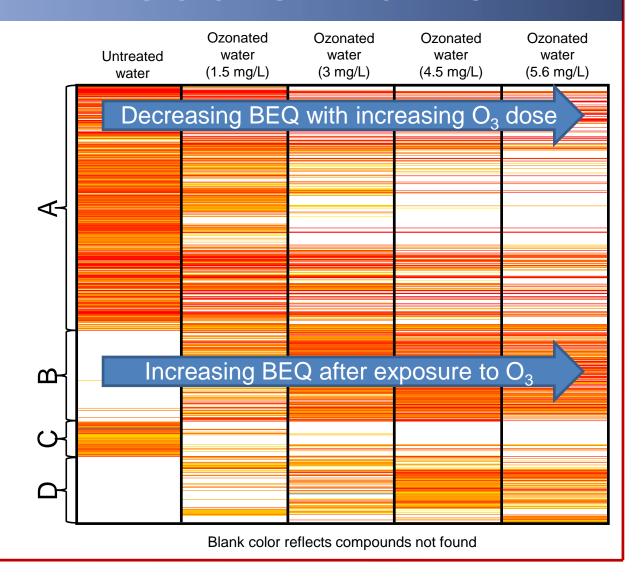
What if you don't know the cause???

GC & LC QTOF for identification of unknowns



What if you don't know the cause???

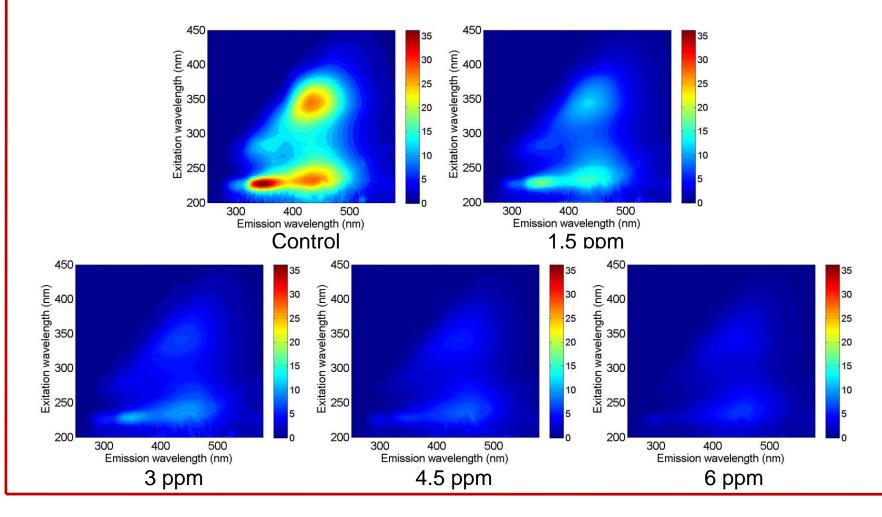
PCA Plot for Different Ozone Doses

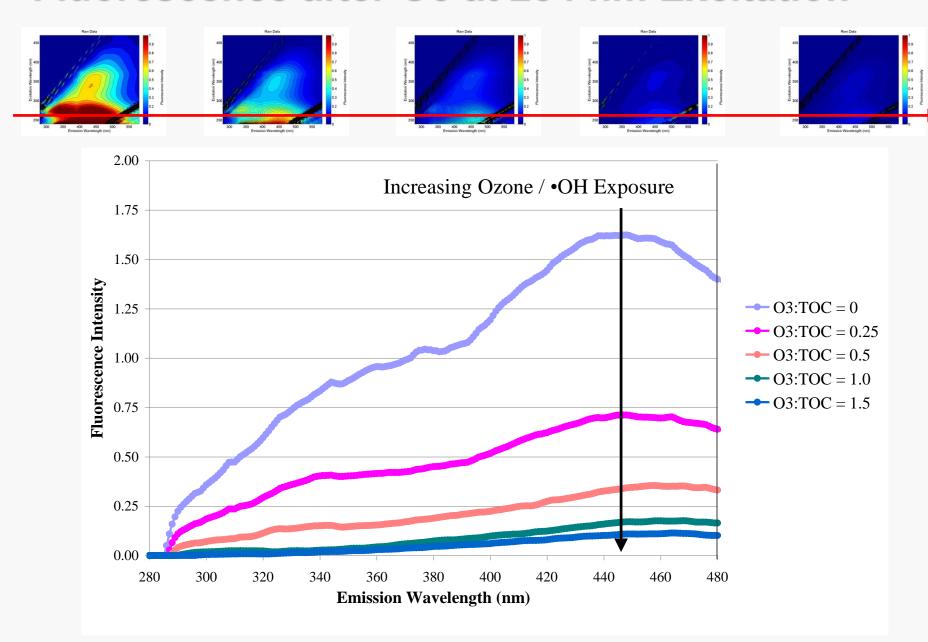


WATER TREATMENT & ANALYSIS OF UNKNOWNS

Although
chromatograms were
all similar for the
analyst, clear
differences appear on
the heatmap

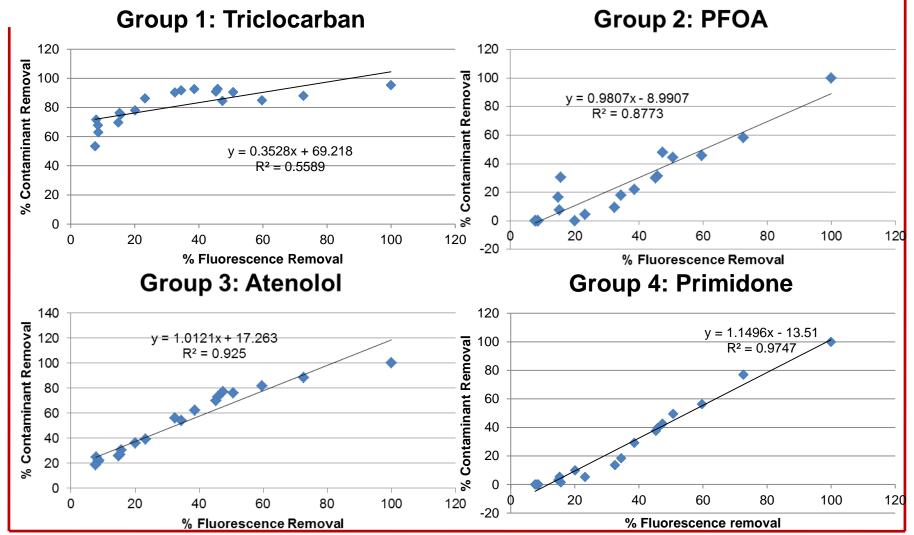
A & C are group of compounds in the raw water but at lower concentration or absent in ozonated water (removed by ozone)


B & D are compounds absent in raw water but present in treated water (ozone by-products)

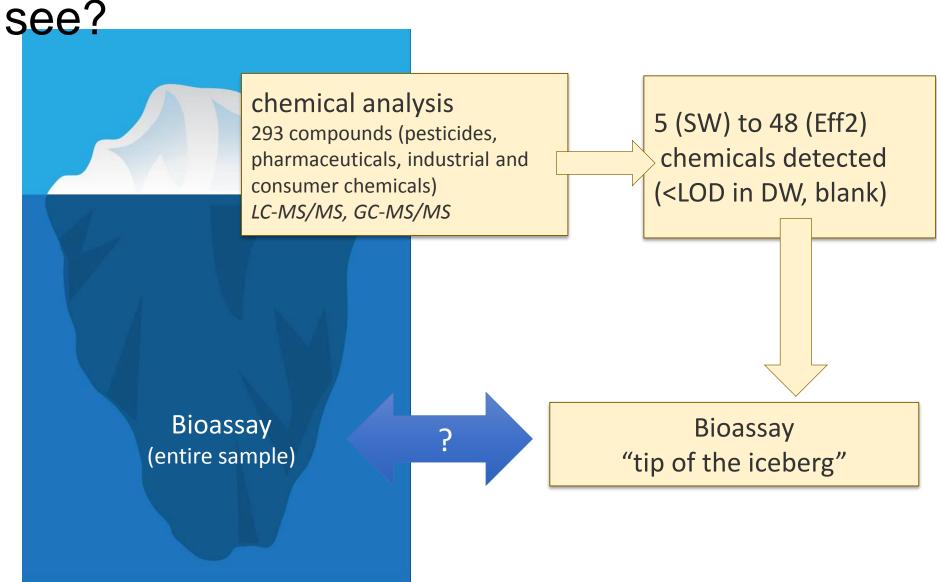


Application of Fluorescence indexes as surrogates for water quality

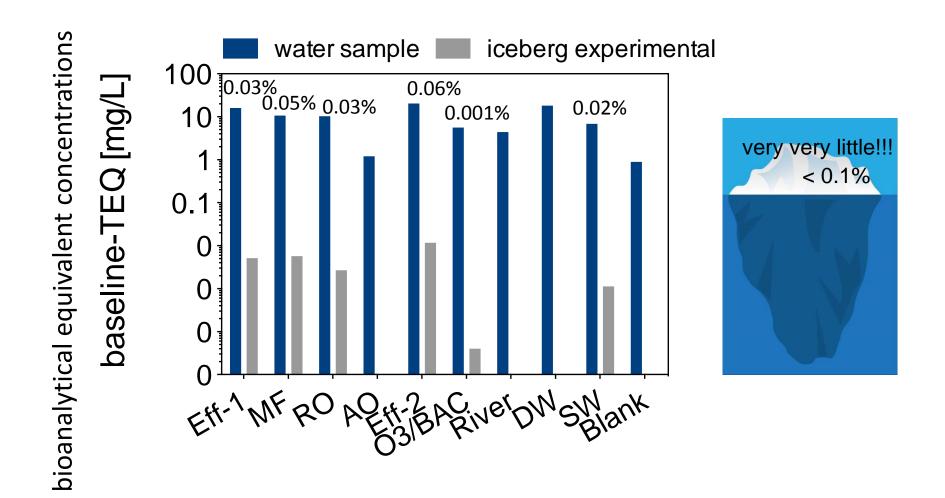
Wastewater Effluent on Ozone treatment



Fluorescence after O3 at 254 nm Excitation



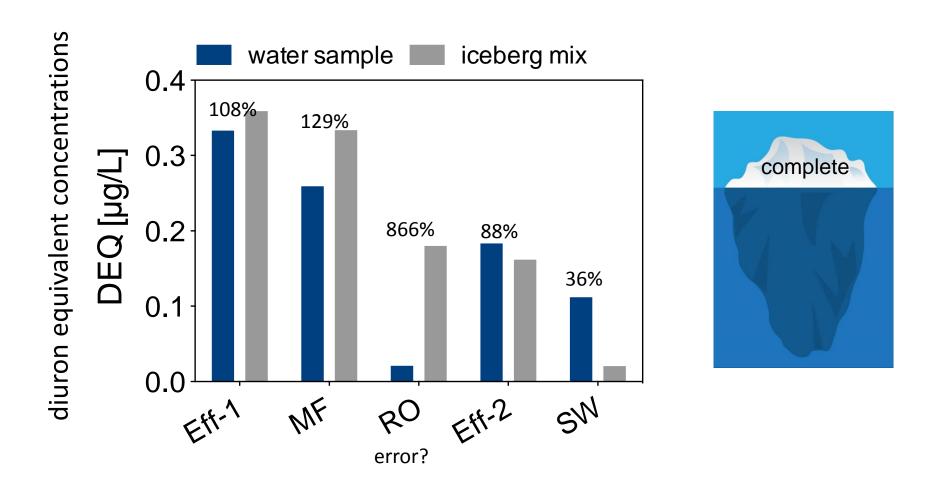
Fluorescence Excitation/Emission Pairs



Mixtures: how many micropollutants do we

Tang, J.Y.M., McCarty, S., Glenn, E., Neale, P.A., Warne, M.S., Escher, B.I. 2013. Water Res., 47: 3300-3314.

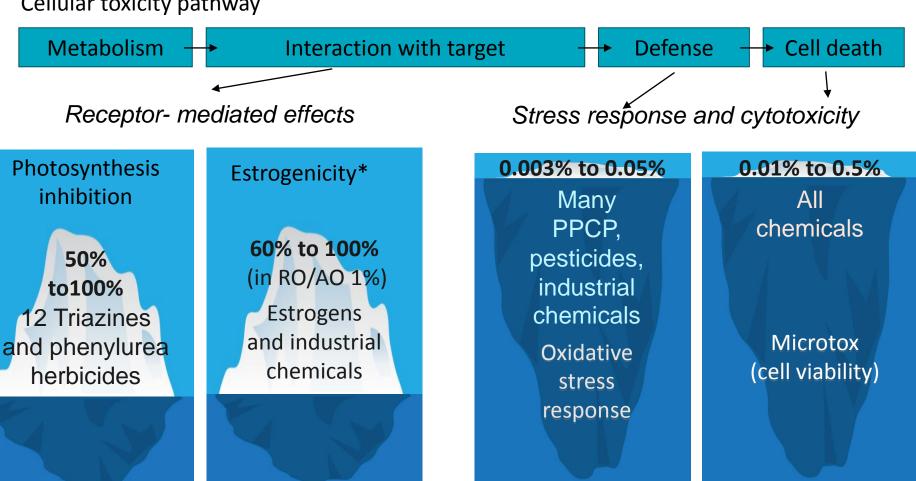
Which fraction of effect can be explained by known chemicals? Example: Microtox



Which fraction of effect can be explained by known chemicals? Example: oxidative stress response

Escher, B.I., van Daele, C., Dutt, M., Tang, J.Y.M. and Altenburger, R. (2013) Oxidative Stress Response Triggered By Pesticides, Pharmaceuticals And Their Mixtures Environmental Science & Technology, : 47(13): 7002-7011.

Which fraction of effect can be explained by known chemicals? Example: photosynthesis inhibition



Tang, J.Y.M. and Escher, B.I. (2014). Realistic environmental mixtures of micropollutants in wastewater, recycled water and surface water: herbicides dominate the mixture toxicity towards algae. *Environmental Toxicology and Chemistry*: submitted 10 Oct 2013.

Which fraction of effect can be explained by known chemicals?

Cellular toxicity pathway

*Escher, B.I., Lawrence, M., Macova, M., Mueller, J.F., Poussade, Y., Robillot, C., Roux, A., Gernjak, W. 2011. Environ. Sci. Technol., 45: 5387-5394. Tang, J.Y.M., McCarty, S., Glenn, E., Neale, P.A., Warne, M.S., Escher, B.I. 2013. Water Res., 47: 3300-3314.

Standardization of Bioassay Protocols

ALVINA MEHINTO SCCWRP

Development of SOP

- 1. Background (cell lines, mode of action)
- 2. List of laboratory equipment, consumables, cell kit
- 3. Assay protocol
- 4. Data reporting (e.g. standard data entry spreadsheet)
- 5. Appendices (e.g. plate layout, preparation of dilutions)
- 6. Expected results
- 7. Troubleshooting

Laboratory Set-up

Molecular laboratory (centrifuges, microscopes, multichannel pipets...)

Specific equipment for bioassay:

- Biological safety cabinet class II
- Humidified cell culture incubator to maintain cells
- Cryogenic freezer
- Fluorescence plate reader, bottom read capabilities

Assay consumables

- Cell assay kit, assay media
- Cell culture plates
- Reference ompound

Bio-screening Workflow

Sample Extraction **Cytotoxicity Assay Enrichment factor** (live or dead test) e.g. 10X more than 80% cell survival: less than 80% cell survival: not cytotoxic cytotoxic Cell Assays (ER, AR, PR, GR receptors activation) Adjust dilution series to Test sample dilutions start with 1st sample following the protocol's showing no cytotoxicity instructions

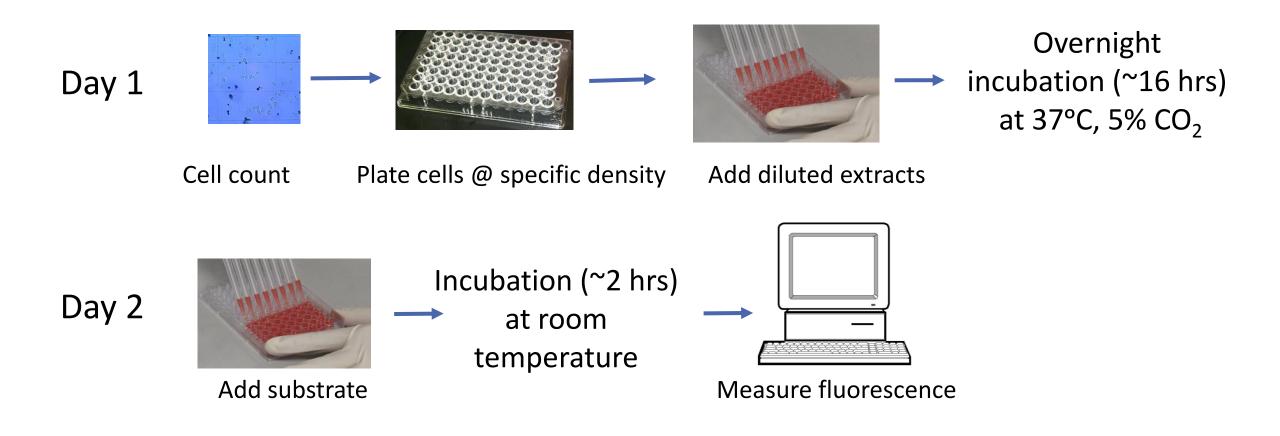
Standardized Approach for CA Project

- Division arrested cells for ERa, AR, PR and GR
- Vehicle control: 0.5% DMSO
- Cell density: 50,000 cells/well (ERa, GR), 40,000 cells/well (AR, PR)
- Reference compounds: 9 concentrations for dose response curve
- Sample extracts: 4 dilutions in triplicate
- Set of QA/QC

Bioassay Preparation

Solutions:

- Assay media (different assay media may be required for different cell assays)
- Stock solutions for reference chemicals
- Working dilutions for reference chemicals and sample extracts


Cells:

- Provided frozen, division-arrested
- Revived in assay media and plated the same day

Cell viability and count:

- Stain and count number of cells in known volume
- Dilute cell suspension to required cell density for the assay

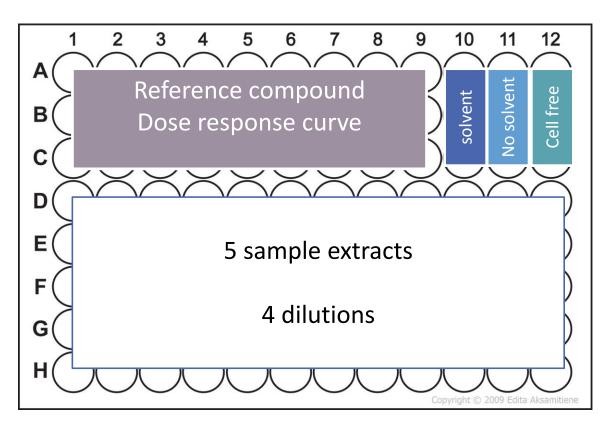
Cell Assay Protocol

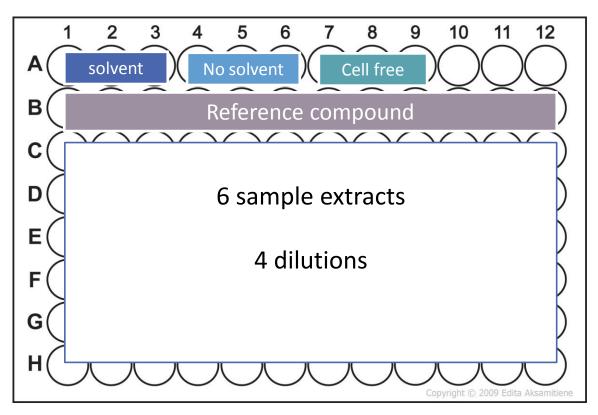
QA/QC

Control for contribution of artifacts (blanks)

- Cell-free control determine plate background
- Vehicle-free control determine background of unstimulated cells
- Vehicle (e.g. DMSO) control determine background caused by vehicle control
- Blank extract chemical extraction blank sample
 - X3 replicates on EACH assay plate
- Control should not exceed e.g. 10% of EC₁₀

QA/QC - cont.

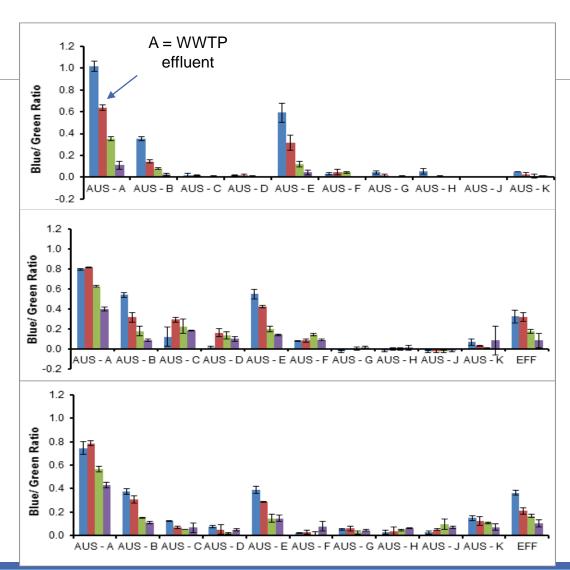

Calibrate assay response with reference compound


- Dose response curve with potent agonist (e.g. 17β -estradiol for ER α) to determine Bio-EQ
 - 9 dilutions X3 on first assay plate
 - 5 dilutions X2 on subsequent plates
- EC50 should agree with historical/specified value, e.g. to within 30%

Validate assay response

- Include spiked sample
- Response should be within the expected range of positive assay response

Cell Assay Protocol (96-well plate format)



Standard plate

Additional plates

WRF Results

- Example with ERa cell assay
- Good agreement between
 CA team participating
 laboratories

Future Goals

Time/Cost Improvements:

- Scale up to higher density plates to run samples more cost effectively
- Automation of protocol
- Multiplex endpoints for a given cell line

DATA INTERPRETATION & GUIDANCE

- Translate bioassay results into quantifiable threshold
 - total equivalent concentrations or quotients (TEQs)
- Investigate relationship to priority CEC concentrations & health based trigger levels
 - compile reference doses or "TTCs" for known/measured CECs
- Develop tiered framework that best utilizes bioassay results
 - first tier screening tool
 - bioassay threshold exceedances that trigger appropriate response
- Conduct workshop for stakeholders
 - appropriate role, implementation and use of bioassay results

DATA ANALYSIS

Step 1. Confirm bioassay results are valid (QA/QC checks)

Calculate EC_x (reference chemical) and compare to historical values If within specification, go to next step. If outside, take corrective action Assess blank contribution

If within specification, go to next step. If outside, take corrective action

Step 2. Determine behavior of sample results

- Test for difference in fold response among sample dilution series
- If dose-response exists, calculate EC₁₀ and/or EC₅₀
- If no dose-response, compare mean to blank
 - If no difference, report as "ND" (e.g. max REF * 2)

Step 3. Compute bioassay equivalents (BEQs)

- represent in units of ng/L based on reference chemical $BEQ = EC_x$ (reference chemical) / EC_x (sample)

MONITORING THRESHOLDS

- Step 1. Consult with regulators to identify current guidelines
 - Fed, state MCLs for target analytes or analogs thereof
 - State, regional investigative benchmarks (e.g. notification levels)
 - International published thresholds based on human health effects
- Step 2. Assess linkage of bioassay and higher order effects
 - Compile relative potency factors (PFs) as EC_{x,in vitro} / EC_{x, in vivo}
 - Rank or weight PFs based on relevance/rigor of study
 - (epi > individual > organ > molecular)
- Step 3. Apply margin of safety based on monitoring goals and uncertainty
 - Action Level (AL) = PNEC or NOEC / (PF * SF)

DECISION MAKING

Step 1. Compare bioassay result to action level

If BEQ > AL, GO TO STEP 2
If BEQ < AL, continue with baseline monitoring and GO TO STEP 3

- Step 2. Define actions commensurate with exceedance
 - Confirm a single exceedance within specified period of time (e.g. 72h)
 - If confirmed, initiate targeted chemical analysis "directed by bioassay"
 - Increase frequency of monitoring to see if exceedance persists
 - Notify regulatory agency and discuss/implement rigorous solutions
- Step 3. Review monitoring data on a regular schedule
 - Off ramp for bioassays that consistent exhibit "safe" response
 - Status quo monitoring for bioassays that show minimal/moderate response
 - Take action to reduce residuals causing consistent bioassay responses at higher levels of concern

#3: INTERPRETATION OF MONITORING RESULTS

High concern – rapid response needed (if ratio exceeds 1000)

Elevated concern – confirm levels; expand monitoring; refine risk assessment (if ratio exceeds 10 but < 1000)

Minimal concern – continue monitoring to ensure concentrations are not increasing (if ratio is between 0.1 and 10)

No concern – Discontinue bioassay (if ratio < 0.1)

Bioassay Wish List

Dan Schlenk University of California, Riverside

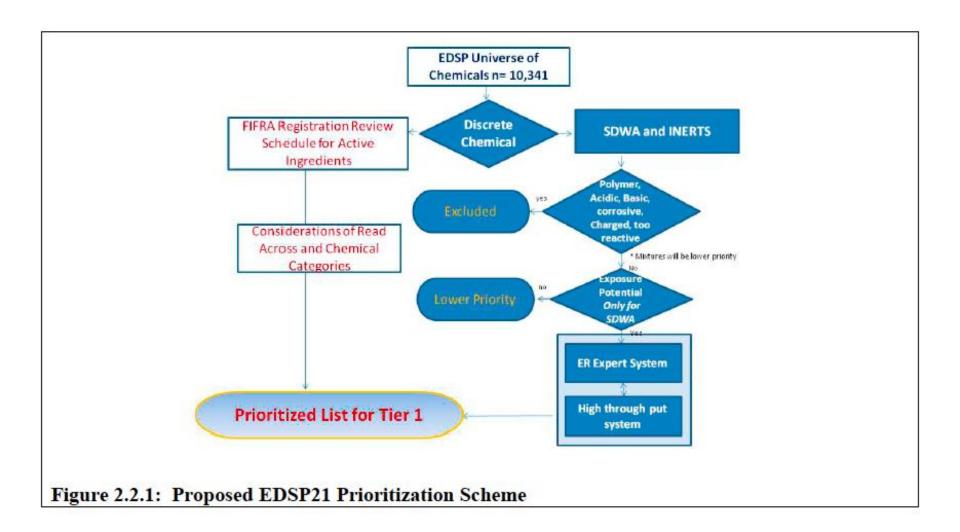
Primary Uses of Bioassays

- Rapid and robust biological response that can be linked through MOA to a higher order adverse outcome
 - BEQ----RfD
- Use a biological response that identifies exposure to mixtures of known and unknown stressors.
 - Focus chemical testing;
 - Screening/Tiered process

toxicological sciences 131(1), 40–55 (2013) doi:10.1093/toxsci/kfs285 Advance Access publication September 28, 2012

In Vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

Nicole C. Kleinstreuer,* David J. Dix,* Keith A. Houck,* Robert J. Kavlock,* Thomas B. Knudsen,* Matthew T. Martin,* Katie B. Paul,† David M. Reif,* Kevin M. Crofton,† Kerry Hamilton,‡ Ronald Hunter,‡ Imran Shah,* and Richard S. Judson*,1


*National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; †National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711; and ‡Association of Schools of Public Health (ASPH) Environmental Public Health Fellow, U.S. EPA, Washington, District of Columbia

¹To whom correspondence should be addressed at National Center for Computational Toxicology, Office of Research and Development, U.S. EPA, 109 T.W. Alexander Drive (B205-01), Research Triangle Park, NC 27711. Fax: 919-541-1194. E-mail:judson.richard@epa.gov.

TOXICOLOGICAL SCIENCES 135(2), 277–291 2013 doi:10.1093/toxsci/kft164 Advance Access publication July 27, 2013

EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

Jie Shen,* Lei Xu,† Hong Fang,‡ Ann M. Richard,§ Jeffrey D. Bray,¶ Richard S. Judson,§ Guangxu Zhou,*
Thomas J. Colatsky,∥ Jason L. Aungst,∥ Christina Teng,∥∥ Steve C. Harris,* Weigong Ge,* Susie Y. Dai,# Zhenqiang Su,*
Abigail C. Jacobs,** Wafa Harrouk,†† Roger Perkins,* Weida Tong,* and Huixiao Hong*,¹

EATS Priority?

- Androgens
 - No Tier 1 transactivation assay for AR?
 - Anti-androgens > Androgens
 - Anti-Estrogens?
- Thyroid
 - Limited success with transactivation assays
 - Affinity/Sensitivity?
 - Thyroxine levels in vivo (mammals)
- Steroidogenesis
 - H295R
 - Translates well to steroid hormone concentrations/reproduction

Why EATS?

- EDSP targets
 - Large database and QSAR development Toxcast
- Vetted Protocols/Methods available
 - -QA/QC
- Linkages to Adverse Outcomes better quantified

Glucocorticoid and Progesterone

• GR

- Linkage to Immune/cardiovascular functions, developmental cellular proliferation
 - TEQ?
- High sensitivity and robust assay that allows TIE analyses (WRF report)

PR

- Linkage to Reproductive and Neuroendocrine responses
 - TEQ
- Environmental interest

Dioxin case study – Key Events Dose Response Framework

Application of National Research Council "Silverbook" Methodology for Dose Response Assessment of 2,3,7,8-Tetrachlorodibenzo(p)dioxin.

Authors: Simon T., Stephens M., Yang Y., Manning R.O., Budinsky R.A. and Rowlands J.C.

TEQ RfD for AhR Dysregulation = 30 pg/kg/d

Multiplex?

		Level of			Level of
Nuclear Receptors/transcription factors		activity	Nuclear Receptors/transcription factors		activity
AhR	Aryl Hydrocarbon receptor	++++	PPARa	Peroxisome proliferator-activated receptor	++++
AP1	Activator protein 1	+	PPARd1	Peroxisome proliferator-activated receptor	+
AR	Androgen receptor	+	PPARg	Peroxisome proliferator-activated receptor	++
CAR	Constitutive androstane receptor	+++	PXR	Pregnane-X-receptor	+
ERa	Estrogen receptor alpha	++++	RARa	Retinoic Acid receptor, alpha	+++++
ERb	Estrogen receptor beta	+++	RARb	Retinoic Acid receptor, beta	+++++
ERRg	Estrogen receptor related gamma	++	RARg	Retinoic Acid receptor, gamma	+++++
FXR	Farnesoid X Receptr	+	RORb	Retinoid related orphan receptor beta	++++
GR	Glucocorticoid receptor	++	RXRa	Retinoic-X receptor, alpha	+
HNF4a	Hepatocyte Nuclear factor 4 alpha	+	RXRb	Retinoic-X receptor, beta	+++
LXR	Liver X receptor	+	VDR	Vitamin D receptor	+
NRF2	Nuclear factor erythroid 2-related factor 2	+++			

Genotoxicity

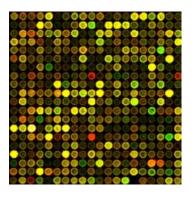
- Chemicals of Concern
 - Cr^{VI}, 1,4 Dioxane, NDMA, DBPs (trihalos)
- Ames & uMu (SOS)
 - lack of sensitivity?
 - Exposure of known compounds (NDMA, BaP)
- P53 activities?
 - Adequate D/R
 - Chicken/egg?
 - TEQ?
- TIE?

Wish List Summary

- EDSP/Toxcast
 - ER redundancy
 - Anti-E; Anti-A
 - Thyroid?
 - Steroidogenesis
- Other NR
 - AhR
 - Life Tech Development
 - GR---TIE already performed
 - PR
- Genotoxicity Assays
 - P53

Promising endpoints in the development phase ... and promising developments

Frederic Leusch


Promising endpoints

- Based on interlab comparison:
 - Pregnane X receptor (PXR)
 - Oxidative stress (ARE-mediated)
- Based on known limitations of in vitro methods:
 - High throughput mammalian genotox assay
 - Non-genotoxic carcinogenicity
 - Neurotoxicity
 - Immunotoxicity
 - Developmental
 - Reproductive

Genomic methods

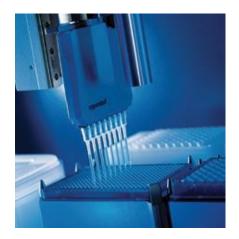
(e.g., RT-PCR, gene arrays)

- Very versatile
- Can help discover new pathways relevant to contaminants in water
- But ...
 - Limited throughput
 - Expensive

Metabolic activation

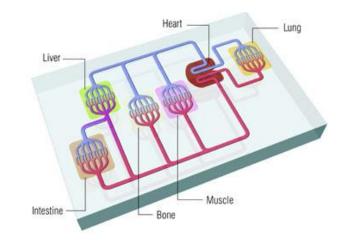
- Metabolic activation is important for:
 - Reactive toxicity
 - Thyroid active compounds (Murk et al)
 - Oxidative stress? Others?
- But often not incorporated in testing strategy
 - Cost: doubles number of analyses required
- Currently available:
 - Rat liver microsomes (S9 fraction)
 - Recombinant human CYP (Corning Supersome)

Moving towards true animal replacement


- Fetal Bovine Serum (FBS):
 - Contains hormones, growth factors, protease inhibitors, proteins, vitamins, amino acids, trace elements, lipids, attachment factors ...
 - Significant source of variability, high ethical cost
- Development of serum free media
 - Would have big QAQC and ethical benefits
 - Any TK implications?

A change in climate ...

- Growing list of validated in vitro methods
 - Driven by ICCVAM and ECVAM (via OECD TG)
- Rapid increase in capacity
 - More than 100 commercial labs can conduct in vitro testing (most for drug discovery, but also for env samples)
 - http://www.alttox.org/ttrc/resources/in-vitro-testing.html
- Several projects (e.g., DEMEAU) and publications devoted to development of bioassay guidelines


High throughput screening

- Many assays being adapted to 384-well format
- Electronic pipettes and pipetting robots are more widely available (and cheaper)

A little farther on the horizon ...

- Implications of today's discoveries
 - Tox21: discovery of biological pathways induced by exposure to environmental pollutants
- Animal on a chip
 - Microfluidics to replicate organ systems
- 3D tissue and organ printing

MEETING OUTCOME

- What endpoints are ready to move forward?
 - Are there superior (commercially available) products that have not yet been tested
- How should the bioassay results be used (e.g. screening vs. decision?)
 - Propose a logical flow for use of screening data
 - Which applications?
- How do we transfer this technology?
 - Standardization, QA/QC guidelines
 - Lab certification
- What more can these bioassays be used for?
 - "hard" decision making
 - Receiving waters

Recommended Studies

- Ensure that water extraction efficiency is universal for all candidate endpoints
- Compare cost of bioanalytical assays vs chemistry
- Need to identify suitable AhR and genotoxicity assays

ER alpha

Preferred MRL - 1 ng/L human relevance
 (0.1 ng/L ecological relevance

- Max REF up to 50 depending on water quality
- Existing products: GeneBLAzer $EC_{10}=5$ ng/L BDS ERa-Calux $EC_{10}=$ approx. 1 ng/L Possible non-commercial assays e.g. CAFLUX
- Reproducibility: Control charts over time ("Shewart log scale EC_{50}) should be within 2 standard deviations)
- Extraction: 1L using Oasis HLB 6cc recommended

ER data interpretation/ framework

- 1. Run in vitro assays
- 2. BEQ > action levels (1 ng/L)
 - 1. Confirm results
 - 2. Targeted analysis (e.g. hormomes, alkylphenols, etc.) to account for estrogenicity
 - 3. If BEQ > CEQ- do effect directed analysis (EDA)/TIE e.g. NTA
 - 4. If BEQ ~ CEQ: determine relevance to human health
- 1. CONSIDER BEQ/AL WHEN MOVING TO NEXT STEP

ERa application

- Testing of treatment efficacy
- Screening
- Decision making
- CONCLUSION: Do pilot evaluation of bioassay framework before taking next step (is it suitable for decision-making?)

Tech transfer

- General guidelines (performance-based)
 - Cell viability
 - Calibration
 - Required QA/QC
 - Cytotoxicity
 - Certified materials
- Standardized data evaluation (results reporting)
- Laboratory certification (inter-calibration exercises)
- Create & maintain information node
- Workshop

Future

- Additional applications
 - Receiving waters
 - Utility for human health assessment
 - Screening for EPA/TIE
 - Transition from screening to decision making tool
- Additional endpoints
 - GR assay is promising